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Contents

I A higher-dimensional generalization of type theories called ∞-type theories.

I A unified formulation of internal language conjectures.

I A proof of Kapulkin and Lumsdaine’s internal language conjecture for finitely
complete ∞-categories.
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Internal language conjecture

Conjecture

Dependent type theory with intensional identity types, dependent function types,
univalent universes, and higher inductive types gives internal languages for
“elementary ∞-toposes”.

The simplest variant:

Conjecture

Dependent type theory with intensional identity types gives internal languages for
finitely complete ∞-categories.
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Internal language conjecture

Theorem (Kapulkin and Lumsdaine 2018)

There is a canonical functor H : Modctx(I) → Lex∞ where

I Modctx(I) is a category of models of I, the dependent type theory with
intensional identity types;

I Lex∞ is the ∞-category of small ∞-categories with finite limits.

Conjecture (Kapulkin and Lumsdaine 2018)

The functor H induces an equivalence of ∞-categories

L(Modctx(I)) ' Lex∞
where L(Modctx(I)) is a localization, i.e. an ∞-category obtained from
Modctx(I) by adjoining formal inverses of certain morphisms.
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Approaches to the internal language conjecture

The functor H : Modctx(I) → Lex∞ is decomposed as

Modctx(I) Tribe FibCat 1-categories

Modctx(I∞) Modctx(E∞)

Lex∞ ∞-categories

(1)

(4)

(3)

'

(2)'

(4) (4)

(' means an equivalence between localizations).

(1) Avigad, Kapulkin, and Lumsdaine (2015) and Gambino and Garner (2008)

(2) Szumi lo (2014)

(3) Kapulkin and Szumi lo (2019)

(4) Our approach: working more ∞-categorically
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Problems with 1-categorical approach

Modctx(I) Tribe FibCat Lex∞
Problem

Intermediate 1-categories Tribe and FibCat are not easy to work with.

I In Modctx(I), homotopy colimits are easy to compute.

I In FibCat, homotopy limits are easy to compute, but homotopy colimits are
not.

I In Tribe, neither homotopy limits nor homotopy colimits are easy to compute.

I How to generalize?

I The coherence problem is not solved at once: the equivalence
L(FibCat) ' Lex∞ is a kind of strictification, but pullbacks in C ∈ FibCat

are still up to isomorphism.
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∞-categorical approach

Modctx(I) Modctx(I∞) Modctx(E∞) Lex∞
I I∞ and E∞ are ∞-type theories.

I Modctx(T)’s are presentable ∞-categories, so they have limits and colimits,
and adjoint functor theorems are available.

I All but the last step are formulated within the language of ∞-type theories.

I Easy to generalize.

I The coherence problem arises only at the first step
Modctx(I) → Modctx(I∞).
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Goal

Modctx(I) Modctx(I∞) Modctx(E∞) Lex∞
Theorem

(1) The composite Modctx(I) → Lex∞ coincides with the functor considered by
Kapulkin and Lumsdaine.

(2) It induces an equivalence L(Modctx(I)) ' Lex∞.
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∞-type theories

Idea∞-type theories are a higher dimensional generalization of type theories.

I Informally, type theories with proof-relevant judgmental equality.

Type theory ∞-type theory

A1 ≡ A2 p : A1 ≡ A2
a1 ≡ a2 : A p : a1 ≡ a2 : A

q : p1 ≡ p2 : a1 ≡ a2 : A
Cf. explicit conversion (Curien 1993; Geuvers and Wiedijk 2008).

I Formally, an ∞-categorical generalization of categories with representable
maps (Uemura 2019).
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Categories with representable maps

Definition

A morphism u : x→ y in a category C with finite limits is exponentiable if the
pullback functor u∗ : C/y→ C/x has a right adjoint u∗ called the pushforward.

Definition

A category with representable maps (CwR) consists of:

I a category C with finite limits;

I a class R of exponentiable morphisms in C satisfying some stability conditions.

Morphisms in R are called representable maps.
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Categories with representable maps

Example

For any category C, the presheaf category Fun(Cop,Set) is a CwR where
f : B→ A is representable if for any x ∈ C and any a :よ x→ A, the pullback a∗B
is representable.

よ(x .f a) B

よ x A

y
f

a

The representing object x .f a ∈ C is called the context extension along f.

よ : C → Fun(Cop,Set) is the Yoneda embedding.
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Type theories

Definition

A type theory is a (small) CwR.

I A type theory is an essentially algebraic theory.

I Pushforwards along representable maps are used for expressing variable binding
(cf. logical frameworks (Harper, Honsell, and Plotkin 1993)).

