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Internal Language Theorems

Theorem (Theorem 6.1 in Clairambault&Dybjer 20141)

We have a biequivalence between the bicategories

▶ CwF
∑

,=ext

dem : democratic categories with families with
extensional identity types and sigma types

▶ FinLim: finitely complete categories

This biequivalence can be extended to
∏
-types and LCCCs

1“The biequivalence of locally cartesian closed categories and Martin-Löf
type theories”, by Clairambault and Dybjer
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Internal Language Up To Isomorphism

Final sentence of the paper by Clairambault and Dybjer:

So we can ask whether Martin-Löf type theory with extensional
identity types,

∑
- and

∏
-types is an internal language for lcccs?

And we can answer, yes, it is an internal language ‘up to
isomorphism’.
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Univalent Categories

Definition
A category C is univalent if the canonical map x = y → x ∼= y is
an equivalence for all objects x , y : C.

Key theorem about univalent categories: if C1 and C2 are
univalent, then the canonical map from identities C1 = C2 to
adjoint equivalence C1 ≃ C2 is an equivalence of types.
So:

▶ Two objects x and y in a univalent category have the same
properties if they are isomorphic

▶ Two univalent categories have the same properties if they are
equivalent.
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Internal Language Theorems for Univalent Categories

Theorem (Theorem of Today)

We have a biequivalence between the bicategories

▶ DFLCompCat: democratic univalent full comprehension
categories with sigma types, equalizer types, binary product
types, and unit types

▶ FinLim: univalent finitely complete categories

This biequivalence can be extended to LCCCs, pretoposes,
arithmetic pretoposes,

∏
-pretoposes, elementary toposes, and

elementary toposes with N.
This is formalized in UniMath2, and there is a preprint:
https://arxiv.org/abs/2411.06636

2https://github.com/UniMath/UniMath/tree/master/UniMath/

Bicategories/ComprehensionCat
6/44
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Today’s talk

We shall study the internal language theorem by Clairambault and
Dybjer for univalent categories, and we discuss extensions.

More specifically,

▶ We argue why comprehension categories are more suitable for
interpreting dependent types than CwFs in UF

▶ We recall the interpretation of type formers in comprehension
categories and the notion of democracy

▶ We show that DFLCompCat and FinLim are biequivalent

▶ We discuss how to modularly extend this theorem using
displayed biequivalences

Throughout the talk, we highlight how univalence affects the
development
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Introduction
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The Bicategory of Comprehension Categories
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Extensions

Conclusion
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Categories with Families

Definition
A category with families3 is given by

▶ a category C

▶ a functor T : C → Fam, which sends every Γ : C to a set
Ty(Γ) and a family TmΓ : Ty(Γ) → Set

together with a representing object for the functor sending
f : ∆ → Γ to TmΓ(f

∗(A)) for all Γ : C and A : Ty(Γ).

Recall: the objects of Fam are given by sets A together with a
family B of sets indexed by A.

3“Internal type theory”, Dybjer
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The Set Model

However, we do not have the following CwF

▶ Contexts are hSets

▶ Types in context Γ are equivalent to families Γ → Set

▶ Terms are sections of such families

This is because the type of all sets is not a set itself.

9/44



Models from Univalent Categories

Given a univalent category C with finite limits, we do not have
the following CwF

▶ Contexts are objects in C

▶ Types in context Γ are equivalent to pairs of an object Γ.A
and a morphism Γ.A → Γ

▶ Terms are sections

This is because the type of objects in a univalent category
generally only forms a 1-type.
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Discrete Models for Dependent Types

Various categorical structures to interpret type theory are built
around discrete fibrations (aka presheaves).

▶ Categories with attributes4

▶ Categories with families5

▶ Natural models6

In such models, the types in each context must form a set.
This requirement is not satisfied by the objects of univalent
categories.

4“Generalised Algebraic Theories and Contextual Categories”, Cartmell
5“Internal type theory”, Dybjer
6“Natural models of homotopy type theory”, Awodey
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Rejecting Discreteness

There also are categorical structures to interpret type theory built
around general fibrations (aka pseudofunctors into Cat).

