Abstract type theories Taichi Uemura

Introduction

Models of a type theory

Theories ove a type theory

Theory-mod correspondence

References

Abstract type theories

Taichi Uemura

June 17, 2020. HoTTEST Conference

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Goal

Goals

Define a general notion of a type theory to give a unified account of (CwF-)semantics of type theories.

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Goal

Goals

Define a general notion of a type theory to give a unified account of (CwF-)semantics of type theories.

- We define a type theory to be a mathematical structure (category with certain structures) rather than a set of inference rules.
- ► (A set of inference rules is a *presentation* of a type theory.)

Scope

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

We only consider type theories with *single-layered* contexts and inference rules stable under *change of context* (substitution).

Examples

Martin-Löf type theory, Book HoTT, two-level type theory, CCHM cubical type theory

Non-examples

- Spatial type theory (Shulman 2017): contexts are split into two layers $\Delta \mid \Gamma$
- Modal type theories: inference rules may have restrictions on the form of context, so they are not stable under change of context.

Roughly, our type theories admit semantics based on CwFs.

Key concepts

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Type theory presented by inference rules

Model of a type theory mathematical structure that can interpret the inference rules

Theory over a type theory presented by type symbols, term symbols and axioms written in the type theory.

For a type theory $\mathbb T,$ theories over $\mathbb T$ and models of $\mathbb T$ are in adjunction.

Abstract type Example: Basic dependent type theory

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Definition

We call the dependent type theory without any type constructors the *basic dependent type theory* (DTT for short).

The only inference rules of DTT are the structural rules of weakening, projection and substitution.

Example: Basic dependent type theory

Taichi Uemura

Introduction

- Models of a type theory
- Theories over a type theory
- Theory-mode correspondence
- References

- ► A category with families (CwF) (Dybjer 1996) is a model of DTT.
- ► A generalized algebraic theory (GAT) (Cartmell 1978) is a theory over DTT.
- An example of a GAT is the theory of a category.

$$\begin{split} &O:() \Rightarrow \texttt{Type} \\ &M:(x:O,y:O) \Rightarrow \texttt{Type} \\ &i:(x:O) \Rightarrow \mathsf{M}(x,x) \\ &c:(x:O,y:O,z:O,f:\mathsf{M}(y,z),g:\mathsf{M}(x,y)) \Rightarrow \mathsf{M}(x,z) \\ & _:(x:O,y:O,f:\mathsf{M}(x,y)) \Rightarrow c(x,y,y,i(y),f) = f \\ & _:(x:O,y:O,f:\mathsf{M}(x,y)) \Rightarrow c(x,x,y,f,i(x)) = f \\ & _:\{\texttt{equation for associativity}\} \end{split}$$

Goal

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

We define the following notions:

- □ a type theory;
- \Box a model of a type theory;
- \Box a theory over a type theory

and then establish

 \Box theory-model correspondence.

Goal

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

More precisely, we develop functorial semantics of type theories.

- ► A *type theory* is defined to be a category equipped with certain structures.
- ▶ A model of \mathbb{T} is a structure-preserving functor from \mathbb{T} to a presheaf category.
- A *theory over* \mathbb{T} is defined in some way.

We then establish

theory-model correspondence.

Outline

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Introduction

Models of a type theory

Theories over a type theory

Theory-model correspondence

Outline

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Introduction

Models of a type theory

Theories over a type theory

Theory-model correspondence

Natural models

Taichi Uemura

Models of a

type theory

An alternative definition of a category with families.