Definition

A model of a type theory T consists of:

I a category M(?) with a final object �;
I a morphism of CwRs M : T → Fun(M(?)op,Set).

Models of T form a category Mod(T).
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Type theories

Example

Let D be the type theory presented by

I objects U and E;

I a representable map ∂ : E→ U.

A model of D consists of:

I a category M(?) with a final object �;
I a representable map M(∂) :M(E) →M(U) of presheaves over M(?).

This is nothing but a natural model (Awodey 2018; Fiore 2012), equivalently a
category with families (Dybjer 1996).
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Intensional type theory

Example

Let I be the extension of D by

I a commutative square

E E

E×U E U;

refl

∆ ∂

Id

I a path induction operator (defined as a morphism and an equation);

I (1 and Σ).



∞-type
theories and

internal
language

conjectures

Taichi Uemura,
Hoang Kim

Nguyen

Introduction

∞-type
theories

Internal
language
conjectures

Coherence
problems

Conclusion

References

17/49

Contextual models

Definition

Let M be a model of a type theory T .

(1) The class of contextual objects in M(?) is inductively defined:
I final objects of M(?) are contextual;
I for any Γ ∈M(?), u : y→ x a representable map in T , and A :よ Γ →M(x), if
Γ is contextual so is Γ .u A.

(2) M is contextual if every object of M(?) is contextual.

Modctx(T) ⊂Mod(T) the full subcategory of contextual models.

Example

Modctx(D) is equivalent to the category of contextual categories (Cartmell 1978)
(and thus to the category of generalized algebraic theories).
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Contextual models

Theorem

For any type theory T , we have an equivalence

Modctx(T) ' Lex(T,Set)

that sends M ∈Modctx(T) to the functor

T Fun(M(?)op,Set) Set
M ev�
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Contextual models

Corollary

For any morphism F : T → S of type theories, we have an adjunction

Modctx(T)

a

Modctx(S)

F!

F∗

Remark

We also have F∗ : Mod(S) → Mod(T), but it need not coincide with
F∗ : Modctx(S) → Modctx(T) unless it preserves contextual models.
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∞-type theories

Everything makes sense in the ∞-categorical context.

Definition

An ∞-type theory is an ∞-CwR. An n-type theory is an ∞-type theory whose
underlying ∞-category is an n-category.

Definition

A model of an ∞-type theory T consists of:

I an ∞-category M(?) with a final object;

I a morphism M : T → Fun(M(?)op,Space) of ∞-CwRs.

Theorem

Modctx(T) ' Lex(T,Space).
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Outline

Introduction

∞-type theories

Internal language conjectures

Coherence problems

Conclusion
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General internal language conjecture

Let T be a 1-type theory.

(1) Define an analogous ∞-type theory T∞ so T is the 1-truncation of T∞.

(2) Define an ∞-type theory T ex∞ by adding to T some extensionality axioms.

(3) We have a span T T∞ T ex∞τ γ
which induces

Modctx(T) Modctx(T∞) Modctx(T ex∞ ).τ∗ γ!

Task

(1) Find a concrete ∞-category X → Cat∞ equivalent to Modctx(T ex∞ ).

(2) Prove L(Modctx(T)) 'Modctx(T ex∞ ).
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Intensional ∞-type theory

Example

Let I∞ be the ∞-type theory presented by the same data as I, i.e.

I a representable map ∂ : E→ U;

I a homotopy commutative square

E E

E×U E U

refl

∆ ∂

Id

(the homotopy filling the square is part of data);

I a path induction operator (a morphism and a homotopy for the computation
rule);

I (1 and Σ).
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Intensional ∞-type theory

Proposition

I is the 1-truncation of I∞: it is the initial 1-type theory equipped a morphism
τ : I∞ → I.

Proposition

τ∗ : Modctx(I) → Modctx(I∞) is fully faithful, and its essential image is those
M ∈Modctx(I∞) with M(U) and M(E) 0-truncated presheaves.
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Extensional ∞-type theory

Example

Let E∞ be the ∞-type theory obtained from I∞ as follows:

I make the identity types extensional: make the square

E E

E×U E U

refl

∆ ∂

Id

a pullback (or invert the induced morphism E→ Id∗E);

I make ∂ : E→ U univalent: (next few slides).

E∞ is equipped with a morphism γ : I∞ → E∞.

(cf. Bocquet 2021, HoTTEST talk)
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Univalent representable maps

Recall the definition of univalent maps in ∞-categories (Gepner and Kock 2017;
Rasekh 2018, 2021).

