Directed univalence and the Yoneda embedding for synthetic $(\infty,1)\text{-}categories$

Jonathan Weinberger

jww Daniel Gratzer & Ulrik Buchholtz and Nikolai Kudasov & Emily Riehl

doi:10.1145/3636501.3636945, arXiv:2407.09146, arXiv:2501.13229

Homotopy Type Theory Electronic Seminar Talks (HoTTEST) March 6, 2025

In memory of Thomas Streicher (1958–2025)

The concept of $(\infty, 1)$ -category

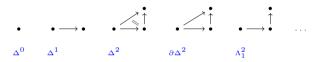
• $(\infty, 1)$ -categories: weak composition of 1-morphisms given uniquely up to contractibility

- How to express this in HoTT?
- *Problem:* We have path types $(a =_A b)$, but what about directed hom types $(a \rightarrow_A b)$?
- Several possible type-theoretic frameworks, e.g. by Warren, Licata–Harper, Annenkov–Capriotti–Kraus–Sattler, Nuyts, North, Weaver–Licata, Altenkirch–Neumann, ...
- Other synthetic theories: Riehl-Verity, Cisinski-Cnossen-Nguyen-Walde, Martini-Wolf
- In our work: Riehl–Shulman's *simplicial type theory* (2017). Also heavily influenced by Riehl–Verity's ∞-cosmos theory (2013-2021-...).

Simplicial HoTT

Simplicial HoTT: Extension of HoTT by Riehl-Shulman '17

add strict shapes

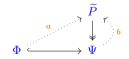


add extension types (due to Lumsdaine–Shulman, cf. Cubical Type Theory):

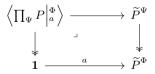
~

Input:

- ${\, \bullet \,}$ shape inclusion $\Phi \hookrightarrow \Psi$
- family $P:\Psi \to \mathcal{U}$
- partial section $a: \prod_{t:\Phi} P(t)$



Extension type $\left\langle \prod_{\Psi} P \Big|_{a}^{\Phi} \right\rangle$ with terms $b : \prod_{\Psi} P$ such that $b|_{\Phi} \equiv a$. Semantically:



Definition (Hom types, [RS17])

Let *B* be a type. Fix terms a, b : B. The type of *arrows in B from a to b* is the extension type

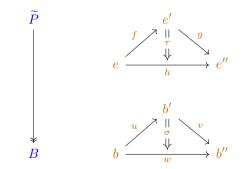
$$\hom_B(a,b) :\equiv (a \to_B b) :\equiv \left\langle \Delta^1 \to B \middle|_{[a,b]}^{\partial \Delta^1} \right\rangle.$$

Definition (Dependent hom types, [RS17])

Let $P : B \to U$ be family. Fix an arrow $u : \hom_B(a, b)$ in B and points d : P a, e : P b in the fibers. The type of *dependent arrows in* P *over* u *from* d *to* e *is the extension type*

dhom_{P,u}(d, e) :=
$$(d \to_u^P e) := \left\langle \prod_{t:\Delta^1} P(u(t)) \Big|_{[d,e]}^{\partial \Delta^1} \right\rangle$$
.

Hom types II



Segal, Rezk, and discrete types

We can now define synthetic $(\infty, 1)$ -categories using shapes and extension types:

Definition (Synthetic $(\infty, 1)$ -categories, [RS17])

• Synthetic pre- $(\infty, 1)$ -category *aka* Segal type: types *A* with *weak* composition, *i.e.*:

 $\iota: \Lambda_1^2 \hookrightarrow \Delta^2 \rightsquigarrow A^{\iota}: A^{\Delta^2} \xrightarrow{\simeq} A^{\Lambda_1^2} \qquad \text{(Joyal)}.$

● Synthetic (∞, 1)-category *aka* Rezk type: Segal types *A* satisfying *Rezk completeness/local univalence*, *i.e.*

$$idtoiso_A : \Pi_{x,y:A}(x =_A y) \xrightarrow{\simeq} iso_A(x,y).$$

● Synthetic ∞-groupoid *aka* discrete type: types *A* such that *every arrow is invertible*, *i.e.*

 $\operatorname{idtoarr}_A: \Pi_{x,y:A}(x =_A y) \xrightarrow{\simeq} \hom_A(x,y).$

Adequate semantics of synthetic ∞ -category theory

Theorem (Shulman '19, Riehl–Shulman '17)

- (1) Every ∞ -topos admits a model of HoTT.
- ② Every ∞-topos of simplicial objects admits a model of sHoTT, with weakly stable extension types.