Definition (Awodey (2018))

A natural model consists of:

- \blacktriangleright a category $\mathcal C$ with a terminal object;
- a map ∂: E → U of presheaves over C that is representable: for any object Γ ∈ C and section A : y(Γ) → U, the pullback A*E is representable. In other words, we have an object {A} ∈ C and a pullback of the form

$$\begin{array}{c} \mathbf{y}(\{A\}) & \stackrel{\mathsf{q}}{\longrightarrow} & \mathsf{E} \\ \mathbf{y}(\mathbf{p}) \downarrow & & \downarrow_{\partial} \\ \mathbf{y}(\Gamma) & \stackrel{\mathsf{q}}{\longrightarrow} & \mathsf{U}. \end{array}$$

Abstract type Natural model semantics

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

$\mathbf{y}(\{\mathbf{A}\})$ —	$\xrightarrow{a} E$
y(p)	9
y (Γ) — A	$\rightarrow u$

Type theory	Natural model
$\Gamma \vdash \mathtt{Ctx}$	$\Gamma\in \mathfrak{C}$
$\Gamma \vdash A$: Type	$A: \mathbf{y}(\Gamma) \to \mathbf{U}$
$\Gamma, \mathbf{x} : \mathbf{A} \vdash \mathtt{Ctx}$	$\{A\} \in \mathfrak{C}$
$(\Gamma, \mathbf{x}: \mathbf{A}) ightarrow \Gamma$	$p:\{A\}\to \Gamma$
$\Gamma, x : A \vdash x : A$	$q: \mathbf{y}(\{A\}) \to E$

Type constructors on natural models

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Type constructors are modeled by maps between presheaves.

Example

An extensional Id-type structure on ∂ is a pullback of the form

$$\begin{array}{c} \mathsf{E} & \xrightarrow{\mathsf{refl}} & \mathsf{E} \\ \vartriangle & \checkmark & & \downarrow \eth \\ \mathsf{E} \times_{\mathsf{U}} \mathsf{E} & \xrightarrow{\mathsf{refl}} & \mathsf{U}. \end{array}$$

How to model Π -types which bind a variable?

Polynomial functors

Taichi Uemura

Introduction

Models of a type theory

Theories ove a type theory

Theory-mode correspondence

References

The pullback functor $\partial^* : \mathcal{X}/U \to \mathcal{X}/E$, where $\mathcal{X} = [\mathcal{C}^{op}, \mathbf{Set}]$, has a right adjoint ∂_* called the pushforward along ∂ . The *polynomial functor* P_∂ associated with ∂ is the composite

$$\mathfrak{X} \xrightarrow{(-\times \mathsf{E})} \mathfrak{X}/\mathsf{E} \xrightarrow{\mathfrak{d}_*} \mathfrak{X}/\mathsf{U} \xrightarrow{\mathsf{dom}} \mathfrak{X}.$$

Polynomial functors

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

The pullback functor $\partial^* : \mathcal{X}/U \to \mathcal{X}/E$, where $\mathcal{X} = [\mathcal{C}^{op}, \mathbf{Set}]$, has a right adjoint ∂_* called the pushforward along ∂ . The *polynomial functor* P_∂ associated with ∂ is the composite

$$\mathfrak{X} \xrightarrow{(-\times \mathsf{E})} \mathfrak{X}/\mathsf{E} \xrightarrow{\mathfrak{d}_*} \mathfrak{X}/\mathsf{U} \xrightarrow{\mathsf{dom}} \mathfrak{X}.$$

Proposition

When ϑ is representable, we have for any presheaf X

c

$$\{\mathbf{y}(\Gamma) \to \mathsf{P}_{\partial} X\} \simeq \{(A, x) \mid A : \mathbf{y}(\Gamma) \to \mathbf{U}, x : \mathbf{y}(\{A\}) \to X\}.$$

In particular, $P_{\partial}U$ classifies families of types, and $P_{\partial}E$ classifies families of terms.

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Type and term constructors that bind some variables are modeled using P_{\partial} or ∂_* .

Example

Variable binding

A Π -type structure on ∂ is a pullback of the form

- Π sends a pair (A_1, A_2) of types $A_1 : \mathbf{y}(\Gamma) \to U$ and $A_2 : \mathbf{y}(\{A_1\}) \to U$ to a type $\Pi(A_1, A_2) : \mathbf{y}(\Gamma) \to U$.
- Sections $\mathbf{y}(\Gamma) \to E$ over $\Pi(A_1, A_2)$ are equivalent to sections $\mathbf{y}(\{A_1\}) \to E$ over A_2 .

