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Introduction

» A higher-dimensional generalization of type theories called co-type theories.
» A unified formulation of internal language conjectures.

» A proof of Kapulkin and Lumsdaine's internal language conjecture for finitely
complete co-categories.



oo-type

weorieana  INternal language conjecture

internal
language
conjectures

Conjecture

Introduction

Dependent type theory with intensional identity types, dependent function types,
univalent universes, and higher inductive types gives internal languages for
“elementary co-toposes”.



oo-type

weorieana  INternal language conjecture

internal
language
conjectures

Conjecture

Introduction

Dependent type theory with intensional identity types, dependent function types,
univalent universes, and higher inductive types gives internal languages for
“elementary co-toposes”.

The simplest variant:

Conjecture

Dependent type theory with intensional identity types gives internal languages for
finitely complete co-categories.
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o venrs ll Theorem (Kapulkin and Lumsdaine 2018)

Nguyen

There is a canonical functor H: Mod“™*(I) — Lexs, where

Introduction

» Mod“(I) is a category of models of I, the dependent type theory with
intensional identity types;

» Lex., is the co-category of small co-categories with finite limits.

Conjecture (Kapulkin and Lumsdaine 2018)

The functor H induces an equivalence of co-categories
L(Mod“™(I)) ~ Lexo

where L(Mod“*(1)) is a localization, i.e. an co-category obtained from
Mod*(I) by adjoining formal inverses of certain morphisms.
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The functor H: Mod™*(I) — Lexs is decomposed as

(1)

Introduction

Mod“™(I) ——— Tribe (4§)> FibCat 1-categories
2[(2)
Lex oo-categories

(~ means an equivalence between localizations).

(1) Avigad, Kapulkin, and Lumsdaine (2015) and Gambino and Garner (2008)
(2) Szumito (2014)

(3) Kapulkin and Szumito (2019)
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The functor H: Mod™*(I) — Lexs is decomposed as

(1)

Introduction

Mod“™(I) ——— Tribe (—j)> FibCat 1-categories
(@): :l(z)
Mod“™*(I,) B » Mod®*(Ey) @ > Lexoo oo-categories

(~ means an equivalence between localizations).

(1) Avigad, Kapulkin, and Lumsdaine (2015) and Gambino and Garner (2008)
(2) Szumito (2014)

(3) Kapulkin and Szumito (2019)

(4)

4) Our approach: working more oco-categorically
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Introduction Problem

Intermediate 1-categories Tribe and FibCat are not easy to work with.
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. Mod*™*(I) —— Tribe —— FibCat —— Lex

Introduction Problem

Intermediate 1-categories Tribe and FibCat are not easy to work with.

» In Mod®*(I), homotopy colimits are easy to compute.

» In FibCat, homotopy limits are easy to compute, but homotopy colimits are
not.

» In Tribe, neither homotopy limits nor homotopy colimits are easy to compute.
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Mod*™*(I) —— Tribe —— FibCat —— Lex

Introduction Problem

Intermediate 1-categories Tribe and FibCat are not easy to work with.

» In Mod®*(I), homotopy colimits are easy to compute.

» In FibCat, homotopy limits are easy to compute, but homotopy colimits are
not.

» In Tribe, neither homotopy limits nor homotopy colimits are easy to compute.

» How to generalize?
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. Mod*™*(I) —— Tribe —— FibCat —— Lex
Intermediate 1-categories Tribe and FibCat are not easy to work with.

» In Mod®*(I), homotopy colimits are easy to compute.

» In FibCat, homotopy limits are easy to compute, but homotopy colimits are
not.

v

In Tribe, neither homotopy limits nor homotopy colimits are easy to compute.

v

How to generalize?

» The coherence problem is not solved at once: the equivalence
L(FibCat) ~ Lex, is a kind of strictification, but pullbacks in € € FibCat
are still up to isomorphism.
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Introduction

» I and E, are co-type theories.

> Mod®™(T)'s are presentable co-categories, so they have limits and colimits,
and adjoint functor theorems are available.



oo-type

merieans  OO-Categorical approach
internal
Ianlguage
conjectures

Mod“*(I) —— Mod™ () —— Mod™*(Ex) — LeX

Introduction

» I and E, are co-type theories.

> Mod®™(T)'s are presentable co-categories, so they have limits and colimits,
and adjoint functor theorems are available.

» All but the last step are formulated within the language of co-type theories.

» Easy to generalize.
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Introduction

» I and E, are co-type theories.

