Functional Analysis Assignment 2

Instructor: Masoud Khalkhali Mathematics Department, University of Western Ontario London, ON, Canada

- 1. (Extension of functions). Let X and Y be metric spaces and $S \subset X$ a dense subset. Show that a continuous map $f : S \to Y$ need not have an *extension* to a continuous map $X \to Y$, even if Y is complete. Show that if f is *uniformly continuous* and Y is complete then there is a unique such extension and the extension is uniformly continuous as well. (This result is useful in functional analysis since continuous linear maps between normed spaces are automatically uniformly continuous).
- 2. a) Show that for any $n \times n$ matrix A,

$$||A||_{HS}^2 = \operatorname{Tr}(A^*A).$$

b) Find the kernel and image of the Voltera integral operator V, and calculate its adjoint V^* . Is V a normal operator? Show that $V^n \to 0$ as $n \to \infty$.

3. a) Show that the differentiation operator

$$\frac{d}{dx}: C^1[0,1] \to L^2[0,1],$$

is *not* bounded with respect to the L^2 -norms. Show that it is a bounded operator with respect to the inner product on $C^1[0, 1]$ defined by

$$\langle f,g\rangle = \int_0^1 (f\bar{g} + f'\bar{g}'),$$

and the L^2 metric on its codomain.

b) Prove the *Poincaré inequality*: there is a constant C such that for all $u \in C^1[0, 1]$

$$||u - u_0||_{L^2} \le C ||u'||_{L^2},$$

where

$$u_0 = \int_0^1 u(y) \,\mathrm{d}y$$

is the average value of u.

4. Let $k : \mathbb{R} \to \mathbb{C}$ be a 2π -periodic continuous function and define an integral operator $K : L^2[-\pi, \pi] \to L^2[-\pi, \pi]$ by

$$(Kf)(x) = \int_{-\pi}^{\pi} k(x-y)f(y)dy.$$

Compute the matrix of K with respect to the o.n. basis $\left(\frac{1}{\sqrt{2\pi}}e^{inx}\right)_{n\in\mathbb{Z}}$.

5. a) Let $f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$ be a power series with a positive radius of convergence ρ . Show that for any bounded operator A with $||A|| < \rho$, the series $f(A) = a_0 I + a_1 A + a_2 A^2 + \cdots$ is convergent and defines a bounded operator f(A). In paticular since the exponential series $exp(z) = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots$ has infinite radius of convergence, for any bounded operator A, we can define its exponential exp(A).

b) Let A and B be commuting operators. Show that

$$exp(A+B) = exp(A)exp(B).$$

Give exaples of 2 by 2 matrices for which the above property fails.

c) Let A be a self adjoint operator. Show that exp(iA) is a unitary operator.