Language of natural models

Taichi Uemura

Introduction

Models of a type theory

- Theories over a type theory
- Theory-mode correspondence
- References

A natural model is a diagram in a presheaf category written in the language of

- representable maps;
- finite limits;
- pushforwards along representable maps.

Language of natural models

Taichi Uemura

Introduction

Models of a type theory

- Theories over a type theory
- Theory-mode correspondence
- References

A natural model is a diagram in a presheaf category written in the language of

- representable maps;
- finite limits;
- pushforwards along representable maps.

Idea

A natural model is a structure-preserving functor from a category equipped with such structures.

Categories with representable maps

Taichi Uemura

Introduction

Models of a type theory

- Theories over a type theory
- Theory-mode correspondence
- References

Definition

- A category with representable maps consists of:
 - ▶ a category C;
 - ▶ a class of maps in C called representable maps;
 - ▶ finite limits in C;
 - pushforwards along representable maps

satisfying certain closure properties. A *morphism of categories with representable maps* is a functor preserving these structures.

Example

The presheaf category $[{\mathfrak C}^{\mathsf{op}}, Set]$ for an arbitrary category ${\mathfrak C}.$

Type theories

Taichi Uemura

Introduction

Models of a type theory

- Theories over a type theory
- Theory-mode correspondence
- References

Definition

A type theory is a (small) category with representable maps.

Definition

Let $\mathbb T$ be a type theory. A model of $\mathbb T$ consists of:

- ▶ a category $\mathcal{M}(\star)$ with a terminal object;
- ▶ a structure-preserving functor $\mathcal{M} : \mathbb{T} \to [\mathcal{M}(\star)^{op}, Set]$ (morphism of categories with representable maps).

Example: Basic dependent type theory

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Definition

We define the *basic dependent type theory* to be the type theory (category with representable maps) \mathbb{G} freely generated by a representable map $\partial: E \to U$.

Universal property of \mathbb{G}

The morphisms $\mathbb{G}\to \mathbb{C}$ of categories with representable maps are equivalent to the representable maps in $\mathbb{C}.$

So, a model of ${\mathbb G}$ consists of:

- \blacktriangleright a category $\mathcal{M}(\star)$ with a terminal object;
- ▶ a representable map $\mathcal{M}(\mathfrak{d}) : \mathcal{M}(E) \to \mathcal{M}(U)$ of presheaves over $\mathcal{M}(\star)$,

that is, a natural model.

Example: П-types

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Consider a type theory \mathbb{G}^Π freely generated by a representable map $\vartheta:E\to U$ and a pullback of the form

$$\begin{array}{ccc} \mathsf{P}_{\partial}\mathsf{E} & \xrightarrow{\lambda} & \mathsf{E} \\ \mathsf{P}_{\partial}\partial & & & \downarrow_{\partial} \\ \mathsf{P}_{\partial}\mathsf{U} & \xrightarrow{\Pi} & \mathsf{U}. \end{array}$$

A model of \mathbb{G}^{Π} consists of:

- ▶ a category $\mathcal{M}(\star)$ with a terminal object;
- ▶ a representable map $\mathcal{M}(\mathfrak{d}) : \mathcal{M}(E) \to \mathcal{M}(U)$ of presheaves over $\mathcal{M}(\star)$;
- ► a Π -type structure on $\mathcal{M}(\partial)$.

Strategy for encoding type theories

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

In general, we represent inference rules as morphisms in a category with representable maps $\mathbb{T}.$

Example

The morphism $\Pi:\mathsf{P}_{\vartheta}U\to U$ in \mathbb{G}^{Π} corresponds to the inference rule

 $\begin{array}{c|c} \vdash A : \texttt{Type} & x : A \vdash B : \texttt{Type} \\ \hline & \vdash \prod_{x:A} B : \texttt{Type} \end{array}$

Strategy for encoding type theories

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

In general, we represent inference rules as morphisms in a category with representable maps $\mathbb{T}.$

Example

The morphism $\Pi:\mathsf{P}_{\vartheta}U\to U$ in \mathbb{G}^{Π} corresponds to the inference rule

$$\frac{\vdash A: \texttt{Type}}{\vdash \prod_{x:A} B: \texttt{Type}}$$

Objects in ${\mathbb T}$ are then *judgment forms*.