Proposition

Let u : y→ x be a representable map in an ∞-CwR C. One can construct an
object Equiv(u) ∈ C/x× x classifying equivalences between fibers of u.

Proof.

Because u is exponentiable.

Precisely, for any object (v1, v2) : z→ x× x of C/x× x, the mapping space
C/x× x(z,Equiv(u)) is naturally equivalent to the space of equivalences
v∗1y ' v∗2y over z.
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Univalent representable maps

We have the section |id|u : x→ Equiv(u) over ∆ : x→ x× x corresponding to the
identity y ' y.

Definition

u is univalent if the morphism |id|u : x→ Equiv(u) is an equivalence.

Example

When C has a generic representable map, i.e. any representable map is a pullback
of the generic one in a unique way, the generic representable map is univalent. For
example, Fun(Dop,Space) for any D has one (because the class of representable
maps is a bounded local class).
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Extensional ∞-type theory

Example

Let E∞ be the ∞-type theory obtained from I∞ as follows:

I make the identity types extensional: make the square

E E

E×U E U

refl

∆ ∂

Id

a pullback (or invert the induced morphism E→ Id∗E);

I make ∂ : E→ U univalent: invert the morphism |id|∂ : U→ Equiv(∂).

E∞ is equipped with a morphism γ : I∞ → E∞.

(cf. Bocquet 2021, HoTTEST talk)
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Internal (∞-)languages for finitely complete ∞-categories

∞-analogue of (Clairambault and Dybjer 2011, 2014).

Theorem

The forgetful functor Modctx(E∞) 3M 7→M(?) ∈ Cat∞ factors through
Lex∞ ⊂ Cat∞ and induces an equivalence

Modctx(E∞) ' Lex∞.

Proof.

The inverse functor maps a C ∈ Lex∞ to the generic representable map in
Fun(Cop,Space).
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Family of internal language conjectures

I Base case:

Modctx(I) → Modctx(I∞) → Modctx(E∞) ' Lex∞
I With Π-types (and function extensionality):

Modctx(IΠ) → Modctx(IΠ∞) → Modctx(EΠ∞) ' LCCC∞
I With Π-types and natural numbers:

Modctx(IΠ,Nat) → Modctx(IΠ,Nat∞ ) → Modctx(EΠ,Nat∞ ) ' LCCCNat∞
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Family of internal language conjectures

I With Π-types and a countable chain of univalent universes:

Modctx(IΠ,U<ω) → Modctx(IΠ,U<ω∞ ) → Modctx(EΠ,U<ω∞ ) ' LCCCU<ω∞
where a C ∈ LCCCU<ω∞ has a countable chain of univalent universes as part
of structure.

I With Π-types and S1:

Modctx(IΠ,S
1
) → Modctx(IΠ,S

1∞ ) → Modctx(EΠ,S
1∞ ) ' LCCCS1∞
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Internal languages for finitely complete ∞-categories

Theorem

The composite

Modctx(I) Modctx(I∞) Modctx(E∞)τ∗ γ!

induces an equivalence L(Modctx(I)) 'Modctx(E∞). Consequently, we have

L(Modctx(I)) ' Lex∞.
Moreover, the functor γ!τ

∗ : Modctx(I) → Lex∞ coincides with the one
considered by Kapulkin and Lumsdaine.
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Internal languages for finitely complete ∞-categories

Modctx(I) Modctx(I∞) Modctx(E∞)τ∗ γ!

Idea

Once we prove that γ!τ
∗ preserves homotopy colimits, the rest is not hard.

(1) Kapulkin and Lumsdaine (2018) showed that Modctx(I) is equipped with a
structure of a cofibration category. In particular, certain colimits in
Modctx(I) are homotopy colimits.

(2) Prove that τ∗ preserves those colimits (and thus so does γ!τ
∗).

(3) Then, it suffices to check a couple of conditions called the left approximation
property (Cisinski 2019).

(4) The last assertion is proved by checking that both have the same universal
property.
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Cofibrations in Modctx(I)

Theorem (Kapulkin and Lumsdaine 2018)

Modctx(I) is equipped with a structure of a cofibration category (as part of a
combinatorial left semi-model structure).

Definition

A cofibration in Modctx(I) is a retract of an extension by types and terms but no
equation. An M ∈Modctx(I) is cofibrant if 0→M is a cofibration.

Definition

One can define the cofibrations in Modctx(I∞) in the same way as Modctx(I).
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Coherence theorem

The hardest part in our proof.

Theorem

Any cofibrant object of Modctx(I∞) belongs to Modctx(I) ⊂Modctx(I∞).