> Mod®™(T)'s are presentable co-categories, so they have limits and colimits,
and adjoint functor theorems are available.

» All but the last step are formulated within the language of co-type theories.
» Easy to generalize.

» The coherence problem arises only at the first step
Mod“™(I) — Mod“™*(I).
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Introduction

Mod“*(I) —— Mod™(I) —— Mod™*(Ex) — Lex

Theorem

(1) The composite Mod“™(I) — Lex, coincides with the functor considered by
Kapulkin and Lumsdaine.

(2) It induces an equivalence L(Mod®™(I)) ~ Lexq.
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» Informally, type theories with proof-relevant judgmental equality.

Type theory oo-type theory
A=A, P:AI=A
ag=az: A P =a: A

g:pr=p2:ar=a:A
Cf. explicit conversion (Curien 1993; Geuvers and Wiedijk 2008).
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oco-type theories are a higher dimensional generalization of type theories.

oo-type
theories

» Informally, type theories with proof-relevant judgmental equality.

Type theory oo-type theory
A=A, P:AI=A
ag=az: A P =a: A

g:pr=p2:ar=a:A
Cf. explicit conversion (Curien 1993; Geuvers and Wiedijk 2008).

» Formally, an co-categorical generalization of categories with representable
maps (Uemura 2019).
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A morphism u:x — y in a category C with finite limits is exponentiable if the
theories pullback functor u*: €/y — €/x has a right adjoint w, called the pushforward.
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A morphism uw:x — y in a category € with finite limits is exponentiable if the
oo-type . ..
theories pullback functor u*: €/y — €/x has a right adjoint w, called the pushforward.

Definition

A category with representable maps (CwR) consists of:
» a category C with finite limits;
» a class R of exponentiable morphisms in € satisfying some stability conditions.

Morphisms in R are called representable maps.
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Example

For any category C, the presheaf category Fun(C°P, Set) is a CwR where
f: B — A is representable if for any x € € and any a: X x — A, the pullback a*B
is representable.

X(x.sa) —— B
|
Lo
Fx —/—— A
The representing object x .f a € C is called the context extension along f.

X : € — Fun(@°P, Set) is the Yoneda embedding.
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A type theory is a (small) CwR.

EEE » A type theory is an essentially algebraic theory.

theories
» Pushforwards along representable maps are used for expressing variable binding
(cf. logical frameworks (Harper, Honsell, and Plotkin 1993)).
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i > M Definition

A type theory is a (small) CwR.

sEE » A type theory is an essentially algebraic theory.

theories
» Pushforwards along representable maps are used for expressing variable binding
(cf. logical frameworks (Harper, Honsell, and Plotkin 1993)).

A model of a type theory T consists of:

» a category M (%) with a final object ©;
» a morphism of CwRs M : T — Fun(M(x)°P, Set).

Models of T form a category Mod(T).
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Let D be the type theory presented by
theores » objects U and E;

» a representable map 0 : E — L.
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Example

Let D be the type theory presented by
theories » objects U and E;
» a representable map 0 : E — L.

A model of D consists of:
» a category M (%) with a final object ©;
» a representable map M(9) : M(E) — M(U) of presheaves over M ().

This is nothing but a natural model (Awodey 2018; Fiore 2012), equivalently a
category with families (Dybjer 1996).
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Ta ura
Let I be the extension of D by
theres » a commutative square

» a path induction operator (defined as a morphism and an equation);
» (1and X).
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“Hoang kim [ Definition

Let M be a model of a type theory T.
(1) The class of contextual objects in M (%) is inductively defined:
oo-type

theories > final objects of M (%) are contextual;
> forany I' € M(%), u:y — x a representable map in T, and A : X T — M(x), if
" is contextual so is I".., A.

(2) M is contextual if every object of M (%) is contextual.
Mod®™(T) € Mod(T) the full subcategory of contextual models.
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Taichi Uemura, 4 o.o
“Hoang kim [ Definition

Let M be a model of a type theory T.
(1) The class of contextual objects in M (%) is inductively defined:
oo-type

theories > final objects of M (%) are contextual;
» for any I' € M (%), w:y — x a representable map in T, and A : X T — M(x), if
" is contextual so is I".., A.

(2) M is contextual if every object of M (%) is contextual.
Mod“™(T) € Mod(T) the full subcategory of contextual models.

