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Introduction

One of the major advances of science in the 20th century was the discovery of
a mathematical formulation of quantum mechanics by Heisenberg in 1925 [94].1

From a mathematical point of view, this transition from classical mechanics to
quantum mechanics amounts to, among other things, passing from the commu-
tative algebra of classical observables to the noncommutative algebra of quantum
mechanical observables. To understand this better we recall that in classical me-
chanics an observable of a system (e.g. energy, position, momentum, etc.) is a
function on a manifold called the phase space of the system. Classical observables
can therefore be multiplied in a pointwise manner and this multiplication is obvi-
ously commutative. Immediately after Heisenberg’s work, ensuing papers by Dirac
[67] and Born–Heisenberg–Jordan [16], made it clear that a quantum mechanical
observable is a (selfadjoint) linear operator on a Hilbert space, called the state
space of the system. These operators can again be multiplied with composition as
their multiplication, but this operation is not necessarily commutative any longer.2

In fact Heisenberg’s commutation relation

pq − qp =
h

2πi
1

shows that position and momentum operators do not commute and this in turn can
be shown to be responsible for the celebrated uncertainty principle of Heisenberg.
Thus, to get a more accurate description of nature one is more or less forced to
replace the commutative algebra of functions on a space by the noncommutative
algebra of operators on a Hilbert space.

A little more than fifty years after these developments Alain Connes realized
that a similar procedure can in fact be applied to areas of mathematics where the
classical notions of space (e.g. measure space, locally compact space, or smooth
space) lose its applicability and relevance [37], [35], [36], [39]. The inadequacy
of the classical notion of space manifests itself for example when one deals with

1A rival proposal which, by the Stone–von Neumann uniqueness theorem, turned out to be
essentially equivalent to Heisenberg’s was arrived at shortly afterwards by Schrödinger [161]. It
is however Heisenberg’s matrix mechanics that directly and most naturally relates to noncom-
mutative geometry.

2Strictly speaking selfadjoint operators do not form an algebra since they are not closed under
multiplication. By an algebra of observables we therefore mean the algebra that they generate.
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x Introduction

highly singular “bad quotients”: spaces such as the quotient of a nice space by the
ergodic action of a group, or the space of leaves of a foliation in the generic case,
to give just two examples. In all these examples the quotient space is typically ill-
behaved, even as a topological space. For instance it may fail to be even Hausdorff,
or have enough open sets, let alone being a reasonably smooth space. The unitary
dual of a discrete group, except when the group is abelian or almost abelian, is
another example of an ill-behaved space.

One of Connes’ key observations is that in all these situations one can define
a noncommutative algebra through a universal method which we call the non-
commutative quotient construction that captures most of the information hidden
in these unwieldy quotients. Examples of this noncommutative quotient construc-
tion include the crossed product by an action of a group, or in general by an action
of a groupoid. In general the noncommutative quotient is the groupoid algebra of
a topological groupoid.

This new notion of geometry, which is generally known as noncommutative
geometry, is a rapidly growing new area of mathematics that interacts with and
contributes to many disciplines in mathematics and physics. Examples of such
interactions and contributions include: the theory of operator algebras, index
theory of elliptic operators, algebraic and differential topology, number theory, the
Standard Model of elementary particles, the quantum Hall effect, renormalization
in quantum field theory, and string theory.

To understand the basic ideas of noncommutative geometry one should perhaps
first come to grips with the idea of a noncommutative space. What is a noncom-
mutative space? The answer to this question is based on one of the most profound
ideas in mathematics, namely a duality or correspondence between algebra and
geometry,3

Algebra ←→ Geometry

according to which every concept or statement in Algebra corresponds to, and can
be equally formulated by, a similar concept and statement in Geometry.

On a physiological level this correspondence is perhaps related to a division in
the human brain: one computes and manipulates symbols with the left hemisphere
of the brain and one visualizes things with the right hemisphere. Computations
evolve in time and have a temporal character, while visualization is instant and
immediate. It was for a good reason that Hamilton, one of the creators of modern
algebraic methods, called his approach to algebra, e.g. to complex numbers and
quaternions, the science of pure time [92].

We emphasize that the algebra-geometry correspondence is by no means a new
observation or a new trend in mathematics. On the contrary, this duality has al-
ways existed and has been utilized in mathematics and its applications very often.