I That is, in a “free” model of I∞, every diagram of homotopies commutes.

I This is the only place where the coherence problem comes in.

Corollary

τ∗ : Modctx(I) ↪→ Modctx(I∞) preserves initial objects and pushouts of
cofibrations along arbitrary morphisms between cofibrant objects.
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Outline
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Conclusion
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Approaches to the coherence problem

Theorem

Any cofibrant object of Modctx(I∞) belongs to Modctx(I) ⊂Modctx(I∞).

Split replacement For any M ∈Modctx(I∞), find a SplM ∈Modctx(I) and a
trivial fibration SplM→M (cf. Hofmann 1995). In particular, if M
is cofibrant, it is a retract of SplM.

Rewriting (cf. Curien 1993; Mac Lane 1963).

Normalization (by evaluation) Expect

Normalizing =⇒ Decidable equality =⇒ 0-truncated
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Split replacement

An M ∈Modctx(I∞) consists of

I an ∞-category M(?) with a final object;

I a representable map M(∂) :M(E) →M(U) in Fun(M(?)op,Space);

I an Id-type structure.

Idea

(1) Present the ∞-topos Fun(M(?)op,Space) by a model category X.

(2) M(∂) is represented by a universe ∂X : EX → UX in X.

(3) Use Voevodsky’s universe method to obtain a contextual natural model SplM
from ∂X.

(4) Lift the Id-type structure so SplM is a model of I.
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Type-theoretic model topos

We choose X to be a type-theoretic model topos (Shulman 2019).

I X is a Grothendieck topos.

I The cofibrations are precisely the monomorphisms.

I Right proper, so the localization functor γX : X → LX preserves pushforwards
of fibrations between fibrant objects.

I Enough univalent universes (not needed for Id, but useful for lifting 1, Σ, and
Π).
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Voevodsky’s universe method

There exists a fibration ∂X : EX → UX between fibrant objects in X sent to M(∂)
by the localization functor γX : X → LX ' Fun(M(?)op,Space). Define a
contextual natural model SplM as follows:

(1) (X,よ∂X :よEX →よUX) defines a natural model;

(2) restrict the base category to the full subcategory spanned by the contextual
objects.

Concretely,

I (SplM)(?) ⊂ X;

I Γ ∈ (SplM)(?) if Γ → 1 is a composite of pullbacks of ∂X;

I (SplM)(U)(Γ) = X(Γ,UX);

I (SplM)(E)(Γ) = X(Γ, EX).

(Cf. Voevodsky 2015)
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Lifting Id-type structure

EX EX

X

=

EX ×UX
EX UX

M(E) M(E)

LX ∼

M(E×U E) M(U)

reflX

∆

∂X

γX

IdX

M(refl)

M(∆)

M(∂)

M(Id)

(UX is fibrant, ∂X : EX → UX is a fibration, and all objects are cofibrant.)
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Lifting path induction

A EX

X

= =

IdA UX

M(A) M(E)

LX ∼ ∼

M(IdA) M(U)

reflA

∂X

γX

M(reflA)

M(∂)

(∂X is a fibration and reflA : A→ IdA is a cofibration.)
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Problem with the split replacement

I There seems to be no general way to lift type constructors with judgmental
computation rules.

I It works for Id because the constructor refl is a cofibration (monomorphism)
for a trivial reason (factorization of the diagonal map).

I For general inductive types, constructors are not necessarily monomorphisms.

I For 1, Σ, and Π, we can replace ∂X by a weakly equivalent one closed under
these type constructors (with a rise in universe levels for Π).

I We expect that the other approach, rewriting or normalization, works for a
wide range of type constructors, if it works.
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Summary

I A higher-dimensional generalization of type theories called ∞-type theories.

I A unified formulation of internal language conjectures.

I Coherence theorem via split replacement for Modctx(I∞).

Future work:

I Better split replacement, or coherence via rewriting or normalization.

I “Syntax” for ∞-type theories.

I Other applications, say conservativity (cf. Bocquet 2020)? Morita equivalence
(Isaev 2020) between T and T ′ may be replaced by
L(Modctx(T)) 'Modctx(T∞) ' L(Modctx(T ′)) for a suitable ∞-type
theory T∞.
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type theories”. In: Mathematical Structures in Computer Science 24.6,
e240606. doi: 10.1017/S0960129513000881.

Pierre-Louis Curien (1993). “Substitution up to Isomorphism”. In: Fundam. Inform.
19.1/2, pp. 51–85.