▶ (Full) comprehension categories7

▶ Judgmental theories/Generalized CwFs8 9

▶ Coherent CwFs10

In such structures, types are not required to be a set
Note: we do not assume splitness. Since we focus on univalent
categories, the necessary identities for substitution hold in general

7“Categorical Logic and Type Theory”, Jacobs
8“Context, Judgement, Deduction”, Coraglia and Di Liberti
9“A 2-categorical analysis of context comprehension”, Coraglia and

Emmenegger
10https://types2024.itu.dk/slides/Thorsten%20Altenkirch%20-%

20Coherent%20Categories%20with%20Families.pdf
12/44

https://types2024.itu.dk/slides/Thorsten%20Altenkirch%20-%20Coherent%20Categories%20with%20Families.pdf
https://types2024.itu.dk/slides/Thorsten%20Altenkirch%20-%20Coherent%20Categories%20with%20Families.pdf


Rejecting Discreteness

There also are categorical structures to interpret type theory built
around general fibrations (aka pseudofunctors into Cat).

▶ (Full) comprehension categories7

▶ Judgmental theories/Generalized CwFs8 9

▶ Coherent CwFs10

In such structures, types are not required to be a set
Note: we do not assume splitness. Since we focus on univalent
categories, the necessary identities for substitution hold in general

7“Categorical Logic and Type Theory”, Jacobs
8“Context, Judgement, Deduction”, Coraglia and Di Liberti
9“A 2-categorical analysis of context comprehension”, Coraglia and

Emmenegger
10https://types2024.itu.dk/slides/Thorsten%20Altenkirch%20-%

20Coherent%20Categories%20with%20Families.pdf
12/44

https://types2024.itu.dk/slides/Thorsten%20Altenkirch%20-%20Coherent%20Categories%20with%20Families.pdf
https://types2024.itu.dk/slides/Thorsten%20Altenkirch%20-%20Coherent%20Categories%20with%20Families.pdf


Intermezzo: Accepting Discreteness

Note: one could also use iterative sets intead of hSets. Since
iterative sets form a set, we can use them to construct a CwF
representing the set model of type theory11

However, our focus is on models that arise from univalent
categories

11“The Category of Iterative Sets in Homotopy Type Theory and Univalent
Foundations”, Gratzer, Gylterud, Mörtberg, and Stenholm
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Fibrations in UF: Displayed Categories

To define fibrations, we use displayed categories12

Definition
A displayed category D over C consists of

▶ For each x : C a type Dx of objects over x

▶ For each f : x → y , x : Dx , and y : Dy a set x →f y of
morphisms over f from x to y

with suitable identity and composition operations.

Note:

▶ We can use displayed categories to define fibrations

▶ Analogously, we can define the notions of displayed functor
and displayed natural transformation

12“Displayed Categories”, Ahrens and Lumsdaine
14/44
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Comprehension Categories

Definition
A univalent full comprehension category is given by

▶ a univalent category C with a terminal object ⟨⟩
▶ a univalent displayed category D over C

▶ a cleaving for D

▶ a displayed functor χ : D → C→ over the identity (here C→ is
the displayed category representing the arrow category)

such that χ is fully faithful and χ preserves Cartesian morphisms.

Pictorially, we represent this data as follows

D C→

C

χ
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Example

We have the following univalent full comprehension category

Set→ Set→

Set

id
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Introduction

Why Comprehension Categories?

The Bicategory of Comprehension Categories

The Biequivalence for Categories with Finite Limits

Extensions

Conclusion
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Type Formers in the Internal Language

Clairambault and Dybjer use the following type formers

▶ Extensional identity types

▶ Dependent sums (with the η-rule)

They also assume democracy (discussed after 2 slides)
From these, one can derive unit types, binary product types, and
equalizer types

17/44



Type Formers in Comprehension Categories

We use the following type formers:

▶ Binary product types: fiberwise binary products

▶ Extensional identity types: left adjoints to contraction,
satisfying Beck-Chevalley and reflection. We use fiberwise
equalizers, which are equivalent if there are

∑
-types13

▶ Unit types: fiberwise terminal objects and χ preserves
terminal objects

▶ Dependent sums: left adjoints to weakening, satisfying
Beck-Chevalley

▶ Note: we require a strongness assumption to interpret
the η-rule for

∑
-types. This assumption says that

Γ.A.B ∼= Γ.
∑

a:A B a

13Theorem 10.5.10 in “Categorical Logic and Type Theory” by Jacobs
18/44
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Democratic Comprehension Categories

Definition
Suppose, we have a comprehension category as follows.