3For a modern and very broad point of view on this duality, close to the one adopted in this
book, read the first section of Shafarevich’s book [164] as well as Cartier’s article [31].
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The earliest example is perhaps the use of numbers in counting. It is, however,
the case that throughout history each new generation of mathematicians has found
new ways of formulating this principle and at the same time broadening its scope.
Just to mention a few highlights of this rich history we quote Descartes (analytic
geometry), Hilbert (affine varieties and commutative algebras), Gelfand–Naimark
(locally compact spaces and commutative C∗-algebras), and Grothendieck (affine
schemes and commutative rings). A key idea here is the well-known relation be-
tween a space and the commutative algebra of functions on that space. More
precisely, there is a duality between certain categories of geometric spaces and the
corresponding categories of algebras representing those spaces. Noncommutative
geometry builds on, and vastly extends, this fundamental duality between classical
geometry and commutative algebras.

For example, by a celebrated theorem of Gelfand and Naimark [82], one knows
that the information about a compact Hausdorff space is fully encoded in the al-
gebra of continuous complex-valued functions on that space. The space itself can
be recovered as the space of maximal ideals of the algebra. Algebras that appear
in this way are commutative C∗-algebras. This is a remarkable theorem since it
tells us that any natural construction that involves compact spaces and continu-
ous maps between them has a purely algebraic reformulation, and vice-versa any
statement about commutative C∗-algebras and C∗-algebraic maps between them
has a purely geometric-topological meaning.

Thus one can think of the category of not necessarily commutative C∗-algebras
as the dual of an, otherwise undefined, category of noncommutative locally compact
spaces. What makes this a successful proposal is, first of all, a rich supply of
examples and, secondly, the possibility of extending many of the topological and
geometric invariants to this new class of ‘spaces’ and applications thereof.

Noncommutative geometry has as its special case, in fact as its limiting case,
classical geometry, but geometry expressed in algebraic terms. In some respect
this should be compared with the celebrated correspondence principle in quantum
mechanics where classical mechanics appears as a limit of quantum mechanics for
large quantum numbers or small values of Planck’s constant. Before describing
the tools needed to study noncommutative spaces let us first briefly recall a couple
of other examples from a long list of results in mathematics that put in duality
certain categories of geometric objects with a corresponding category of algebraic
objects.

To wit, Hilbert’s Nullstellensatz states that the category of affine algebraic va-
rieties over an algebraically closed field is equivalent to the opposite of the category
of finitely generated commutative algebras without nilpotent elements (so-called
reduced algebras). This is a perfect analogue of the Gelfand–Naimark theorem in
the world of algebraic geometry. Similarly, Swan’s (resp. Serre’s) theorem states
that the category of vector bundles over a compact Hausdorff space (resp. over
an affine algebraic variety) X is equivalent to the category of finitely generated
projective modules over the algebra of continuous functions (resp. the algebra of
regular functions) on X.

A pervasive idea in noncommutative geometry is to treat certain classes of
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noncommutative algebras as noncommutative spaces and to try to extend tools
of geometry, topology, and analysis to this new setting. It should be emphasized,
however, that, as a rule, this extension is hardly straightforward and most of the
times involves surprises and new phenomena. For example, the theory of the flow
of weights and the corresponding modular automorphism group in von Neumann
algebras [41] has no counterpart in classical measure theory, though the theory of
von Neumann algebras is generally regarded as noncommutative measure theory.
Similarly, as we shall see in Chapters 3 and 4 of this book, the extension of de Rham
(co)homology of manifolds to cyclic (co)homology for noncommutative algebras
was not straightforward and needed some highly non-trivial considerations. As
a matter of fact, de Rham cohomology can be defined in an algebraic way and
therefore can be extended to all commutative algebras and to all schemes. This
extension, however, heavily depends on exterior products of the module of Kähler
differentials and on the fact that one works with commutative algebras. In the
remainder of this introduction we focus on topological invariants that have proved
very useful in noncommutative geometry.

Of all topological invariants for spaces, topological K-theory has the most
straightforward extension to the noncommutative realm. Recall that topologi-
cal K-theory classifies vector bundles on a topological space. Motivated by the
above-mentioned Serre–Swan theorem, it is natural to define, for a not necessarily
commutative ring A, K0(A) as the group defined by the semigroup of isomorphism
classes of finite projective A-modules. Provided that A is a Banach algebra, the
definition of K1(A) follows the same pattern as for spaces, and the main theo-
rem of topological K-theory, the Bott periodicity theorem, extends to all Banach
algebras [14].