Theorem (W '21)

Extension types are strictly substitution-stable.

Corollary

- () Synthetic ∞ -category theory interprets to ordinary ∞ -category theory.
- ② Synthetic ∞-category theory interprets to internal ∞-category theory (cf. Martini–Wolf, Cisinski–Ngyuen–Walde–Cnossen, Rasekh, Stenzel).

In [RS17] it is shown that:

- The hom-types of a Segal type are groupoidal (aka discrete).
- Discrete types are those types all of whose arrows are invertible (automatically Rezk).
- Closure properties from orthogonality characterizations, cf. also [BW23]

Functors and natural transformations

• Segal types have **categorical structure**: composition $g \circ f$, identities id_x , and homotopies

 $h \circ (g \circ f) = (h \circ g) \circ f, \quad \mathrm{id}_y \circ f = f, \quad f \circ \mathrm{id}_x = f.$

• Any map $f: A \rightarrow B$ between Segal types is automatically a **functor**.

• For $f, g: A \rightarrow B$ define the type of **natural transformations** as

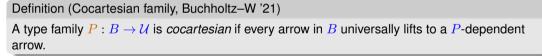
$$(f \Rightarrow g) :\equiv \lim_{A \to B} (f, g) :\equiv \left\langle \Delta^1 \to (A \to B) \right|_{[f,g]}^{\partial \Delta^1} \right\rangle.$$

• One can then *prove* that for $\varphi : (f \Rightarrow g)$ any arrow $u : x \to_A y$ gives rise to the expected naturality square:

$$\begin{array}{ccc} fx & \xrightarrow{\varphi_x} & gx \\ fu \downarrow & & \downarrow gu \\ fy & \xrightarrow{\varphi_y} & gy \end{array}$$

Cocartesian type families

- Any type family $P: B \to \mathcal{U}$ transforms covariantly in paths: $u: a =_B b \quad \rightsquigarrow \quad u_!: P a \to P b$
- What about the **directed** analogue? $u: a \rightarrow_B b \quad \rightsquigarrow \quad u_!: P a \rightarrow P b$
- Cocartesian families: ∞ -categories parametrized over an ∞ -category



Theorem (Buchholtz–W '21)

Lifting and transport in cocartesian families can be expressed via (fibered) adjoint functors à la Street.

Theorem (Closure properties of cocartesian families, Buchholtz–W '21) Synthetic cocartesian fibrations form an ∞ -cosmos in the sense of Riehl–Verity.

Covariant type families

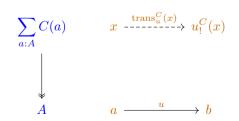
Definition (Covariant family, [RS17])

Let $C : A \to U$ be a family. It is *covariant* if and only if for all a, b : A, arrows $u : (a \to_A b)$ and points x : C(a) the type

$$\sum_{\mu:C(b)} (x \to_u^C y)$$

is contractible.

This give a synthetic analogue of discrete covariant or *left* fibrations:



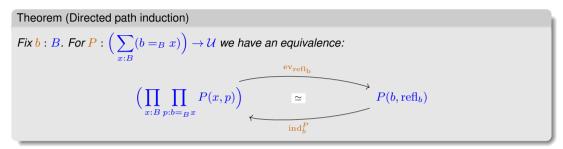
Covariant type families: Functoriality & naturality

- Let $C: A \rightarrow \mathcal{U}$ be a covariant family and A be Segal.
- If A is Segal, then $\widetilde{C} := \sum_{a:A} C(a)$ is.
- **Discreteness:** Each fiber C(x) is discrete.
- Functoriality: Lifting gives a family of maps $\operatorname{lift}^C : \prod_{x,y:A} (x \to_A y) \to C(x) \to C(y)$ with $\operatorname{lift}^C(f, u) :\equiv f_! u$. For $f : (x \to_A y), g : (y \to_A z)$, and u : C(x) we have identifications $g_!(f_! u) = (gf)_! u \quad (\operatorname{id}_x)_! u = u$.
- **Naturality:** Assume $C, D : A \to U$ are covariant. Let $\varphi : \prod_{x:A} C(x) \to D(x)$. Then, for any $f : (x \to_A y)$ and u : C(x). Then we have an identification:

 $\varphi_y(f_!u) = f_!(\varphi_x u)$

• *Example:* For a: A, the family $\hom_A(a, -): A \to U$ is covariant. For $x: A, e: \hom_A(a, x)$ it acts via $f: \hom_A(x, y)$ as $f_!e = f \circ e$.