D C→

C

χ

This comprehension is democratic if for every Γ : C there is
A : D[⟨⟩] and an isomorphism Γ ∼= ⟨⟩.A (domain of χ(A)).

A democratic finite limit comprehension category is a
democratic univalent full comprehension category with

▶ unit types

▶ binary product types

▶ equalizer types

▶ dependent sums

19/44
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Morphisms of Comprehension Categories

Morphisms from χ1 : D1 → C→
1 to χ2 : D2 → C→

2 are given by
functors F : C1 → C2 and displayed functor F : D1 → D2 over F
together with a displayed natural isomorphism over the identity
as follows

D1 C→
1

D2 C→
2

χ1

F F→

χ2

∼=

such that F preserves fiberwise terminal objects, fiberwise binary
products, and fiberwise equalizers.

Note: we can derive that

▶ dependent sums are preserved (see Clairambault and Dybjer)

▶ democracy is preserved (if you want to know, you can ask
after the talk)
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The Bicategory of Comprehension Categories

Definition
We have a univalent bicategory DFLCompCat such that

▶ Objects are democratic finite limit comprehension categories

▶ Morphisms are pseudomorphisms as discussed on the previous
slide

▶ 2-cells: if you want to know, ask a question after the talk

Theorem
DFLCompCat is univalent

21/44
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Univalent Categories with Finite Limits

Theorem
We have a biequivalence between FinLim and DFLCompCat.

Here is FinLim the bicategory whose

▶ objects are univalent categories with finite limits,

▶ 1-cells are functors that preserve finite limits

▶ 2-cells are natural transformations
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Overview of the Biequivalence

We must construct:

▶ a pseudofunctor H : FinLim → DFLCompCat

▶ a pseudofunctor U : DFLCompCat → FinLim

▶ a pseudotransformation ξ : H · U ⇒ idFinLim
▶ a pseudotransformation ζ : idDFLCompCat ⇒ U · H

and we must prove that ξ and ζ are pointwise adjoint equivalences.
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Construction of H : FinLim → DFLCompCat

Every univalent category with finite limits gives rise to the
following DFL comprehension category

C→ C→

C

id

Note:

▶ one can show that this comprehension category has all
necessary type formers

▶ one can show that this is suitably pseudofunctorial (matter of
having some willpower)
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Short Intermezzo: Splitting the Fibration

In set theory, one also need to replace the fibration by a split one:

Split(C→) C→ C→

C

≃ id

25/44



Construction of U : DFLCompCat → FinLim

Every DFL comprehension category

D C→

C

χ

gives rise to a category

C
The challenge lies in verifying that C is finitely complete.
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Construction of U : DFLCompCat → FinLim

Key lemma:

Lemma
If we have a

D C→

C

χ

then the functor χ is fiberwise (split) essentially surjective.

Note: we assumed that χ is fully faithful

This lemma gives us an equivalence from D to C→, and
univalence gives us the relevant transport principles
In particular, we can transport structure/properties from fiber
categories D[x ] to slice categories C/x .
Since D[⟨⟩] is finitely complete, so is C.
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Construction of ξ

If C is a univalent category with finite limits, then U(H(C)) is C.
So: for ξ we take the pointwise identity.

28/44



Construction of ζ

Starting with χ : D → C→, we obtain the following DFL
comprehension category

C→ C→

C

id

For ζ we use the following adjoint equivalence of DFL
comprehension categories:

D C→

C→ C→

χ

χ id→

id

By the key lemma: this is an adjoint equivalence

29/44
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Univalence

There are several points in the proof where we use univalence:

▶ interpreting substitution

▶ transporting along equivalences

▶ characterizing adjoint equivalences (of comprehension
categories and of pseudofunctors)

30/44



Pseudonatural Adjoint Equivalences

We use the following theorem

Theorem
A pseudotransformation is an adjoint equivalence in the bicategory
of pseudofunctors if it is a pointwise adjoint equivalence.