The situation was much less clear for K-homology, a dual of K-theory. By the
work of Atiyah [6], Brown–Douglas–Fillmore [22], and Kasparov [106], one can
say, roughly speaking, that K-homology cycles on a space X are represented by
abstract elliptic operators onX and, whereasK-theory classifies the vector bundles
on X, K-homology classifies the abstract elliptic operators on X. The pairing
between K-theory and K-homology takes the form 〈[D], [E]〉 = index(DE), the
Fredholm index of the elliptic operator D with coefficients in the ‘vector bundle’
E. Now one good thing about this way of formulating K-homology is that it
almost immediately extends to noncommutative C∗-algebras. The two theories
are unified in a single theory called KK-theory, due to Kasparov [106].

Cyclic cohomology was discovered by Connes in 1981 [36], [39] as the right
noncommutative analogue of the de Rham homology of currents and as a receptacle
for a noncommutative Chern character map from K-theory and K-homology. One
of the main motivations was transverse index theory on foliated spaces. Cyclic
cohomology can be used to identify the K-theoretic index of transversally elliptic
operators which lie in the K-theory of the noncommutative algebra of the foliation.
The formalism of cyclic cohomology and noncommutative Chern character maps
form an indispensable part of noncommutative geometry. A very interesting recent
development in cyclic cohomology theory is the Hopf cyclic cohomology of Hopf
algebras and Hopf (co)module (co)algebras in general. Motivated by the original
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work in [54], [55] this theory has now been extended in [89], [90].
The following “dictionary” illustrates noncommutative analogues of some of

the classical theories and concepts originally conceived for spaces. In this book we
deal only with a few items of this ever expanding dictionary.
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commutative noncommutative

measure space von Neumann algebra

locally compact space C∗-algebra

vector bundle finite projective module

complex variable operator on a Hilbert space

infinitesimal compact operator

range of a function spectrum of an operator

K-theory K-theory

vector field derivation

integral trace

closed de Rham current cyclic cocycle

de Rham complex Hochschild homology

de Rham cohomology cyclic homology

Chern character Connes–Chern character

Chern–Weil theory noncommutative Chern–Weil theory

elliptic operator K-cycle

spinc Riemannian manifold spectral triple

index theorem local index formula

group, Lie algebra Hopf algebra, quantum group

symmetry action of Hopf algebra

Noncommutative geometry is already a vast subject. This book is an introduc-
tion to some of its basic concepts suitable for graduate students in mathematics
and physics. While the idea was to write a primer for the novice to the subject,
some acquaintance with functional analysis, differential geometry and algebraic
topology at a first year graduate level is assumed. To get a better sense of the
beauty and depth of the subject the reader can go to no better place than the
authoritative book [41]. There are also several introductions to the subject, with
varying lengths and attention to details, that the reader can benefit from [85],
[174], [144], [97], [118], [108], [133], [135], [64], [63]. They each emphasize rather
different aspects of noncommutative geometry. For the most complete account of
what has happened in the subject after the publication of [41], the reader should
consult [52] and references therein.

To summarize our introduction we emphasize that what makes the whole
project of noncommutative geometry a viable and extremely important enterprize
are the following three fundamental points:
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• There is a vast repertoire of noncommutative spaces and there are very
general methods to construct them. For example, consider a bad quotient of a nice
and smooth space by an equivalence relation. Typically the (naive) quotient space
is not even Hausdorff and has very bad singularities, so that it is beyond the reach
of classical geometry and topology. Orbit spaces of group actions and the space
of leaves of a foliation are examples of this situation. In algebraic topology one
replaces such naive quotients by homotopy quotients, by using the general idea
of a classifying space. This is however not good enough and not general enough,
as the classifying space is only a homotopy construction and does not see any
of the smooth structure. A key observation throughout [41] is that in all these
situations one can attach a noncommutative space, e.g. a (dense subalgebra of
a) C∗-algebra or a von Neumann algebra, that captures most of the information
hidden in these quotients. The general construction starts by first replacing the
equivalence relation by a groupoid and then considering the associated groupoid
algebra in its various completions. We shall discuss this technique in detail in
Chapter 2 of this book.

• The possibility of extending many of the tools of classical geometry and
topology that are used to probe classical spaces to this noncommutative realm.
The topological K-theory of Atiyah and Hirzebruch, and its dual theory known
as K-homology, as well as the Bott periodicity theorem, have a natural extension
to the noncommutative world [14]. Finding the right noncommutative analogue of
de Rham cohomology and Chern–Weil theory was less obvious and was achieved
thanks to the discovery of cyclic cohomology [36], [38]. In Chapters 3 and 4 of
this book we shall give a detailed account of cyclic cohomology and its relation
with K-theory and K-homology. Another big result of recent years is the local
index formula of Connes and Moscovici [54]. Though we shall not discuss it in this
book, it suffices to say that this result comprises a vast extension of the classical
Atiyah–Singer index theorem to the noncommutative setup.