Fibered Yoneda lemma as directed path induction



Theorem ((dependent) Yoneda Lemma for covariant families, [RS17])

Let *B* be a Segal type, and fix b : B. For a covariant type family $P : \left(\sum_{x:B} (b \to_B x)\right) \to U$, we have an equivalence: $\left(\prod_{x:B} \prod_{p:b \to_B x} P(x,p)\right) \cong P(b, \mathrm{id}_b)$

Fibered Yoneda lemma: proof idea

Theorem (Yoneda Lemma for covariant families, [RS17])

Let A be a Segal type, and a : A any term. For a covariant type family $C : A \to U$, we have an equivalence:

$$\operatorname{evid}_{a}^{C}: \left(\prod_{x:A} \hom_{A}(a,x) \to C(x)\right) \xrightarrow{\simeq} C(a)$$

• The inverse map is given by

$$\mathbf{y}_a^C: C(a) \to \left(\prod_{x:A} \hom_A(a,x) \to C(x)\right), \quad \mathbf{y}_a^C(u)(x)(f) \coloneqq f_! u$$

- Proof "simply" follows from naturality properties and covariance of $hom_A(a, -)$.
- There also exists a *dependent version*.
- Both have been formalized in Kudasov's new proof assistant Rzk.
- Cocartesian and other generalizations due to Buchholtz–W and W have been proven, but formalization is WIP.

The Rzk proof assistant

∽ SRC		simplicia	al-hott > 💦
\sim hott		26	
300 000 111111111		27	```rzk
😿 06-contractible.rzk.md		28	#assume f
🕅 07-fibers.rzk.md		29	#assume e
😿 08-families-of-maps.rzk.md		30	
💥 09-propositions.rzk.md		31	
₩ 10-trivial-fibrations.rzk.md		32	## Hom ty
		33	
✓ simplicial-hott		34	Extension
№ 03-simplicial-type-theory.rzk.md			between f
🔉 04-extension-types.rzk.md			
₩ 05-segal-types.rzk.md			
₩ 06-2cat-of-segal-types.rzk.md			
			(A:L
			. ,
🔉 09-yoneda.rzk.md			(t:
₩ 10-rezk-types.rzk.md			A [t
₩ 12-cocartesian.rzk.md	м		
> OUTLINE			^
> TIMELINE		46	.
 O3-simplicial-type-theory.rzk.md O4-extension-types.rzk.md O5-segal-types.rzk.md O6-2cat-of-segal-types.rzk.md O7-discrete.rzk.md O8-covariant.rzk.md O9-yoneda.rzk.md 10-rezk-types.rzk.md 12-cocartesian.rzk.md 	м	35 36 37 38 39 40 41 42 43 44 45	between *** rzk #def hou (A : (x y : U := (t A [

05-segal-types.rzk.md funext : FunExt extext : ExtExt ypes n types are used to define the type of arrows fixed terms: itle="RS17, Definition 5.1" U) : A) : ∆¹) → $t \equiv \emptyset_2 \, \mapsto \, x$, -- the left endpoint is exactly x $t \equiv 1_2 \mapsto y$] -- the right endpoint is exactly y

Formalizing ∞ -categories in Rzk

- Kudasov has developed the Rzk proof assistant, implementing sHoTT: https://rzk-lang.github.io/
- Using Rzk we initiated the first ever formalizations of ∞ -category theory.
- In spring 2023, with Kudasov and Riehl we formalized the (discrete fibered) Yoneda lemma of ∞-category theory: https://emilyriehl.github.io/yoneda/
- alongside many other results
- Many proofs in this ∞ -dimensional setting *easier* than in dimension 1!
- Formalization helped find a mistake in original paper
- More students & researchers joined us developing a library for ∞-category theory: https://rzk-lang.github.io/sHoTT/