Example

The object $U\in \mathbb{G}$ corresponds to the judgment form $\ \vdash \ _:$ Type.

$_{\text{theories}}^{\text{Abstract type}}$ Strategy for encoding type theories

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

A morphism $\vartheta:E\to U$ in $\mathbb{T},$ regarded as an object of $\mathbb{T}/U,$ is a family of judgment forms.

Example

The object $E \in \mathbb{G}/U$ corresponds to the family of judgment forms $(\vdash : A)_{A:Type}$.

Abstract type Strategy for encoding type theories

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

A morphism $\vartheta: E \to U$ in $\mathbb{T},$ regarded as an object of $\mathbb{T}/U,$ is a family of judgment forms.

Example

The object $E \in \mathbb{G}/U$ corresponds to the family of judgment forms $(\vdash : A)_{A:Type}$.

We make a morphism $\partial: E \to U$ representable when judgments of the type theory can have hypotheses of the form (x: E(A)).

Example

- ▶ The morphism $\partial : E \to U$ in \mathbb{G} should be representable because judgments in DTT can have hypotheses of the form (x : A) for A : Type.
- ▶ But $U \rightarrow 1$ should not be representable, because judgments in DTT cannot have hypotheses of the form (X : Type).

More complicated example: Cubical type theory

Taichi Uemura

Introduction

Models of a type theory

- Theories over a type theory
- Theory-mode correspondence
- References

One can define cubical type theory to be the category with representable maps freely generated by:

- ▶ a representable map $\partial : E \to U$ (corresponding to $(\vdash_{-}: Type)$ and $(\vdash_{-}: A)_{A:Type}$);
- ▶ a representable map $t: 1 \rightarrow \Omega$ (corresponding to $(\vdash_{-}: Cof)$ and $(\vdash_{\phi})_{\phi:Cof}$);
- ▶ a representable map $\mathbb{I} \to 1$ (corresponding to $(\vdash_{-}:\mathbb{I})$);
- morphisms corresponding to inference rules.

Summary

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

- A type theory ${\mathbb T}$ is a category with
 - representable maps;
 - finite limits;
 - pushforwards along representable maps.

A model of ${\mathbb T}$ is a structure-preserving functor into a presheaf category.

Goal

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mod correspondence

References

We define the following notions:

- i a type theory;
- i a model of a type theory;
- \Box a theory over a type theory

and then establish

 \Box theory-model correspondence.

Outline

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mod correspondence

References

Introduction

Models of a type theory

Theories over a type theory

Theory-model correspondence

Theories as algebras

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Definition (informal)

A theory over $\mathbb T$ is something presented by type symbols, term symbols and axioms.

Theories as algebras

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Definition (informal)

A theory over ${\mathbb T}$ is something presented by type symbols, term symbols and axioms.

Given such symbols and axioms, the sets of types and terms generated by them under the type constructors of \mathbb{T} form an algebra (a model of an essentially algebraic theory).

Example

Given a GAT, we have

- the set U_n of types over contexts of length n;
- the set E_n of terms over contexts of length n;
- \blacktriangleright (partial) operators between U_n 's and E_n 's defined by the structural rules.

Abstract type Theories as algebras

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Theorem (Garner (2015). See also Isaev (2018) and Voevodsky (2014).)

The category **GAT** of GATs and equivalence classes of their interpretations is equivalent to a category of algebras whose underlying sets are U_n 's and E_n 's.

Abstract type Theories as algebras

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Theorem (Garner (2015). See also Isaev (2018) and Voevodsky (2014).)