Example

Mod“*(D) is equivalent to the category of contextual categories (Cartmell 1978)
(and thus to the category of generalized algebraic theories).
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Theorem
co-type For any type theory T, we have an equivalence

theories

Mod“*(T) ~ Lex(T, Set)

that sends M € Mod“™(T) to the functor

T M Fun(M(%)°?, Set) —°» Set
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For any morphism F: T — S of type theories, we have an adjunction

oo-type
theories F !

—
Mod™(T) 4L Mod®™(S)

Remark

|<

We also have F* : Mod(S) — Mod(T), but it need not coincide with
F*: Mod“™(S) — Mod“™(T) unless it preserves contextual models.
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Nguyen Definition

An oco-type theory is an co-CwR. An n-type theory is an co-type theory whose
e underlying oco-category is an n-category.

A model of an co-type theory T consists of:
» an oco-category M(x) with a final object;
» a morphism M : T — Fun(M(x)°P, Space) of co-CwRs.

Theorem
Mod“*(T) ~ Lex(T, Space).
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o (3) We have aspan T +*— T, —— T which induces
nterna
language

conjectures

Mod®™(T) —— Mod“™(T.) —— Mod"™(T).
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Let T be a 1-type theory.
(1) Define an analogous co-type theory Ty, so T is the 1-truncation of T.

(2) Define an oco-type theory TSX by adding to T some extensionality axioms.

(3) We have aspan T +*— T, —— T which induces

Internal
language
conjectures

Mod®™(T) —— Mod“™(T.) —— Mod"™(T).

(1) Find a concrete co-category X — Cats, equivalent to Mod®™(T<X).
(2) Prove L(Mod®™(T)) ~ Mod“™(T<).
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N Let I, be the co-type theory presented by the same data as [, i.e.
» a representable map 0 : E — U,;
» a homotopy commutative square

Internal

language E 7 refl N E
conjectures

a| lo

ExyE - W u

(the homotopy filling the square is part of data);

» a path induction operator (a morphism and a homotopy for the computation
rule);

> (1and X).
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Taichi Uemura,

I is the 1-truncation of I : it is the initial 1-type theory equipped a morphism
Internal .
e T:leo — L
conjectures

Proposition

T : Mod“™(I) —» Mod“*(Iy) is fully faithful, and its essential image is those
M € Mod“*(I.) with M(U) and M(E) O-truncated presheaves.
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Let Eo, be the co-type theory obtained from I, as follows:

» make the identity types extensional: make the square

Internal F_ Lﬂ)

language

E
conjectures A la

ExuE——U

a pullback (or invert the induced morphism E — Id*E);
» make 0 : E — U wunivalent: (next few slides).
E is equipped with a morphism v : [ — Ey
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Recall the definition of univalent maps in co-categories (Gepner and Kock 2017;
h Rasekh 2018, 2021).

Proposition

e Let w:y — x be a representable map in an co-CwR C. One can construct an
language object Equiv(u) € €/x x x classifying equivalences between fibers of u.

conjectures

Proof.

Because 1 is exponentiable.

Precisely, for any object (vi,v2) : z = x X x of C/x X x, the mapping space
C/x x x(z, Equiv(u)) is naturally equivalent to the space of equivalences
Viy >~ V3y over z.
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T We have the section [id|, : x — Equiv(u) over A : x — x X x corresponding to the
identity y >~ y.
Definition
rtigel u is wunivalent if the morphism |id|, : x — Equiv(u) is an equivalence.
language -

conjectures
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We have the section [id|, : x — Equiv(u) over A : x — x X x corresponding to the
identity y >~ y.

Definition

rtigel u is wunivalent if the morphism |id|, : x — Equiv(u) is an equivalence.
language —_
conjectures

Example

When C has a generic representable map, i.e. any representable map is a pullback
of the generic one in a unique way, the generic representable map is univalent. For
example, Fun(D°P  Space) for any D has one (because the class of representable
maps is a bounded local class).
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Ta - il Example

Let Eo, be the co-type theory obtained from I, as follows:

» make the identity types extensional: make the square

Internal F_ Lﬂ)

language

E
conjectures A la

ExuE——U

a pullback (or invert the induced morphism E — Id*E);
» make 0 : E — U wnivalent: invert the morphism [id|; : U — Equiv(0).
E is equipped with a morphism v : [ — E

(cf. Bocquet 2021, HoTTEST talk)
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Hoang Kim oo-analogue of (Clairambault and Dybjer 2011, 2014).

Theorem

The forgetful functor Mod“**(E«) © M — M(x) € Cats, factors through
Lex,, C Caty and induces an equivalence

Internal
language
conjectures

Mod“™(Eo) ~ Lexs.