• Applications. Even if we wanted to restrict ourselves just to classical spaces,
methods of noncommutative geometry would still be very relevant and useful. For
example, a very natural and general proof of the Novikov conjecture on the homo-
topy invariance of higher signatures of non-simply connected manifolds (with word
hyperbolic fundamental groups) can be given using the machinery of noncommu-
tative geometry [53]. The relevant noncommutative space here is the (completion
of the) group ring of the fundamental group of the manifold. We also mention the
geometrization of the Glashow–Weinberg–Salam Standard Model of elementary
particles via noncommutative geometry (cf. [52] and references therein). Moving
to more recent applications, we mention the approach to the Riemann hypothesis
and the spectral realization of zeros of the zeta function via noncommutative spaces
[18], [42] as well as the mathematical underpinning of renormalization in quantum
field theory as a Riemann–Hilbert Correspondence [47], [48]. These results have
brought noncommutative geometry much closer to central areas of modern num-
ber theory, algebraic geometry and high energy physics. We shall not follow these
developments in this book. For a complete and up to date account see [52].
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Let me now briefly explain the contents of this book. Chapter 1 describes some
of the fundamental algebra-geometry correspondences that are vital for a better
understanding of noncommutative geometry. The most basic ones, for noncommu-
tative geometry at least, are the Gelfand–Naimark and the Serre–Swan theorems.
They lead to ideas of noncommutative space and noncommutative vector bundles.
We give several examples of noncommutative spaces, most notably noncommuta-
tive tori, group C∗-algebras, and quantum groups. The last section of this first
chapter is a self contained introduction to Hopf algebras and quantum groups and
the idea of symmetry in noncommutative geometry. Chapter 2 is about forming
noncommutative quotients via groupoids and groupoid algebras. This is one of the
most universal and widely used methods for constructing noncommutative spaces.
Another important concept in this chapter is the idea of Morita equivalence of
algebras, both at purely algebraic and C∗-algebraic levels. Among other things,
Morita equivalence clarifies the relation between noncommutative quotients and
classical quotients. Chapter 3 is devoted to cyclic (co)homology, its relation with
Hochschild (co)homology through Connes’ long sequence and spectral sequence,
and its relation with de Rham (co)homology. Three different definitions of cyclic
cohomology are given in this chapter, each shedding light on a different aspect of
the theory. Continuous versions of cyclic and Hochschild theory for topological
algebras is developed in this section. This plays an important role in applications.
We also give several important examples of algebras for which these invariants are
fully computed. In Chapter 4 we define the Connes–Chern character map for both
K-theory and K-homology. For K-theory it is the noncommutative analogue of
the classical Chern character map from K-theory to de Rham cohomology. It can
also be described as a pairing between K-theory and cyclic cohomology. Fredholm
modules, as cycles for K-homology, are introduced next and, for finitely summable
Fredholm modules, their Connes–Chern character with values in cyclic cohomol-
ogy is introduced. Then we use these pairings to prove an index formula from [39]
relating the analytic Fredholm index of a finitely summable Fredholm module to
its topological index. This is an example of an index formula in noncommutative
geometry. The very last section of this chapter summarizes many ideas of the book
into one commuting diagram which is the above mentioned index formula. In an
effort to make this book as self-contained as possible, we have added four appen-
dices covering basic material on C∗-algebras, compact and Fredholm operators,
projective modules, and some basic category theory language.

This book is partly based on series of lectures I gave at the Fields Institute in
Toronto, Canada, in Fall 2002 and at the second and fifth Annual Spring Institute
on Noncommutative Geometry and Operator Algebras in spring 2004 and spring
2007 at Vanderbilt University, USA.

It is a great pleasure to acknowledge my deepest gratitude to Alain Connes
for his invaluable advice, support, and encouragement over many years and dur-
ing the writing of this book. I would like to warmly thank Klaas Landsman and
Joseph Varilly who carefully read the entire manuscript and provided me with
many valuable suggestions and corrections. I would also like to sincerely thank
Manfred Karbe and
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Irene Zimmermann of the European Mathematical Society Publishing House for
taking care of the text and technical production, Matilde Marcolli for encourag-
ing me to publish the book at an early stage, and Katia Consani for inviting me
to give a series of lectures at Johns Hopkins University in March 2008 based on
a pre-final version of this book. I also thank Piotr Hajac and Gianni Landi for
reading the text and for their valuable suggestions. Finally I would like to thank
Arthur Greenspoon for carefully proofreading the whole text.
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Chapter 1

Examples of
algebra-geometry
correspondences

We give several examples of algebra-geometry correspondences. They all put into
correspondence, or duality, certain categories of classical geometric objects with
a corresponding category of commutative algebraic objects. In many cases, by
relaxing the commutativity assumption we arrive at the corresponding noncom-
mutative geometric object. Presumably, the more one knows about these duality
relations the better one is prepared to pursue noncommutative geometry.

