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We will start by introducing the notion of stable quasicategory and related concepts. Then
wewill show (without toomany details) that the homotopy category of a stable quasicategory is
triangulated. We will finish by proving some basic closure properties of stable quasicategories.

The references are:

• [Lur12] for the main content;

• [Har13] for alternative proofs;

• [Lur09] for background on quasicategories.

Let us start by introducing the loop functor, the suspension functor, fibers and cofibers.
Throughout the talk C will be a quasicategory.

Definition 1. A zero object in C is an initial and terminal object. Zero objects are denoted by
0 ∈ C. A quasicategory that admits a zero object is called pointed. A functor that preserves zero
objects is called reduced.

Notice that if C is pointed then it has a unique zero object up to contractible choice. If C is
pointed, given X,Y ∈ C consider the composition:

MapC(X, 0)×MapC(0, Y )
◦−→ MapC(X,Y )

The domain of this map is contractible so this determines a map 0 : X → Y up to contractible
choice, the zero map.

Definition 2. Let C be pointed.

• A triangle in C is a diagram of the form:

X Y

0 Z

• A fiber sequence is a triangle that is a pullback.
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• A cofiber sequence is triangle that is a pushout.

Definition 3. Let C be pointed. Given f : y → z in C, a fiber for f is a fiber sequence:

X Y

0 Z

f

Dually one defines the notion of cofiber.

If a pointed quasicategory admits fibers we clearly can construct a fiber for each map, but
the question is whether we can do this functorially.

Lemma 4 (cf. [Lur09, Proposition 4.3.2.15]). LetK be a simplicial set andD quasicategory that admits
K-shaped limits. Call i : K ↪→ KC to the natural inclusion and let Fununiv(KC, C) ⊆ Fun(KC, C)
be the full subquasicategory spanned by universal cones. Then the restriction Fununiv(KC, C) i∗−→
Fun(K, C) is a trivial fibration. �

This means that in a quasicategory that admits limits, limits can be chosen functorially, and
there is a unique way of doing this, up to contractible choice.

We are ready to introduce the loop functor. Let C be pointed. LetMΩ ⊆ Fun(∆1 × ∆1, C)
denote the full subquasicategory spanned by pullbacks of the form:

X 0

0 Z

There are projections:
C d0,0←−−MΩ d1,1−−→ C

given by projecting the upper left vertex and the lower right vertex respectivelly.
If C admits pullbacks d1,1 is a trivial fibration since ∆1×∆1 = (Λ2

2)C and there is a pullback:

MΩ Fununiv(∆1 ×∆1, C)

C Fun(Λ2
2, C)

X (0→ X ← 0)

d1,1

where the right vertical map is a trivial fibration by Lemma 4.
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Definition 5. Let C be pointed and admit pullbacks. The loop functor Ω : C → C is defined as the
composition d0,0 with a section of d1,1. Dually, if C is pointed and admits pushouts we define
the suspension functor Σ : C → C.

The two constructions are related.

Proposition 6. If C is pointed and it admits pullbacks and pushouts we have Σ ` Ω.

Proof. By the universal property of suspensions, maps ΣX → Y correspond to squares

X 0

0 Y

which in turn correspond to maps X → ΩY . �

We can carry out a similar construction that lets us construct fibers and cofibers functorially.
Let C be pointed and let E ⊆ Fun(∆1, C) be the full subquasicategory spanned byfiber sequences.
Consider the projection E → Fun(∆1 ×∆1, C) defined by sending a fiber sequence

X Y

0 Z

f

to the arrow Y
f−→ Z. If C admits pullbacks then this projection is a trivial fibration since we can

form the pullback:

E Fununiv(∆1 ×∆1, C)

Fun(∆1, C) Fun(Λ2
2, C)

(Y
f−→ Z) (0→ Z

f←− Y )

Definition 7. Let C be pointed and admit pullbacks. The functor fib : Fun(∆1, C) → Fun(∆1 ×
∆1, C) is defined as a section of the projection above. Dually, if C is pointed and admits cofibers
we define the functor cofib : Fun(∆1, C)→ Fun(∆1 ×∆1, C).

The composition Fun(∆1, C) fib−→ Fun(∆1 ×∆1, C) d0,0−−→ C. will also be called fib. Dually we
have cofib : Fun(∆1, C)→ C.

Notice that we have an adjunction:
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X (0→ X)

C Fun(∆1, C)

fib

This implies:

Corollary 8. The functor fib : Fun(∆1, C)→ C preserves limits. Dually, functor cofib : Fun(∆1, C)→
C preserves colimits.

Definition 9. A quasicategory C is stable if:

• it is pointed;

• it admits fibers and cofibers;

• a triangle in C is a fiber sequence if and only if it is a cofiber sequence.

Notice that being stable is a property and not extra structure. Also being stable is a selfdual
notion.

Definition 10. A functor between stable quasicategories is exact if:

• it is reduced;

• it preserves fiber sequences or cofiber sequences (and hence both).

The fact that in a stable quasicategory a triangle is a fiber sequence if and only if it is a cofiber
sequence directly implies:

Proposition 11. In a stable quasicategory the adjunction Σ a Ω forms an adjoint equivalence. �

Example 12. The various categories of spectrawith their respectivemodel structures introduced
last talk present a stable quasicategory that will be presented in a future talk.

Example 13. Given a nice enough abelian category, its derived category is the homotopy cate-
gory of a stable quasicategory that will also be presented in the future.

We know that the homotopy category of spectra is triangulated, and this also holds for the
derived category of an abelian category. This is no coincidence: the homotopy category of a
stable quasicategory is cannonically triangulated. Our next goal is to prove this claim.

