
Directed univalence and the Yoneda embedding
for synthetic (∞, 1)-categories

Jonathan Weinberger

jww Daniel Gratzer & Ulrik Buchholtz and Nikolai Kudasov & Emily Riehl

doi:10.1145/3636501.3636945, arXiv:2407.09146, arXiv:2501.13229

Homotopy Type Theory Electronic Seminar Talks (HoTTEST)
March 6, 2025

https://sites.google.com/view/jonathanweinberger
https://dl.acm.org/doi/10.1145/3636501.3636945
https://arxiv.org/abs/2407.09146
https://arxiv.org/abs/2501.13229
https://www.math.uwo.ca/faculty/kapulkin/seminars/hottest.html


In memory of Thomas Streicher (1958–2025)



The concept of (∞, 1)-category
(∞, 1)-categories: weak composition of 1-morphisms given uniquely up to contractibility

•

• •

How to express this in HoTT?

Problem: We have path types (a =A b), but what about directed hom types (a→A b)?

Several possible type-theoretic frameworks, e.g. by Warren, Licata–Harper,
Annenkov–Capriotti–Kraus–Sattler, Nuyts, North, Weaver–Licata, Altenkirch–Neumann, . . .

Other synthetic theories: Riehl–Verity, Cisinski–Cnossen–Nguyen–Walde, Martini–Wolf

In our work: Riehl–Shulman’s simplicial type theory (2017). Also heavily influenced by
Riehl–Verity’s∞-cosmos theory (2013-2021-. . . ).



Simplicial HoTT

1 Simplicial HoTT: Extension of HoTT by Riehl–Shulman ’17
2 add strict shapes

• • •

• • • • • • • • • . . .
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3 add extension types (due to Lumsdaine–Shulman, cf. Cubical Type Theory):

Input:
shape inclusion Φ ↪→ Ψ

family P : Ψ→ U ;
partial section a : Πt:ΦP (t)

P̃

Φ Ψ

a
b

Extension type
〈∏

Ψ P
∣∣∣Φa〉

with terms b : ΠΨP such that b|Φ ≡ a.
Semantically:〈∏

Ψ P
∣∣∣Φa〉 P̃Ψ

1 P̃Φa

⌟



Hom types I

Definition (Hom types, [RS17])

Let B be a type. Fix terms a, b : B. The type of arrows in B from a to b is the extension type

homB(a, b) :≡ (a→B b) :≡
〈
∆1 → B

∣∣∣∂∆1

[a,b]

〉
.

Definition (Dependent hom types, [RS17])

Let P : B → U be family. Fix an arrow u : homB(a, b) in B and points d : P a, e : P b in the
fibers. The type of dependent arrows in P over u from d to e is the extension type

dhomP,u(d, e) :≡ (d→P
u e) :≡

〈∏
t:∆1 P (u(t))

∣∣∣∂∆1

[d,e]

〉
.



Hom types II
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Segal, Rezk, and discrete types

We can now define synthetic (∞, 1)-categories using shapes and extension types:

Definition (Synthetic (∞, 1)-categories, [RS17])

Synthetic pre-(∞, 1)-category aka Segal type: types A with weak composition, i.e.:

ι : Λ2
1 ↪→ ∆2 ; Aι : A∆2 ≃−→ AΛ2

1 (Joyal).

Synthetic (∞, 1)-category aka Rezk type: Segal types A satisfying Rezk
completeness/local univalence, i.e.

idtoisoA : Πx,y:A(x =A y)
≃−→ isoA(x, y).

Synthetic∞-groupoid aka discrete type: types A such that every arrow is
invertible, i.e.

idtoarrA : Πx,y:A(x =A y)
≃−→ homA(x, y).



Adequate semantics of synthetic∞-category theory

Theorem (Shulman ’19, Riehl–Shulman ’17)
1 Every∞-topos admits a model of HoTT.
2 Every∞-topos of simplicial objects admits a model of sHoTT, with weakly stable

extension types.

Theorem (W ’21)

Extension types are strictly substitution-stable.

Corollary
1 Synthetic∞-category theory interprets to ordinary∞-category theory.
2 Synthetic∞-category theory interprets to internal∞-category theory (cf. Martini–Wolf,

Cisinski–Ngyuen–Walde–Cnossen, Rasekh, Stenzel).



Properties of Segal types

In [RS17] it is shown that:

The hom-types of a Segal type are groupoidal (aka discrete).

Discrete types are those types all of whose arrows are invertible (automatically Rezk).