Proof.

The inverse functor maps a € € Lex, to the generic representable map in
Fun(C°P, Space). O
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» Base case:

Mod®™(I) — Mod®(Is) — Mod“™(Es) ~ Lexo

Internal
language
conjectures

» With TT-types (and function extensionality):
Mod“*(I") = Mod“*(I') = Mod“*(E"l) ~ LCCC,
» With Tl-types and natural numbers:

Mo dc<t* (Hﬂ,Nat) - ModctX(HloT(;Nat) — Modc<t® (E&Nat) ~ LCCCgloat
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» With Tl-types and a countable chain of univalent universes:

Mod*(I'=*) — Mod“™*(I};"=*) — Mod™*(E[,!'=*) ~ LCCCL;
Internal

language
conjectures

where a € € LCCCUY=* has a countable chain of univalent universes as part
of structure.

» With TT-types and S!:

MOdCtX(Hn’Sl) _ MOdCtX(HEC’)SI) N MOdCtX(E];;SI) ~ LCCCE;
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Nguyen Theorem

The composite

Mod™(I) —— Mod™*(I) —— Mod“*(E)

Internal
language
conjectures

induces an equivalence L(Mod“™*(I)) ~ Mod“™(Ey,). Consequently, we have
L(Mod®™(I)) ~ LeXw.

Moreover, the functor yit* : Mod™(I) — Lexs, coincides with the one
considered by Kapulkin and Lumsdaine.
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: Mod*(I) —=— Mod*(I) —— Mod™(Ey)
\
Once we prove that y,T* preserves homotopy colimits, the rest is not hard.
Internal
language

conjectures
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Taichi ULIHI]I'RI. ModCtX(]I) * ModCtX(Hoo) Y1 Modctx (EOO)

Once we prove that y,T* preserves homotopy colimits, the rest is not hard.

Internal
language
s (1) Kapulkin and Lumsdaine (2018) showed that Mod®™(I) is equipped with a
structure of a cofibration category. In particular, certain colimits in
Mo d“™*(I) are homotopy colimits.
(2) Prove that T preserves those colimits (and thus so does y,T*).

(3) Then, it suffices to check a couple of conditions called the left approximation
property (Cisinski 2019).

(4) The last assertion is proved by checking that both have the same universal
property.
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Theorem (Kapulkin and Lumsdaine 2018)

Mod*(I) is equipped with a structure of a cofibration category (as part of a
combinatorial left semi-model structure).

Internal
language

conjectures Definition

A cofibration in Mod™(I) is a retract of an extension by types and terms but no
equation. An M € Mod“*(I) is cofibrant if 0 — M is a cofibration.
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N Theorem (Kapulkin and Lumsdaine 2018)
Mod*(I) is equipped with a structure of a cofibration category (as part of a
combinatorial left semi-model structure).
Internal
language o ono

A cofibration in Mod™(I) is a retract of an extension by types and terms but no
equation. An M € Mod“*(I) is cofibrant if 0 — M is a cofibration.

One can define the cofibrations in Mod“™ (1) in the same way as Mod™(I).
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Taichi Uemura,
Nguyen The hardest part in our proof.
Any cofibrant object of Mod®™*(I,) belongs to Mod“™*(I) C Mod“™(I,).
Internal
Ica:)r:ﬁ:(?tgueres » That is, in a “free” model of I, every diagram of homotopies commutes.

» This is the only place where the coherence problem comes in.

Corollary

T : Mod“™(I) — Mod“*(I,) preserves initial objects and pushouts of
cofibrations along arbitrary morphisms between cofibrant objects.
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Any cofibrant object of Mod®™(I,) belongs to Mod“™*(I) C Mod“™(I,).

Split replacement For any M € Mod*(I,), find a SpIM € Mod®™*(I) and a
trivial fibration SplM — M (cf. Hofmann 1995). In particular, if M
T is cofibrant, it is a retract of Spl M.

problems
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Theorem
Any cofibrant object of Mod®™(I,) belongs to Mod“™*(I) C Mod“™(I,).

Split replacement For any M € Mod*(I,), find a SpIM € Mod®™*(I) and a
trivial fibration SplM — M (cf. Hofmann 1995). In particular, if M
T is cofibrant, it is a retract of Spl M.

problems Rewriting (cf. Curien 1993; Mac Lane 1963).