Recall that an additive category is a category enriched over Ab that admits finite products
or coproducts (and a fortiori both). Recall also that in an additive category the natural map
X q Y → X × Y is an isomorphism, and thus one usually writes X ⊕ Y := X × Y ' X q Y .

Definition 14. A triangulated category is given by:

1. an additive category D;
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2. a translation functor

D → D

X 7→ X[1]

which an equivalence;

3. a collection of sequences X → Y → Z → X[1] called distinguished triangles.

Such that a list of axioms is verified.

In our context the axioms are straightforward to verify, so for the sake of brevity we just
mention a few:

(TR1)(a) Every arrow X
f−→ Y can be extended to a distinguished triangle X f−→ Y

g−→ Z
h−→ X[1].

(TR3) Given a morphism between arrows (i.e. a commutative square) and extensions of both
arrows to distinguished triangles, the commutative square can be extended to amorphism
of distringuished triangles.

We will need the quasicategorical analoge of the the two pullback lemma.

Lemma 15 ( [Lur09, Lemma 4.4.2.1] ). Given a (homotopy commutative) diagram of the form:

X Y Z

A B C

Suppose that the right square is a pullback. Then the left square is a pullback if and only if the outer square
is a pullback. �

Lemma 16. A stable quasicategory admits pullbacks and pushouts.

Proof. By symmetry it is enough to show it admits pullbacks. So assume given a diagram:

Y

X Zg

f

Construct the cofiber of f to obtain:

Y 0

X Z cofib(f)

f

f ′
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where the right square is both a pushout and a pullback. Now construct the fiber of f ′ ◦g which
gives us:

fib(f ′ ◦ g) Y 0

X Z cofib(f)

f

f ′

where the dashed arrow exists by the (limit) universal property of the right square. Since the
outer square is a pullback by definition, the two pullback lemma implies that the left square is
a pullback as needed. �

Corollary 17. If C is stable then Ho(C) admits finite products and coproducts.

Proof. Start by noticing that C has finite products (coproducts) since it has terminal (initial) ob-
ject and pullbacks (pushouts). A quick check shows that products (coproducts) in C provide
products (coproducts) for Ho(C). �

On the other hand, we have:

Proposition 18. If C is stable, then Ho(C) is cannonically enriched over Ab.

Proof. We start with an abstract proof:

HomHo(C)(X,Y ) ' π0 MapC(X,Y )

' π0 MapC(X,Ω
2Σ2Y )

' π0Ω2 MapC(X,Σ
2Y )

Since the last object is an abelian group and the isomorphisms are natural and bilinear with
respect to composition, we are done.

Let us also give an explicit construction. We define an “addition” operation in MapC(X,Y ).
First observe that having an arrow X → Y is equivalent to having an arrow X → ΩΣY , which
in turn is equivalent to having a (homotopy) commutative diagram

X 0

0 ΣY

Now suppose f1, f2 : X → Y are classfied by two diagrams as above, and call h1, h2 to the
homotopies rendering commutative the corresponding diagram. Then let f1 + f2 be classified
by a diagram as above where the homotopy rendering it commutative is given by the composite
homotopy h1 • h2.

The result follows by checking that the construction verifies the following properties:

• It is associative up to higher homotopy;
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• it has inverses given by reflecting the squares up to higher cells;

• it has units given by the zero map;

• it is bilinear with respect to composition;

• the dual construction using suspensions instead of loops defines another operation com-
patible with the above. The Eckmann-Hilton argument implies that the operations are
commutative. �

Using the two last results we deduce the following.

Proposition 19. If C is stable then Ho(C) is additive, and for everyX,Y ∈ C the natural mapXqY →
X × Y is an equivalence.

We are ready for the main result of this section.

Theorem 20. If C is stable then Ho(C) is cannonically triangulated.

Proof. Wegive the structure and check the two axiomswementioned. By Proposition 19we have
(1) Ho(C) is additive. For (2) take the translation to be Σ, which we know it is an equivalence by
Proposition 11. Finally a sequence X f−→ Y

g−→ Z
h−→ X[1] in Ho(C) is a distinguished triangle if

there exists a diagram in C:

X Y 0

0 Z W

f̃

g̃

h̃

such that:

• f̃ is a lift of f ;

• g̃ is a lift of g;

• h̃ composed with the mapW → X[1] induced by the universal property ofX[1] is a lift of
h.

To prove that (TR1)(a) holds we use the existence of cofibers (twice) to extend an arrow to a
diagram as above. To prove that (TR3) holds we use the universal property of cofibers to extend
a commutative square to a morphism of distinguished triangles. �

We conclude with some basic closure properties of stable quasicategories.

Proposition 21. If C is stable andK is a simplicial set the quasicategory Fun(K, C) is stable. �

Proof. In functor quasicategories, limits and colimits are computed pointwise. �
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Proposition 22. Let C be pointed. Then C is stable if and only if:

• it admits finite limits and colimits;

• a square is a pushout if and only if it is a pullback.

Proof. The “if” implication is immediate. For the “only if” we already know that C admits pull-
backs and since we have initial object, it also admits products (as we already argued). The
existence of finite limits now follows from [Lur09, Corollary 4.4.2.4], which says that admitting
finite limits is equivalent to admitting finite products and pullbacks. By duality C also admits
finite colimits.

To prove the second condition, notice that by duality it is enough to show that a pushout is
also a pullback. Suppose given a pushout

X Y

Z Pg

and construct the cofiber of g:

X Y

Z P

0 cofib(g)

g

Since both squares are pushouts Lemma 15 implies that the outer square is a pushout. Since
both the outer square and the lower square are cofiber sequences they are also fiber sequences,
since C is stable. So using Lemma 15 again (but in the other direction) we deduce that the upper
square is a pullback. �

A very similar argument proves:

Proposition 23. A functor between stable quasicategories is exact if and only if it preserves finite limits
(or colimits).
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