Closure properties from orthogonality characterizations, cf. also [BW23]



Functors and natural transformations

Segal types have categorical structure: composition g ◦ f , identities idx, and
homotopies

h ◦ (g ◦ f) = (h ◦ g) ◦ f, idy ◦f = f, f ◦ idx = f.

Any map f : A→ B between Segal types is automatically a functor.

For f, g : A→ B define the type of natural transformations as

(f ⇒ g) :≡ hom
A→B

(f, g) :≡
〈
∆1 → (A→ B)

∣∣∣∂∆1

[f,g]

〉
.

One can then prove that for φ : (f ⇒ g) any arrow u : x→A y gives rise to the expected
naturality square:

fx gx

fy gy

φx

fu

φy

gu



Cocartesian type families

Any type family P : B → U transforms covariantly in paths:
u : a =B b ; u! : P a→ P b

What about the directed analogue? u : a→B b ; u! : P a→ P b

Cocartesian families: ∞-categories parametrized over an
∞-category

Definition (Cocartesian family, Buchholtz–W ’21)

A type family P : B → U is cocartesian if every arrow in B universally lifts to a P -dependent
arrow.

Theorem (Buchholtz–W ’21)

Lifting and transport in cocartesian families can be expressed via (fibered) adjoint functors à la
Street.

Theorem (Closure properties of cocartesian families, Buchholtz–W ’21)

Synthetic cocartesian fibrations form an∞-cosmos in the sense of Riehl–Verity.



Covariant type families

Definition (Covariant family, [RS17])

Let C : A→ U be a family. It is covariant if and only if for all a, b : A, arrows u : (a→A b) and
points x : C(a) the type ∑

y:C(b)

(x→C
u y)

is contractible.

This give a synthetic analogue of discrete covariant or left fibrations:

∑
a:A

C(a) x uC
! (x)

A a b
u

transCu (x)



Covariant type families: Functoriality & naturality

Let C : A→ U be a covariant family and A be Segal.

If A is Segal, then C̃ :≡
∑
a:A

C(a) is.

Discreteness: Each fiber C(x) is discrete.

Functoriality: Lifting gives a family of maps liftC :
∏

x,y:A

(x→A y)→ C(x)→ C(y) with

liftC(f, u) :≡ f!u. For f : (x→A y), g : (y →A z), and u : C(x) we have identifications

g!(f!u) = (gf)!u (idx)!u = u.

Naturality: Assume C,D : A→ U are covariant. Let φ :
∏
x:A

C(x)→ D(x). Then, for any

f : (x→A y) and u : C(x). Then we have an identification:

φy(f!u) = f!(φxu)

Example: For a : A, the family homA(a,−) : A→ U is covariant. For x : A, e : homA(a, x) it acts
via f : homA(x, y) as f!e = f ◦ e.



Fibered Yoneda lemma as directed path induction

Theorem (Directed path induction)

Fix b : B. For P :
(∑

x:B

(b =B x)
)
→ U we have an equivalence:

(∏
x:B

∏
p:b=Bx

P (x, p)
)

P (b, reflb)

evreflb

indP
b

≃

Theorem ((dependent) Yoneda Lemma for covariant families, [RS17])

Let B be a Segal type, and fix b : B. For a covariant type family P :
(∑

x:B

(b→B x)
)
→ U , we have an

equivalence: (∏
x:B

∏
p:b→Bx

P (x, p)
)

P (b, idb)

evidb

yP
b

≃



Fibered Yoneda lemma: proof idea

Theorem (Yoneda Lemma for covariant families, [RS17])

Let A be a Segal type, and a : A any term. For a covariant type family C : A→ U , we have an
equivalence:

evidCa :
(∏

x:A

homA(a, x)→ C(x)
)

≃−→ C(a)

The inverse map is given by

yC
a : C(a)→

(∏
x:A

homA(a, x)→ C(x)
)
, yC

a (u)(x)(f) :≡ f!u

Proof “simply” follows from naturality properties and covariance of homA(a,−).
There also exists a dependent version.

Both have been formalized in Kudasov’s new proof assistant Rzk.

Cocartesian and other generalizations due to Buchholtz–W and W have been proven, but
formalization is WIP.



The Rzk proof assistant



Formalizing∞-categories in Rzk

Kudasov has developed the Rzk proof assistant, implementing sHoTT:
https://rzk-lang.github.io/

Using Rzk we initiated the first ever formalizations of∞-category theory.

In spring 2023, with Kudasov and Riehl we formalized the (discrete fibered) Yoneda lemma of
∞-category theory: https://emilyriehl.github.io/yoneda/

alongside many other results

Many proofs in this∞-dimensional setting easier than in dimension 1!