The category **GAT** of GATs and equivalence classes of their interpretations is equivalent to a category of algebras whose underlying sets are U_n 's and E_n 's.

Definition (still informal)

A *theory over* \mathbb{T} is an algebra of types and terms.

Algebras = Left exact functors

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Theorem (Adámek and Rosický (1994) and Gabriel and Ulmer (1971))

Let \mathcal{C} be a category of algebras. Then \mathcal{C} is locally finitely presentable. Consequently, one can find a (small) category Σ with finite limits such that $\mathcal{C} \simeq \text{Lex}(\Sigma, \text{Set})$, the category of functors preserving finite limits.

Algebras = Left exact functors

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Theorem (Adámek and Rosický (1994) and Gabriel and Ulmer (1971))

Let \mathfrak{C} be a category of algebras. Then \mathfrak{C} is locally finitely presentable. Consequently, one can find a (small) category Σ with finite limits such that $\mathfrak{C} \simeq \text{Lex}(\Sigma, \text{Set})$, the category of functors preserving finite limits.

ldea

Given a type theory \mathbb{T} , find a suitable category $\Sigma_{\mathbb{T}}$ with finite limits and define a theory over \mathbb{T} to be a functor $\Sigma_{\mathbb{T}} \to \mathbf{Set}$ preserving finite limits.

Theories over \mathbb{G}

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

In fact, we can simply put $\Sigma_{\mathbb{T}}:=\mathbb{T}.$ For example:

$GAT \simeq Lex(\mathbb{G}, Set).$

Idea of proof.

Theorem

Given a functor $\mathsf{K}:\mathbb{G}\to Set$ preserving finite limits, one can think of:

• $K(P^n_{\partial}U)$ as the set of types over contexts of length n;

• $K(P^n_{\partial}E)$ as the set of terms over contexts of length n,

and then $K(P^n_{\partial}U)$'s and $K(P^n_{\partial}E)$'s form an algebra of types and terms.

Abstract type theories Theories over a type theory Taichi Uemura Introduction Models of a type theory Introduction Theories over a type theory Definition

A theory over $\mathbb T$ is a functor $\mathbb T\to Set$ preserving finite limits.

Summary

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-model correspondence

References

Definition

Let ${\mathbb T}$ be a type theory (i.e. a category with representable maps).

- A model of \mathbb{T} is a pair $(\mathcal{M}(\star), \mathcal{M})$ consisting of a category $\mathcal{M}(\star)$ with a terminal object and a morphism $\mathcal{M} : \mathbb{T} \to [\mathcal{M}(\star)^{op}, \mathbf{Set}]$ of categories with representable maps.
- \blacktriangleright A theory over $\mathbb T$ is a functor $\mathbb T \to Set$ preserving finite limits.

Goal

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mod correspondence

References

We define the following notions:

- i a type theory;
- ✓ a model of a type theory;
- ✓ a theory over a type theory

and then establish

 \Box theory-model correspondence.

Outline

Taichi Uemura

Introduction

Models of a type theory

Theories ove a type theory

Theory-model correspondence

References

Introduction

Models of a type theory

Theories over a type theory

Theory-model correspondence

Theory-model correspondence

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-model correspondence

References

We construct an adjunction.

The left adjoint 𝔅 assigns a syntactic model to each theory over 𝔅;
 The right adjoint L assigns an internal language to each model of 𝔅.
 All constructions and proofs are purely category-theoretic.

Internal languages

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-model correspondence

References

Let ${\mathbb T}$ be a type theory.

Definition

For a model ${\mathcal M}$ of ${\mathbb T},$ we have a theory over ${\mathbb T}$

$$\mathbb{T} \stackrel{\mathcal{M}}{\longrightarrow} [\mathcal{M}(\star)^{\mathsf{op}}, \mathbf{Set}] \stackrel{\mathsf{ev}_1}{\longrightarrow} \mathbf{Set}$$

which we call the internal language of \mathcal{M} .