EXPLORER ···	30 09-yoneda.rzk.md •
V ONEX C1: E7: D V	2 11 4 The Yanda Lemm 10 The Yanda Lemm 10 The Yanda Lemm 20 the contacts at the identity defines an equivalence 10 Link Sector (10 Link Sector S
V UV-yohoo T2K md V 10-rezk-types zzk.md V 12-rocarteelan, rzk.md V UV-yohoo K md V UV-yohoo K md V V V V V V V V V V V V V V V V V V V	200 [((ym A is-regit-A & C is-constant-C), 207 [(ym A rid A is-regit-A & C is-constant-C), 208 [(ym A is-regit-A & C is-constant-C), 209 [(win A is-regit-A & C is-constant-C), 209 [(win A is-regit-A & C is-constant-C), 209 [(win A is-regit-A & C is-constant-C)) 201 [(win A is-regit-A & C is-constant-C))

Synthetic ∞ -category theory in sHoTT

- Functors, natural transformations, discrete fibrations & fibered Yoneda lemma, adjunctions (Riehl–Shulman '17)
- Cartesian fibrations (Buchholtz–W '21) & generalizations (W '21)
- Limits and colimits (Bardomiano '22)
- Conduché fibrations (Bardomiano '24)
- Proof assistant Rzk (Kudasov '23) and formalization of fibered Yoneda lemma (Kudasov–Riehl–W '23)
- sHoTT library and more formalizations (Abounegm, Bakke, Bardomiano, Campbell, Carlier, Chatzidiamantis-Christoforidis, Ergus, Hutzler, Kudasov, Maillard, Martínez, Pradal, Rasekh, Riehl, F. Verity, Walde, W '23–)

But many desiderata missing!

opposite categories, categories S and Cat, presheaves & Yoneda embedding, higher algebra,

Multimodal type theory

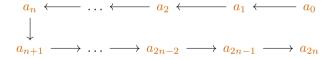
- Multi-modal dependent type theory (MTT) to the rescue! (Gratzer–Kavvos–Nuyts–Birkedal '20)
- start from a *cubical* outer layer, augmented by an instance of MTT
- the added modal operators: simplicial localization ☑, opposite o, twisted arrows t (groupoid) core/discretization b ⊣ codiscretization #, path type (-)^I ⊣ amazing right adjoint (-)_I
- plus axioms about the interaction between the simplicial and modal structure
- This unlocks a whole new range of constructions
- We call the ensuing type theory triangulated type theory

$$\mathcal{S}^{\Delta^{\mathrm{op}}}
onumber \ \downarrow \uparrow \downarrow \uparrow \ \mathcal{S}$$

See also work on cohesive ∞ -toposes by Schreiber ('13), Shulman ('18), Myers–Riley ('23), as well as internal universes via a tiny interval by Licata–Orton–Pitts-Spitters ('18) and Riley ('24).

Intuitions for the modalities

- **Opposite** \mathfrak{o} : $\langle \mathfrak{o} \mid A \rangle$ has its *n*-simplices reversed
- **Discretization/core** $\flat: \langle \flat \mid A \rangle \rightarrow A$ is the maximal subgroupoid of A
- Codiscretization $\sharp: A \to \langle \sharp \mid A \rangle$ is localization at $\partial \Delta^n \to \Delta^n$ (for crisp closed types)
- Twisted arrows t: $\langle t \mid A \rangle$ has as *n*-simplices:



Mode theory:

$$b \circ b = b \circ \mathfrak{o} = b \circ \sharp = b$$
 $\sharp \circ b = \sharp \circ \mathfrak{o} = \sharp \circ b = \sharp$

 $\mathfrak{o} \circ \mathfrak{o} = \mathrm{id} \qquad \mathfrak{b} \leq \mathrm{id} \leq \sharp \qquad \mathfrak{b} \leq \mathfrak{t}$

Axioms for triangulated type theory I

Axiom (Interval 1)

There is a bounded distributive lattice $(I : Set, 0, 1, \vee, \wedge)$

Axiom (Path type former as modality)

The path type $(-)^{l}$ is presented by a modality **p**.