Formalization helped find a mistake in original paper

More students & researchers joined us developing a library for∞-category theory:
https://rzk-lang.github.io/sHoTT/

https://rzk-lang.github.io/
https://emilyriehl.github.io/yoneda/
https://rzk-lang.github.io/sHoTT/


Synthetic∞-category theory in sHoTT

Functors, natural transformations, discrete fibrations & fibered Yoneda lemma, adjunctions
(Riehl–Shulman ’17)

Cartesian fibrations (Buchholtz–W ’21) & generalizations (W ’21)

Limits and colimits (Bardomiano ’22)

Conduché fibrations (Bardomiano ’24)

Proof assistant Rzk (Kudasov ’23) and formalization of fibered Yoneda lemma
(Kudasov–Riehl–W ’23)

sHoTT library and more formalizations (Abounegm, Bakke, Bardomiano, Campbell,
Carlier, Chatzidiamantis-Christoforidis, Ergus, Hutzler, Kudasov, Maillard, Martínez,
Pradal, Rasekh, Riehl, F. Verity, Walde, W ’23–)

But many desiderata missing!

opposite categories, categories S and Cat, presheaves & Yoneda embedding, higher algebra,
. . .



Multimodal type theory

Multi-modal dependent type theory (MTT) to the rescue!
(Gratzer–Kavvos–Nuyts–Birkedal ’20)

start from a cubical outer layer, augmented by an instance of MTT

the added modal operators: simplicial localization �, opposite o, twisted arrows t
(groupoid) core/discretization ♭ ⊣ codiscretization ♯,
path type (−)I ⊣ amazing right adjoint (−)I

plus axioms about the interaction between the simplicial and modal structure

This unlocks a whole new range of constructions

We call the ensuing type theory triangulated type theory

S∆
op

S

See also work on cohesive∞-toposes by Schreiber (’13), Shulman (’18), Myers–Riley (’23), as
well as internal universes via a tiny interval by Licata–Orton–Pitts-Spitters (’18) and Riley (’24).



Intuitions for the modalities

Opposite o: ⟨o | A⟩ has its n-simplices reversed

Discretization/core ♭: ⟨♭ | A⟩ → A is the maximal subgroupoid of A

Codiscretization ♯: A→ ⟨♯ | A⟩ is localization at ∂∆n → ∆n (for crisp closed types)

Twisted arrows t: ⟨t | A⟩ has as n-simplices:

an . . . a2 a1 a0

an+1 . . . a2n−2 a2n−1 a2n

Mode theory:
♭ ◦ ♭ = ♭ ◦ o = ♭ ◦ ♯ = ♭ ♯ ◦ ♭ = ♯ ◦ o = ♯ ◦ ♭ = ♯

o ◦ o = id ♭ ≤ id ≤ ♯ ♭ ≤ t



Axioms for triangulated type theory I

Axiom (Interval I)

There is a bounded distributive lattice (I : Set, 0, 1,∨,∧)

Axiom (Path type former as modality)

The path type (−)I is presented by a modality p.

Axiom (Crisp induction)

Modalities commute with path types: for every µ, the map modµ(a) = modµ(b)→ ⟨µ | a = b⟩ is an
equivalence.

Axiom (Reversal on I)

There is an equivalence ¬ : ⟨o | I⟩ → I which swaps 0 for 1 and ∧ for ∨.



Axioms for triangulated type theory II

Axiom (I detects discreteness)

If A :♭ U then ⟨♭ | A⟩ → A is an equivalence if and only if A→ (I→ A) is an equivalence.

Axiom (Global points of I)

The map Bool→ I is injective and induces an equivalence Bool ≃ ⟨♭ | I⟩.

Axiom (Cubes separate)

f :♭ A→ B is an equivalence if and only if the following holds:

Πn:♭N isEquiv
(
(f∗)

† : ⟨♭ | In → A⟩ → ⟨♭ | In → B⟩
)

Axiom (Simplicial stability)

If A :♭ U then for all n :♭ N the following map is an equivalence:

η∗ : ⟨♭ | ∆n → A⟩ → ⟨♭ | ∆n → �A⟩



Axioms for triangulated type theory III

Axiom (Twisted arrows)

For every category C :♭ U we have morphisms πtw
0 : ⟨t | C⟩ → ⟨o | A⟩, πtw

1 : ⟨t | C⟩ → A, equivalences
ι : ⟨♭ | (⟨o |∆n ⟩ ⋄∆n)→ C⟩ ≃ ⟨♭ | ∆n → ⟨t | C⟩⟩ and τ : ⟨t | C⟩ ≃ ⟨t | ⟨o | C⟩ ⟩, satisfying appropriate
naturality and compatibility conditions.