Peter Dybjer (1996). “Internal Type Theory”. In: Types for Proofs and Programs:
International Workshop, TYPES ’95 Torino, Italy, June 5–8, 1995 Selected
Papers. Ed. by Stefano Berardi and Mario Coppo. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 120–134. doi: 10.1007/3-540-61780-9_66.

Marcelo Fiore (2012). Discrete Generalised Polynomial Functors. Talk at ICALP
2012. url: http://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf.

https://doi.org/10.1007/978-3-642-21691-6_10
https://doi.org/10.1017/S0960129513000881
https://doi.org/10.1007/3-540-61780-9_66
http://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf


∞-type
theories and

internal
language

conjectures

Taichi Uemura,
Hoang Kim

Nguyen

Introduction

∞-type
theories

Internal
language
conjectures

Coherence
problems

Conclusion

References

47/49

References III

Nicola Gambino and Richard Garner (2008). “The identity type weak factorisation
system”. In: Theoretical Computer Science 409.1, pp. 94–109. doi:
10.1016/j.tcs.2008.08.030.

David Gepner and Joachim Kock (Jan. 2017). “Univalence in locally cartesian
closed ∞-categories”. In: Forum Mathematicum 29.3. doi:
10.1515/forum-2015-0228.

Herman Geuvers and Freek Wiedijk (2008). “A Logical Framework with Explicit
Conversions”. In: Electronic Notes in Theoretical Computer Science 199,
pp. 33–47. doi: 10.1016/j.entcs.2007.11.011.

Robert Harper, Furio Honsell, and Gordon Plotkin (Jan. 1993). “A Framework for
Defining Logics”. In: J. ACM 40.1, pp. 143–184. doi:
10.1145/138027.138060.

https://doi.org/10.1016/j.tcs.2008.08.030
https://doi.org/10.1515/forum-2015-0228
https://doi.org/10.1016/j.entcs.2007.11.011
https://doi.org/10.1145/138027.138060


∞-type
theories and

internal
language

conjectures

Taichi Uemura,
Hoang Kim

Nguyen

Introduction

∞-type
theories

Internal
language
conjectures

Coherence
problems

Conclusion

References

48/49

References IV

Martin Hofmann (1995). “On the interpretation of type theory in locally cartesian
closed categories”. In: Computer Science Logic. Ed. by Leszek Pacholski and
Jerzy Tiuryn. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 427–441. doi:
10.1007/BFb0022273.

Valery Isaev (2020). Morita equivalences between algebraic dependent type
theories. arXiv: 1804.05045v2.

Krzysztof Kapulkin and Peter LeFanu Lumsdaine (2018). “The homotopy theory of
type theories”. In: Adv. Math. 337, pp. 1–38. doi:
10.1016/j.aim.2018.08.003.

Krzysztof Kapulkin and Karol Szumi lo (2019). “Internal languages of finitely
complete (∞, 1)-categories”. In: Selecta Math. (N.S.) 25.2, Art. 33, 46. doi:
10.1007/s00029-019-0480-0.

Saunders Mac Lane (1963). “Natural associativity and commutativity”. In: Rice
Univ. Stud. 49.4, pp. 28–46.

Nima Rasekh (2018). Complete Segal Objects. arXiv: 1805.03561v1.

https://doi.org/10.1007/BFb0022273
https://arxiv.org/abs/1804.05045v2
https://doi.org/10.1016/j.aim.2018.08.003
https://doi.org/10.1007/s00029-019-0480-0
https://arxiv.org/abs/1805.03561v1


∞-type
theories and

internal
language

conjectures

Taichi Uemura,
Hoang Kim

Nguyen

Introduction

∞-type
theories

Internal
language
conjectures

Coherence
problems

Conclusion

References

49/49

References V

Nima Rasekh (2021). Univalence in Higher Category Theory. arXiv: 2103.12762v1.
Michael Shulman (2019). All (∞, 1)-toposes have strict univalent universes. arXiv:

1904.07004v2.
Karol Szumi lo (2014). “Two Models for the Homotopy Theory of Cocomplete

Homotopy Theories”. PhD thesis. University of Bonn. arXiv: 1411.0303v1.
Taichi Uemura (2019). A General Framework for the Semantics of Type Theory.

arXiv: 1904.04097v2.
Vladimir Voevodsky (2015). “A C-system defined by a universe category”. In:

Theory and Applications of Categories 30.37, pp. 1181–1214.

https://arxiv.org/abs/2103.12762v1
https://arxiv.org/abs/1904.07004v2
https://arxiv.org/abs/1411.0303v1
https://arxiv.org/abs/1904.04097v2

	Introduction
	∞-type theories
	Internal language conjectures
	Coherence problems
	Conclusion
	References