Normalization (by evaluation) Expect

Normalizing = Decidable equality = 0-truncated
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i &  An M € Mod®™(I,) consists of
- » an oo-category M(x) with a final object;
> a representable map M(0) : M(E) — M(U) in Fun(M(x)°P, Space);
» an ld-type structure.

Coherence

problems (1) Present the co-topos Fun(M(x)°P; Space) by a model category X.
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i &  An M € Mod®™(I,) consists of
- » an oo-category M(x) with a final object;
> a representable map M(0) : M(E) — M(U) in Fun(M(x)°P, Space);
» an ld-type structure.

Coherence

problems (1) Present the co-topos Fun(M(x)°P; Space) by a model category X.
(2) M(Q) is represented by a universe Oy : Ex — Uy in X.



oo-type

weoresand  OPlit replacement

internal
language
conjectures

gl An M € Mod“™(I,) consists of
E » an oo-category M(x) with a final object;
> a representable map M(0) : M(E) — M(U) in Fun(M(x)°P, Space);
» an ld-type structure.

Coherence

problems (1) Present the co-topos Fun(M(x)°P; Space) by a model category X.
(2) M(Q) is represented by a universe Oy : Ex — Uy in X.

(3) Use Vooevodsky's universe method to obtain a contextual natural model Spl M
from Oq.
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gl An M € Mod“™(I,) consists of
E » an oo-category M(x) with a final object;
> a representable map M(0) : M(E) — M(U) in Fun(M(x)°P, Space);
» an ld-type structure.

Coherence

problems (1) Present the co-topos Fun(M(x)°P; Space) by a model category X.
(2) M(Q) is represented by a universe Oy : Ex — Uy in X.

(3) Use Vooevodsky's universe method to obtain a contextual natural model Spl M
from Oq.

(4) Lift the |d-type structure so Spl M is a model of L.
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We choose X to be a type-theoretic model topos (Shulman 2019).
» X is a Grothendieck topos.
» The cofibrations are precisely the monomorphisms.

» Right proper, so the localization functor yy : X — L X preserves pushforwards
of fibrations between fibrant objects.

Coherence
problems

» Enough univalent universes (not needed for Id, but useful for lifting 1, X, and
IT).
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REEENEY T here exists a fibration 0y : Ex — Uy between fibrant objects in X sent to M(0)
Nguyen by the localization functor yy : X — LX ~ Fun(M(x)°?, Space). Define a
contextual natural model Spl M as follows:

(1) (X, & 0x : & Ex — X Ux) defines a natural model;
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PR There exists a fibration 0y : Ex — Ux between fibrant objects in X sent to M(0)
n by the localization functor yy : X — LX ~ Fun(M(x)°?, Space). Define a
contextual natural model Spl M as follows:

(1) (X, & 0x : & Ex — X Ux) defines a natural model;

(2) restrict the base category to the full subcategory spanned by the contextual
objects.

Erpare: Concretely,
> (SpIM) (%) C X;
» I'c (SpIM)(») if ' — 1 is a composite of pullbacks of 0«;
> (SpIM)(U)(I") = X(I} Ux);
> (SpIM)(E)(T) = X(T} Ex).
(Cf. Voevodsky 2015)
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Coherence
problems

Lifting Id-type structure

refly

Ex : > Ex
0
X X = y
Ex XUy Ex Iy > Ux
Yx 1
M(E) M(refl) N M(E)
M(0)
LX M(A) ~ \
M(E xy E) i M(U)

(Uxy is fibrant, 0y : Ex — Uy is a fibration, and all objects are cofibrant.)
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» There seems to be no general way to lift type constructors with judgmental
computation rules.

» It works for |d because the constructor refl is a cofibration (monomorphism)
for a trivial reason (factorization of the diagonal map).

» For general inductive types, constructors are not necessarily monomorphisms.

Coherence

problems » For 1, X, and T, we can replace 0y by a weakly equivalent one closed under
these type constructors (with a rise in universe levels for TT).

» We expect that the other approach, rewriting or normalization, works for a
wide range of type constructors, if it works.
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» A higher-dimensional generalization of type theories called co-type theories.
» A unified formulation of internal language conjectures.
» Coherence theorem via split replacement for Mod“™(I).
Future work:
» Better split replacement, or coherence via rewriting or normalization.
» “Syntax” for co-type theories.

Conclusion » Other applications, say conservativity (cf. Bocquet 2020)? Morita equivalence
(Isaev 2020) between T and T’ may be replaced by
L(Mod®™(T)) ~ Mod®™(Ty) ~ L(Mod®*(T")) for a suitable co-type
theory T.
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