This can be proven using mate calculus14

However, with univalence we can get a nicer proof
We combine two ideas:

▶ Displayed bicategories

▶ Equivalence induction

14Proposition 6.2.16 in “2-Dimensional Categories” by Johnson and Yau
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We combine two ideas:

▶ Displayed bicategories

▶ Equivalence induction

14Proposition 6.2.16 in “2-Dimensional Categories” by Johnson and Yau
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Displayed Bicategories

Definition
A displayed bicategory15 D over a bicategory B consists of

▶ For each x : B a type Dx of objects over x

▶ For each f : x → y , x : Dx , and y : Dy a type x →f y of
1-cells over f from x to y

▶ For each 2-cell τ : f ⇒ g and 1-cells f : x →f y and
g : x →g y a set f ⇒τ g of 2-cells over τ

▶ and much more

Example of a displayed bicategory over UnivCat

▶ Objects over C: fibrations on C

▶ 1-cells over F: Cartesian functors over F

▶ 2-cells over τ : natural transformations over τ

15“Bicategories in univalent foundations”, Ahrens, Frumin, Maggesi, Veltri,
Van der Weide
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Characterizing Adjoint Equivalences

Often we want to show that some pseudofunctor reflects adjoint
equivalences
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Characterizing Adjoint Equivalences

If we use displayed bicategories, we can use equivalence induction

By induction on e: we only have to consider morphisms over
identities
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Extending the Biequivalence (
∏
-types)

Theorem
We have a biequivalence between the bicategories

▶ DFLCompCat∏: democratic univalent full comprehension
categories with equalizer types, binary product types, unit
types, sigma types, and

∏
-types

▶ LCCC: univalent locally Cartesian closed categories

Key observation:

▶ This biequivalence is an extension of the biequivalence
between DFLCompCat and FinLim.

▶ We can use displayed biequivalences
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Total Bicategories

Definition
Every displayed bicategory D over B gives rise to a total
bicategory

∫
D:

▶ Objects: pairs x : B and x over x

▶ 1-cells from (x , x) to (y , y): pairs f : x → y and f : x →f y

▶ 2-cells from (f , f ) to (g , g): pairs τ : f → g and τ : f ⇒τ g

The total bicategory
∫
D extends B with the structure in D

Examples:

▶ LCCC: total bicategory of the displayed bicategory over
FinLim whose objects over C are proofs that C is locally
Cartesian closed.

▶ DFLCompCat∏: total bicategory of the displayed bicategory
over DFLCompCat whose objects over a comprehension
category are interpretations of

∏
-types.
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Displayed Gadgets and Modularity

We have many gadgets in our toolkit for modular constructions

▶ displayed bicategories for constructing bicategories

▶ displayed pseudofunctors for constructing pseudofunctors

▶ displayed pseudotransformations for constructing
pseudotransformations

▶ displayed invertible modifications for constructing invertible
modifications

▶ displayed biequivalences for constructing biequivalences

The definitions of pseudofunctors, displayed pseudotransformations,
displayed invertible modifications, and displayed biequivalences are
left to your imagination (and the literature16)

16“Bicategories in univalent foundations”, Ahrens, Frumin, Maggesi, Veltri,
Van der Weide
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Extending the Biequivalence (
∏
-types)

Theorem
We have a biequivalence between the bicategories

▶ DFLCompCat∏: democratic univalent full comprehension
categories with equalizer types, binary product types, unit
types, sigma types, and

∏
-types

▶ LCCC: univalent locally Cartesian closed categories

We prove this by constructing a displayed biequivalence over the
biequivalence between DFLCompCat and FinLim.
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Extending the Biequivalence (local properties)

Many type formers, such as quotients, disjoint sums, a type of
propositions, are interpreted in essentially the same way: the slice
categories C/x must have some categorical structure and the
substitution functors preserve it

▶ Disjoint sum types: the slices C/x are extensive, substitution
preserves coproducts

▶ Quotient types: the slices C/x are exact, substitution
preserves regular epis

▶ Type of propositions: the slices C/x have a subobject
classifier, substitution preserves subobject classifiers

General notion: local property17

17“Modular correspondence between dependent type theories and categories
including pretopoi and topoi” by Maietti
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Local Properties

Definition
A local property is given by

▶ a proposition PCat(C) for each univalent category C with finite
limits;

▶ a proposition PFun(F) for each functor F : C1 → C2 such that
F preserves finite limits and such that PCat(C1) and PCat(C2).

such that

▶ PCat is closed under slicing

▶ the identity satisfies PFun and PFun is closed under
composition

▶ If F : C1 → C2 is a functor preserving finite limits such that
PFun(F), then we also have PFun(F/x) for each x : C1. This is
not in Maietti, but necessary for a biequivalence
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Examples of Local Properties

Examples of local properties:

▶ being exact

▶ being extensive

▶ being a pretopos

▶ having a subobject classifier

▶ having a (parameterized) natural number objects
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Extensions with Local Properties

Theorem
Let P be a local property. We have a biequivalence between the
bicategories

▶ DFLCompCatP: democratic univalent full comprehension
categories with equalizer types, binary product types, unit
types, sigma types, such that each fiber satisfies PCat and the
substitution functors satisfy PFun.