Axiom (Crisp induction)

Modalities commute with path types: for every μ , the map $\operatorname{mod}_{\mu}(a) = \operatorname{mod}_{\mu}(b) \to \langle \mu \mid a = b \rangle$ is an equivalence.

Axiom (Reversal on I)

There is an equivalence $\neg : \langle \mathfrak{o} \mid \mathbb{I} \rangle \rightarrow \mathbb{I}$ which swaps 0 for 1 and \land for \lor .

Axioms for triangulated type theory II

```
Axiom (I detects discreteness)
```

If $A :_{\flat} \mathcal{U}$ then $\langle \flat | A \rangle \to A$ is an equivalence if and only if $A \to (\mathbb{I} \to A)$ is an equivalence.

Axiom (Global points of I)

The map $\operatorname{Bool} \to \mathbb{I}$ is injective and induces an equivalence $\operatorname{Bool} \simeq \langle \flat \mid I \rangle$.

Axiom (Cubes separate)

 $f :_{\flat} A \rightarrow B$ is an equivalence if and only if the following holds:

 $\Pi_{n:_{\flat}\mathbb{N}} \operatorname{isEquiv} \left((f_*)^{\dagger} : \langle \flat \mid \mathbb{I}^n \to A \rangle \to \langle \flat \mid \mathbb{I}^n \to B \rangle \right)$

Axiom (Simplicial stability)

If $A :_{\flat} U$ then for all $n :_{\flat} \mathbb{N}$ the following map is an equivalence:

 $\eta_*: \langle \flat \mid \Delta^n \to A \rangle \to \langle \flat \mid \Delta^n \to \boxtimes A \rangle$

Axioms for triangulated type theory III

Axiom (Twisted arrows)

For every category $C :_{\flat} \mathcal{U}$ we have morphisms $\pi_{0}^{\mathsf{tw}} : \langle \mathfrak{t} | C \rangle \rightarrow \langle \mathfrak{o} | A \rangle, \pi_{1}^{\mathsf{tw}} : \langle \mathfrak{t} | C \rangle \rightarrow A$, equivalences $\iota : \langle \flat | (\langle \mathfrak{o} | \Delta^{n} \rangle \diamond \Delta^{n}) \rightarrow C \rangle \simeq \langle \flat | \Delta^{n} \rightarrow \langle \mathfrak{t} | C \rangle \rangle$ and $\tau : \langle \mathfrak{t} | C \rangle \simeq \langle \mathfrak{t} | \langle \mathfrak{o} | C \rangle \rangle$, satisfying appropriate naturality and compatibility conditions.

Here, $X \diamond Y$ is the blunt join $X \coprod_{X \times \{0\}Y} (X \times \mathbb{I} \times Y) \coprod_{X \times \{1\}Y} Y$.

Axiom (Blechschmidt duality)

Let *A* be a finitely presented \mathbb{I} -algebra, i.e., $A \simeq \mathbb{I}[x_1, \ldots, x_n]/(r_1 = s_1, \ldots, r_n = s_n)$, then the evaluation map is an equivalence:

 $\lambda a, f.f(a): A \simeq (\hom_{\mathbb{I}}(A, \mathbb{I}) \to \mathbb{I})$

Simplicial vs cubical models

Theorem (Kapulkin–Voevodsky '18, Sattler '18, Streicher–W '19)

Simplicial sets are an essential subtopos of cubical sets.

Crucial for internal treatment of universes (jww Gratzer-Buchholtz).

Applications to model structures for ∞ -categories (Hackney–Rovelli, Cavallo–Sattler)

Towards the universe of spaces

- Covariant families have transport: $(-)_{!}: \prod_{a,b:X} (a \to_X b) \to A(a) \to A(b)$
- If X is Segal, then each fiber A(a) is discrete.
- Can we take $\sum_{A:\mathcal{U}} \operatorname{isCov}(A)$?
- No: isCov(A) just means that A is discrete; doesn't see variance.
- Need a predicate that yields covariance over all possible contexts.
- Solution: Amazing fibrations due to M. Riley (2024): A Type Theory with a Tiny Object, arXiv:2403.01939; based on Licata–Orton–Pitts–Spitters '18 (which was used for similar purposes by Weaver–Licata '20)

Amazingly covariant families

• Consider $\operatorname{isCov}(A : \mathbb{I} \to \mathcal{U}) \simeq \prod_{x:A(0)} \operatorname{isContr} \left(\sum_{y:A(1)} (x \to_{\alpha} y) \right)$, where $\alpha : \hom_{\mathbb{I}}(0, 1)$.