The internal languages define a functor

 $\mathsf{L}: Mod(\mathbb{T}) \to Th(\mathbb{T})$

from a category of models of ${\mathbb T}$ to a category of theories over ${\mathbb T}.$

Syntactic models

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-model correspondence

References

Theorem

The functor $L: Mod(\mathbb{T}) \to Th(\mathbb{T})$ has a fully faithful left adjoint $\mathfrak{F}: Th(\mathbb{T}) \to Mod(\mathbb{T})$. We call $\mathfrak{F}(K)$ the syntactic model generated by K.

Democratic models

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-model correspondence

References

Definition

Let \mathcal{M} be a model of \mathbb{T} . The class of *contextual objects* is the smallest class of objects of $\mathcal{M}(\star)$ containing the terminal object and closed under context comprehension. We say \mathcal{M} is *democratic* if every object of $\mathcal{M}(\star)$ is contextual. $\mathbf{Mod}^{dem}(\mathbb{T})$ denotes the full subcategory of $\mathbf{Mod}(\mathbb{T})$ spanned by the democratic models.

Theorem

The essential image of $\mathfrak{F}: \mathbf{Th}(\mathbb{T}) \to \mathbf{Mod}(\mathbb{T})$ is $\mathbf{Mod}^{dem}(\mathbb{T})$. Therefore, we have an equivalence

 $Mod^{dem}(\mathbb{T}) \simeq Th(\mathbb{T}).$

Goal

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-model correspondence

References

We define the following notions:

- i a type theory;
- i a model of a type theory;
- ✓ a theory over a type theory

and then establish

theory-model correspondence.

∞ -type theories

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-model correspondence

References

Most of our results can be translated into the language of ∞ -categories, leading us to a notion of an ∞ -type theory (joint work with Hoang Kim Nguyen).

Theorem

• We find an ∞ -type theory \mathbb{E}_{∞} such that

$$Th(\mathbb{E}_{\infty})\simeq Lex_{\infty}.$$

• We find an ∞ -type theory $\mathbb{E}_{\infty}^{\Pi}$ such that

 $Th(\mathbb{E}_{\infty}^{\Pi})\simeq LCCC_{\infty}.$

References I

Taichi Uemura

Introduction Models of a

Theories over a type theory

Theory-mode correspondence

References

Jiří Adámek and Jiří Rosický (1994). *Locally Presentable and Accessible Categories*. Vol. 189. London Mathematical Society Lecture Note Series. Cambridge University Press.

Steve Awodey (2018). "Natural models of homotopy type theory". In: *Mathematical Structures in Computer Science* 28.2, pp. 241–286. DOI: 10.1017/S0960129516000268.

J. W. Cartmell (1978). "Generalised algebraic theories and contextual categories". PhD thesis. Oxford University.

Peter Dybjer (1996). "Internal Type Theory". In: Types for Proofs and Programs: International Workshop, TYPES '95 Torino, Italy, June 5–8, 1995 Selected Papers. Ed. by Stefano Berardi and Mario Coppo. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 120–134. DOI: 10.1007/3–540–61780–9_66.
Peter Gabriel and Friedrich Ulmer (1971). Lokal präsentierbare Kategorien. Vol. 221. Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg. DOI: 10.1007/BFb0059396.

References II

Taichi Uemura

Introduction

Models of a type theory

Theories over a type theory

Theory-mode correspondence

References

Richard Garner (2015). "Combinatorial structure of type dependency". In: *Journal* of Pure and Applied Algebra 219.6, pp. 1885–1914. DOI:

10.1016/j.jpaa.2014.07.015.

Valery Isaev (2018). Algebraic Presentations of Dependent Type Theories. arXiv: 1602.08504v3.

Michael Shulman (2017). "Brouwer's fixed-point theorem in real-cohesive homotopy type theory". In: *Mathematical Structures in Computer Science*, pp. 1–86. DOI: 10.1017/S0960129517000147.

Vladimir Voevodsky (2014). B-systems. arXiv: 1410.5389v1.