Here, X ⋄ Y is the blunt join X ⨿X×{0}Y (X × I× Y )⨿X×{1}Y Y .

Axiom (Blechschmidt duality)

Let A be a finitely presented I-algebra, i.e., A ≃ I[x1, . . . , xn]/(r1 = s1, . . . , rn = sn), then the
evaluation map is an equivalence:

λa, f.f(a) : A ≃ (homI(A, I)→ I)



Simplicial vs cubical models

Theorem (Kapulkin–Voevodsky ’18, Sattler ’18, Streicher–W ’19)

Simplicial sets are an essential subtopos of cubical sets.

Crucial for internal treatment of universes (jww Gratzer–Buchholtz).

Applications to model structures for∞-categories (Hackney–Rovelli, Cavallo–Sattler)



Towards the universe of spaces

Covariant families have transport: (−)! :
∏
a,b:X

(a→X b)→ A(a)→ A(b)

If X is Segal, then each fiber A(a) is discrete.

Can we take
∑
A:U

isCov(A)?

No: isCov(A) just means that A is discrete; doesn’t see variance.

Need a predicate that yields covariance over all possible contexts.

Solution: Amazing fibrations due to M. Riley (2024): A Type Theory with a Tiny Object ,
arXiv:2403.01939; based on Licata–Orton–Pitts–Spitters ’18 (which was used for similar
purposes by Weaver–Licata ’20)

https://arxiv.org/abs/2403.01939


Amazingly covariant families

Consider isCov(A : I→ U) ≃
∏

x:A(0)

isContr
( ∑
y:A(1)

(x→α y)
)
, where α : homI(0, 1).

This gives a predicate isCovI : U I → Prop.

Definition (Amazingly covariant types)

Let A : U be a type. It is amazingly covariant if and only if the following proposition is inhabited:

isACov(A) :≡
(
isCovI(λi.A

η(i))
)

I
,

where Aη is the image of A under the unit ηU : U → (U I)I.



The universe of spaces

The simplicial objects give rise to the (simplicial) subuniverse of simplicial types:

U� :≡
∑
A:U

isSimp(A)

Definition

We call S :≡
∑
A:U�

isACov(A) the universe of spaces.

Theorem

1 The universe S is a synthetic∞-category whose terms are∞-groupoids.

2 S classifies amazingly covariant families in U�.

3 S is closed under Σ, identity types, and finite (co)limits.

4 S is directed univalent:

arrtofun : (∆1 → S) ≃

( ∑
A,B:S

(A→ B)

)



Equivalence lemma

Theorem

Assume maps f, g : ∆1 → S and a natural transformation α :
∏
x:∆1

f(x)→ g(x). Then α is a

family of equivalences if and only if α(0) and α(1) are equivalences.

f 0 g 0

f 1 g 1

α 0
∼=

α 1

∼=

For the proof, we need the axiom that cubes detect equivalences:( ∏
n:Nat

⟨♭ | In → A⟩ ≃ ⟨♭ | In → B⟩
)
→ (A ≃ B)

We can also prove a generalization of the equivalence lemma to ∆n.



Directed univalence

1 Since S classifies (amazingly) covariant families, there is a map

arrtofun :≡ λF.(F 0, F 1, αF
! : F 0→ F 1) : (∆1 → S)→

( ∑
A,B:S

(A→ B)
)
.

2 In the other direction, we consider the mapping cone/directed glue type (cf. cubical type
theory and Weaver–Licata ’20):

Gl :≡ A,B, f.λi.
∑
b:B

(i = 0)→ f−1(b) :
( ∑

A,B:S
(A→ B)

)
→ (∆1 → S)

3 We show that they form an inverse pair making crucial use of the equivalence lemma.
4 Segalness of S is using similar arguments, but in higher dimensions.

Analogous result in bicubical setting by Weaver–Licata ’20, but some difference in methods
and axioms.



Application: directed structure identity principle (DSIP)

Theorem (DSIP for pointed spaces)

Let S∗ :≡
∑
A:S

A. Then for (A, a), (B, b) : S∗ we have:

homS∗((A, a), (B, b)) ≃
∑

f :A→B

f(a) = b

Theorem (DSIP for monoids)

Consider the type (category!) of (set-)monoids

Monoid :≡
∑

A:S≤0

∑
ε:A

∑
·:A×A

isAssoc(·)× isUnit(·, ε).

Then homomorphisms from (A, εA, ·A, αA, µA) to (B, εB , ·B , αB , µB) correspond to set maps A→ B
compatible with multiplication and units.