• This gives a predicate $\operatorname{isCov}_{I}: \mathcal{U}^{I} \to \operatorname{Prop}$.

Definition (Amazingly covariant types)

Let $A: \mathcal{U}$ be a type. It is *amazingly covariant* if and only if the following proposition is inhabited:

 $\operatorname{isACov}(A) :\equiv \left(\operatorname{isCov}_{\mathbb{I}}(\lambda i.A^{\eta}(i))\right)_{\mathbb{I}},$

where A^{η} is the image of A under the unit $\eta_{\mathcal{U}} : \mathcal{U} \to (\mathcal{U}^{\mathbb{I}})_{\mathbb{I}}$.

The universe of spaces

The simplicial objects give rise to the (simplicial) subuniverse of simplicial types:

$$\mathcal{U}_{\boxtimes} :\equiv \sum_{A:\mathcal{U}} \mathrm{isSimp}(A)$$

Theorem

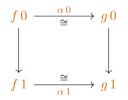
- ① The universe \mathcal{S} is a synthetic ∞ -category whose terms are ∞ -groupoids.
- 2 S classifies amazingly covariant families in \mathcal{U}_{\square} .
- (a) S is closed under Σ , identity types, and finite (co)limits.
- (4) *S* is directed univalent:

arrtofun :
$$(\Delta^1 \to S) \simeq \left(\sum_{A,B:S} (A \to B)\right)$$

Equivalence lemma

Theorem

Assume maps $f, g: \Delta^1 \to S$ and a natural transformation $\alpha : \prod_{x:\Delta^1} f(x) \to g(x)$. Then α is a family of equivalences if and only if $\alpha(0)$ and $\alpha(1)$ are equivalences.



For the proof, we need the axiom that cubes detect equivalences:

$$\left(\prod_{n:\mathrm{Nat}} \langle \flat \mid \mathbb{I}^n \to A \rangle \simeq \langle \flat \mid \mathbb{I}^n \to B \rangle\right) \to (A \simeq B)$$

We can also prove a generalization of the equivalence lemma to Δ^n .

Directed univalence

Ince S classifies (amazingly) covariant families, there is a map

$$\operatorname{arrtofun} :\equiv \lambda F.(F\,0,F\,1,\alpha_{!}^{F}:F\,0\to F\,1):(\Delta^{1}\to\mathcal{S})\to\Big(\sum_{A,B:\mathcal{S}}(A\to B)\Big).$$

In the other direction, we consider the mapping cone/directed glue type (cf. cubical type theory and Weaver–Licata '20):

$$\operatorname{Gl} :\equiv A, B, f.\lambda i. \sum_{b:B} (i=0) \to f^{-1}(b) : \left(\sum_{A,B:S} (A \to B)\right) \to (\Delta^1 \to S)$$

- 3 We show that they form an inverse pair making crucial use of the equivalence lemma.
- ④ Segalness of S is using similar arguments, but in higher dimensions.

Analogous result in bicubical setting by Weaver–Licata '20, but some difference in methods and axioms.

Application: directed structure identity principle (DSIP)

Theorem (DSIP for pointed spaces)

Let
$$S_* :\equiv \sum_{A:S} A$$
. Then for $(A, a), (B, b) : S_*$ we have:

$$\hom_{\mathcal{S}_*}((A,a),(B,b)) \simeq \sum_{f:A \to B} f(a) = b$$

Theorem (DSIP for monoids)

Consider the type (category!) of (set-)monoids

$$\mathrm{Monoid} :\equiv \sum_{A:\mathcal{S}_{\leq 0}} \sum_{\varepsilon:A} \sum_{\cdot:A \times A} \mathrm{isAssoc}(\cdot) \times \mathrm{isUnit}(\cdot,\varepsilon).$$

Then homomorphisms from $(A, \varepsilon_A, \cdot_A, \alpha_A, \mu_A)$ to $(B, \varepsilon_B, \cdot_B, \alpha_B, \mu_B)$ correspond to set maps $A \to B$ compatible with multiplication and units.