▶ FinLimP: univalent categories with finite limit that satisfy PCat
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Extensions to Toposes

Theorem
We have a biequivalence between the bicategories

PreTop ≃ CompCatPreTop

PreTopN ≃ CompCatPreTopN

PreTop∏ ≃ CompCatPreTop∏
ElemTop ≃ CompCatElemTop

ElemTopN ≃ CompCatElemTopN
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Summary

▶ We proved an analogue of the theorem by Clairambault and
Dybjer for univalent categories

▶ To do so, we used non-discrete structures (comprehension
categories) instead of discrete ones (CwFs)

▶ Univalence simplified several constructions and proofs
(transporting along equivalences, characterizing adjoint
equivalences)

▶ We also extended this theorem to various classes of toposes
following Maietti

▶ Displayed biequivalences were our main tool to construct
extensions
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Future Work

There are several interesting future directions:

▶ What would be a suitable syntax for univalent full
comprehension categories?

▶ What about the semantics of intensional type theory using
univalent categories? Relevant work: equivalence between
path categories and certain comprehension categories18

18“Semantics of Axiomatic Type Theory” by Otten and Spadetto,
https://types2024.itu.dk/abstracts.pdf#page=206
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Internal Languages for Univalent Categories

So we can ask whether Martin-Löf type theory with extensional
identity types,

∑
- and

∏
-types is an internal language for

univalent lcccs? And we can answer, yes. We can answer the
analogous question in the same way for pretoposes,

∏
-pretoposes,

elementary toposes, and elementary toposes with an NNO.

Preprint: https://arxiv.org/abs/2411.06636
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Morphisms of Comprehension Categories

Morphisms from χ1 : D1 → C→
1 to χ2 : D2 → C→

2 are given by
functors F : C1 → C2 and displayed functor F : D1 → D2 over F
together with a displayed natural isomorphism over the identity
as follows

D1 C→
1

D2 C→
2

χ1

F F→

χ2

∼=

Call the natural isomorphism Fχ.
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2-cells of comprehension categories

A 2-cell from (F,F,Fχ) to (G,G,Gχ) consists of

▶ a natural transformation τ : F ⇒ G

▶ a displayed natural transformation τ : F ⇒ G over τ

such that the compositions below are equal.

D1 C→
1

D2 C→
2

χ1

F G G→

χ2

τ Gχ

D1 C→
1

D2 C→
2

χ1

F
G→F→

χ2

Fχ τ→
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Pseudonatural Adjoint Equivalences

Theorem
A pseudotransformation is an adjoint equivalence in the bicategory
of pseudofunctors if it is a pointwise adjoint equivalence.
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Pseudonatural Adjoint Equivalences
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Pseudonatural Adjoint Equivalences

Theorem
A morphism (F,F,Fχ) of full comprehension categories is an
adjoint equivalence if F and F are adjoint equivalences.
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Same Idea for Comprehension Categories

FullCompCatD

CompCatlax

CleavingT

UnivDispCat UnivDispCatT UnivCatT

UnivCat

44/44



Preservation of Democracy

Suppose, that we have democratic full univalent comprehension
categories χ1 : D1 → C→

1 and χ2 : D2 → C→
2 , and a morphism

(F,F,Fχ) from χ1 to χ2. Then for each Γ : C1 there is an

isomorphism dΓ : F(Γ) ∼= ⋄∗F(Γ)(F(Γ)) making the following diagram
commute.

F(Γ) F(⟨⟩.Γ)

⟨⟩.F(Γ) F(⟨⟩). ⋄∗F(Γ) (F(Γ)) F(⟨⟩). ⋄∗F(Γ) (F(Γ))

F(γΓ)

γF (Γ) Fχ(Γ)

⟨⋄F(⟨⟩),q⟩ F(⟨⟩).dΓ

Here γΓ : Γ ∼= ⟨⟩.Γ and γF(Γ) : F(Γ) ∼= ⟨⟩.F(Γ)
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