Towards synthetic higher algebra

We can internally define presheaf categories PSh(C) :≡ ⟨o|C⟩ → S.

Definition (∞-monoids)

The category Mon∞ of∞-monoids is the full subcategorya of PSh(∆) defined by the predicate

φ(X :♭ PSh(∆)) :≡
∏

n:Nat

isEquiv(⟨X(ιk)k<n⟩ : X(∆n)→ X(∆1)n)

aneed the codiscrete modality ♯

This encodes the structure of a homotopy-coherent monoid. Multiplication is given through

µX : X(∆2) ≃ X(∆1)2 → X(∆1).

Definition (∞-groups)

The category Grp∞ of∞-groups is the full subcategory of Mon∞ defined by the predicate

φ(X :♭ Mon∞) :≡ isEquiv(λx, y.⟨x, µX(x, y)⟩ : X(∆1)2 → X(∆1)2)

One can show that both these categories satisfy the expcted DSIP.



The category of spectra

Definition (The category of spectra)

The type of spectra is defined as the limit (in the ambient universe)

Sp :≡ lim←−(S∗
Ω← S∗

Ω← . . .).

Proposition

Sp is a stable∞-category and cocomplete.



Categorical Yoneda lemma

Let C be a category. Using the twisted arrow modality t, we obtain the hom-bifunctor
Φ : C × ⟨o|C⟩ → S. We write y(c) :≡ Φ(−, c).
We now recover the synthetic∞-categorical version of the “standard” Yoneda lemma:

Theorem (Yoneda lemma)

We have hom(y(c), X) ≃ X(c), naturally in each c :♭ C and X :♭ PSh(C).

Theorem (Density)

If X :♭ PSh(C), then X ≃ lim−→
⟨o | X̃⟩

y ◦ πop.



Universal property of presheaf categories

Theorem (Descent for presheaf categories)

Let E :≡ PSh(A) and F :♭ C → E, then E/ lim−→
c:C

F (c) ≃ lim←−
c:C

E/F (c).

Theorem (Universal property of PSh(C))

PSh(C) is the free cocompletion of C: y∗ : (PSh(C)→cc E)→ (C → E)



Kan extensions

The notion of Kan extensions subsumes all the other fundamental concepts of category theory.

– S. Mac Lane ’71

Definition (Kan extensions)

Given f :♭ C → D and a category E, the left Kan extension lanf is the left adjoint to
f∗ : ED → EC .

Theorem (Colimit formula)

If E is cocomplete, then lanf exists. For X :♭ C → E it computes to
lanfX d ≃ lim−→(C ×D D/d→ C → E)



Cofinal functors

Definition (Cofinal functors)

A functor f :♭ C → D is right cofinal if for every X :♭ D → S the map lim←−
D

X → lim←−
C

X ◦ f is an

equivalence.

Proposition (Characterization of right cofinality)

Let f :♭ C → D be a functor. Then the following are equivalent:

1 f is right cofinal.

2 Let X :♭ ⟨o | A⟩ → S be family with associated right fibration π :♭ X̃ → A. Then any square of the
following form has a filler φ, uniquely up to homotopy:

C X̃

D A

φ

f π
φ

α

3 f is a contravariant equivalence, i.e., for all p :♭ C → A and q :♭ D → A with q ◦ f = p, we have
that: f∗ :♭ (Πa:ADa → Xa)

≃→ (Πa:ACa → Xa)



Quillen’s Theorem A

Theorem (Quillen’s Theorem A)

A functor f :♭ C → D is right cofinal if and only if LI(C ×D d/D) ≃ 1 for each d :♭ D.

This follows by reducing to the case of presheaves and ultimately groupoids S.



Application to cocartesian fibrations

Theorem (Properness of cocartesian fibrations)

As below, if π are cocartesian and u is right cofinal then v is right cofinal:

A×B E E

A B

v

ξ
⌟

π

u

Using Quillen’s Theorem A and some localization theory we can give a new synthetic proof:

Proof.

We compute the fiber:

(A×B E)×E e/E ≃ A×B e/E ≃ A×B

(
Σb′:BΣf :(π(e)→Bb′)(E

∆1

b′ )
)

≃ Σ⟨a,f⟩:A×Bπ(e)/B f! e/Eu(a)

Now, we have both LI(A×B π(e)/B) ≃ 1 and LI(f! e/Eu(a)) ≃ 1. This suffices by a theorem
in: E. Rijke, M. Shulman, B. Spitters (2020): Modalities in homotopy type theory.



Outlook

1 Synthetic higher algebra
2 Universe of higher categories
3 Extend formalizations
4 . . .
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