Towards synthetic higher algebra

We can internally define presheaf categories $PSh(C) :\equiv \langle \mathfrak{o} | C \rangle \rightarrow S$.

Definition (∞ -monoids)

The category Mon_{∞} of ∞ -monoids is the full subcategory^a of $PSh(\Delta)$ defined by the predicate

$$\varphi(X :_{\flat} \operatorname{PSh}(\Delta)) :\equiv \prod_{n:\operatorname{Nat}} \operatorname{isEquiv}(\langle X(\iota_k)_{k < n} \rangle : X(\Delta^n) \to X(\Delta^1)^n)$$

^aneed the codiscrete modality #

This encodes the structure of a homotopy-coherent monoid. Multiplication is given through

 $\mu_X: X(\Delta^2) \simeq X(\Delta^1)^2 \to X(\Delta^1).$

Definition (∞ -groups) The category $\operatorname{Grp}_{\infty}$ of ∞ -groups is the full subcategory of $\operatorname{Mon}_{\infty}$ defined by the predicate $\varphi(X :_{\flat} \operatorname{Mon}_{\infty}) :\equiv \operatorname{isEquiv}(\lambda x, y. \langle x, \mu_X(x, y) \rangle : X(\Delta^1)^2 \to X(\Delta^1)^2)$

One can show that both these categories satisfy the expcted DSIP.

Definition (The category of spectra)

The type of spectra is defined as the limit (in the ambient universe)

 $\mathrm{Sp} :\equiv \varprojlim(\mathcal{S}_* \stackrel{\Omega}{\leftarrow} \mathcal{S}_* \stackrel{\Omega}{\leftarrow} \ldots).$

Proposition

 Sp is a stable ∞ -category and cocomplete.

Categorical Yoneda lemma

Let *C* be a category. Using the twisted arrow modality \mathfrak{t} , we obtain the hom-bifunctor $\Phi: C \times \langle \mathfrak{o} | C \rangle \to S$. We write $\mathbf{y}(c) :\equiv \Phi(-, c)$.

We now recover the synthetic ∞ -categorical version of the "standard" Yoneda lemma:

```
Theorem (Yoneda lemma)
```

We have $hom(\mathbf{y}(c), X) \simeq X(c)$, naturally in each $c :_{\flat} C$ and $X :_{\flat} PSh(C)$.

```
Theorem (Density)

If X :_{\flat} PSh(C), then X \simeq \varinjlim_{\langle \mathfrak{o} \mid \widetilde{X} \rangle} \mathfrak{y} \circ \pi^{\mathrm{op}}.
```

Universal property of presheaf categories

Theorem (Descent for presheaf categories) Let E := PSh(A) and $F :_{\flat} C \to E$, then $E / \varinjlim_{c:C} F(c) \simeq \varinjlim_{c:C} E / F(c)$.

```
Theorem (Universal property of PSh(C))

PSh(C) is the free cocompletion of C: \mathbf{y}^* : (PSh(C) \to_{cc} E) \to (C \to E)
```

The notion of Kan extensions subsumes all the other fundamental concepts of category theory.

- S. Mac Lane '71

```
Definition (Kan extensions)
Given f :_{\flat} C \to D and a category E, the left Kan extension lan_f is the left adjoint to f^* : E^D \to E^C.
```

```
Theorem (Colimit formula)

If E is cocomplete, then lan_f exists. For X :_{\flat} C \to E it computes to lan_f X d \simeq \varinjlim(C \times_D D/d \to C \to E)
```

Cofinal functors

Definition (Cofinal functors)

A functor $f :_{\flat} C \to D$ is *right cofinal* if for every $X :_{\flat} D \to S$ the map $\lim_{D} X \to \lim_{C} X \circ f$ is an equivalence.

Proposition (Characterization of right cofinality)

Let $f :_{\flat} C \rightarrow D$ be a functor. Then the following are equivalent:

- (1) f is right cofinal.
- 2 Let X :_b ⟨o | A⟩ → S be family with associated right fibration π :_b X̃ → A. Then any square of the following form has a filler φ, uniquely up to homotopy:

$$\begin{array}{ccc} C & \xrightarrow{\varphi} & \widetilde{X} \\ f \downarrow & \xrightarrow{\overline{\varphi}} & \xrightarrow{\gamma} & \downarrow_{\pi} \\ D & \xrightarrow{\alpha} & A \end{array}$$

③ *f* is a contravariant equivalence, i.e., for all *p* :_b C → A and *q* :_b D → A with *q* ∘ *f* = *p*, we have that: *f*^{*} :_b (Π_{a:A}D_a → X_a) ~ (Π_{a:A}C_a → X_a)

Theorem (Quillen's Theorem A)

A functor $f :_{\flat} C \to D$ is right cofinal if and only if $L_{\emptyset}(C \times_D d/D) \simeq 1$ for each $d :_{\flat} D$.

This follows by reducing to the case of presheaves and ultimately groupoids S.

Application to cocartesian fibrations

Theorem (Properness of cocartesian fibrations)

As below, if π are cocartesian and u is right cofinal then v is right cofinal:

Using Quillen's Theorem A and some localization theory we can give a new synthetic proof:

Proof.

We compute the fiber:

$$(A \times_B E) \times_E e/E \simeq A \times_B e/E \simeq A \times_B \left(\sum_{b':B} \sum_{f:(\pi(e) \to_B b')} (E_{b'}^{\Delta^1}) \right)$$
$$\simeq \sum_{\langle a,f \rangle:A \times_B \pi(e)/B} f_! e/E_{u(a)}$$

Now, we have both $L_{\mathbb{I}}(A \times_B \pi(e)/B) \simeq 1$ and $L_{\mathbb{I}}(f_! e/E_{u(a)}) \simeq 1$. This suffices by a theorem in: E. Rijke, M. Shulman, B. Spitters (2020): *Modalities in homotopy type theory*.

Outlook

- Synthetic higher algebra
- ② Universe of higher categories
- ③ Extend formalizations
- **4** ...

References I

- G. Bardomiano Martínez (2024): Limits and colimits of synthetic ∞ -categories. arXiv:2202.12386.
- U. Buchholtz, J. Weinberger (2023): Synthetic Fibered $(\infty, 1)$ -Category. High Struct 7(1): 74–165
- D.-C. Cisinski, B. Cnossen, K. Nguyen, T. Walde (2024): Formalization of Higher Categories. Book WIP
- I. Blechschmidt (2018). A general Nullstellensatz for generalized spaces Draft note
- D. Gratzer (2023). Syntax and semantics of modal type theory. PhD thesis, Aarhus University
- D. Gratzer, G.A. Kavvos, A. Nuyts, L. Birkedal (2020): *Multimodal dependent type theory*. LICS 2020. doi:10.1145/3373718.339473
- D. Gratzer, J. Weinberger, U. Buchholtz (2024): Directed univalence in simplicial homotopy type theory. arXiv:2407.09146
- D. Gratzer, J. Weinberger, U. Buchholtz (2025): *The Yoneda embedding in simplicial type theory*. arXiv:2501.13229
- N. Kudasov, E. Riehl, J. Weinberger (2024). *Formalizing the* ∞-*Categorical Yoneda Lemma*. In *Proceedings of CPP 2024*. doi:10.1145/3636501.3636945

References II

- E. Riehl (2023): Could ∞ -category theory be taught to undergraduates? Not. AMS 70(5) 727–736.
- 🧧 E. Riehl, M. Shulman (2017): A Type Theory for Synthetic ∞ -Categories. High Struct 1(1), 147-–224.
- E. Riehl, D. Verity (2022): *Elements of* ∞ *-Category Theory*. Cambridge University Press
- J. Weinberger (2022): A Synthetic Perspective on (∞,1)-Category Theory: Fibrational and Semantic Aspects. Ph.D. Thesis, Technische Universität Darmstadt. doi:10.26083/tuprints-00020716.
- M. D. Williams (2025): Projective Presentations of Lex Modalities. arXiv:2501.19187
- M. Riley (2024): A Type Theory with a Tiny Object arXiv:2403.01939
- M. Shulman (2018): Brouwer's fixed-point theorem in real-cohesive homotopy type theory Mathematical Structures in Computer Science 28.6:856–941
- M. Weaver, D. Licata, (2020): Weaver, Matthew Z., and Daniel R. Licata. A constructive model of directed univalence in bicubical sets. LICS 2020. doi:10.1145/3373718.3394794