1.1 Locally compact spaces and commutative C∗-
algebras

In functional analysis the celebrated Gelfand–Naimark Theorem [82] implies that
the category of locally compact Hausdorff spaces and continuous proper maps is
equivalent to the opposite of the category of commutative C∗-algebras and proper
C∗-morphisms:

{locally compact Hausdorff spaces} ' {commutative C∗-algebras}op (1.1)

Under this correspondence, the category of compact Hausdorff spaces and con-
tinuous maps corresponds to the category of unital commutative C∗-algebras and
unital C∗-morphisms:

{compact Hausdorff spaces} ' {commutative unital C∗-algebras}op (1.2)

1
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By an algebra in this book we shall mean an associative algebra over the field
of complex numbers C. Algebras are not assumed to be commutative or unital,
unless explicitly stated. An involution on an algebra A is a conjugate linear map
∗ : A→ A, a 7→ a∗, satisfying the extra relations

(ab)∗ = b∗a∗ and (a∗)∗ = a

for all a and b in A. A C-algebra endowed with an involution is called an involutive
algebra.

By a normed algebra we mean an algebra A such that A is a normed vector
space and

‖ab‖ ≤ ‖a‖‖b‖

for all a, b in A. If A is unital, with its unit denoted by 1, we shall assume that
‖1‖ = 1. A Banach algebra is a normed algebra which is complete as a metric
space in the sense that any Cauchy sequence in A is convergent.

Definition 1.1.1. A C∗-algebra is an involutive Banach algebra A such that for
all a ∈ A the C∗-identity

‖a∗a‖ = ‖a‖2 (1.3)

holds.

A morphism of C∗-algebras, or a C∗-morphism, is an algebra homomorphism
f : A→ B which preserves the ∗-structure, namely

f(a∗) = f(a)∗ for all a ∈ A.

It can be shown that any C∗-morphism is automatically a contraction in the sense
that ‖f(a)‖ ≤ ‖a‖ for all a ∈ A, and in particular is continuous. This ‘automatic
continuity’ result, and its immediate consequence that the norm of a C∗-algebra
is unique, is an example of ‘rigidity’ of C∗-algebras. Very often, purely algebraic
conditions, thanks to the mighty C∗-identity (1.3), have topological consequences.
This need not be true for general Banach algebras. See Appendix A for basics
of C∗-algebra theory and Appendix D for the category theory language we use in
this book. Let us explain the equivalences (1.1) and (1.2).

A character of an algebra A is a nonzero multiplicative linear map χ : A→ C.
Notice that if A has a unit then necessarily χ(1) = 1. It can be shown that any
character of a Banach algebra is automatically continuous and has norm one. It
can also be shown that if A is a C∗-algebra then any character of A preserves the
∗-structure.

Let Â denote the set of characters of the Banach algebra A. It is called the
(maximal ideal) spectrum of A. We can endow Â with the weak∗ topology, i.e.,
the topology of pointwise convergence, on the continuous dual, A∗, of A. By the
Banach–Alaoglu theorem, the unit ball of A∗ is compact in the weak∗ topology
and, since Â∪ {0} is a closed subset of this unit ball, we can conclude that Â is a



1.1 Locally compact spaces and commutative C∗-algebras 3

locally compact Hausdorff space. It is compact if and only if A is unital. When A
is unital there is a one-to-one correspondence between characters of A and the set
of maximal ideals of A: to a character χ we associate its kernel which is a maximal
ideal and to a maximal ideal I we associate the character χ : A→ A/I = C. Note
that, by the Gelfand–Mazur theorem, for any maximal ideal I, the skew field A/I
is isomorphic to C.

Example 1.1.1. Given a locally compact Hausdorff space X, let C0(X) denote
the algebra of complex-valued continuous functions on X, vanishing at infinity.
Under pointwise addition and multiplication C0(X) is obviously a commutative
algebra over the field of complex numbers. It is unital if and only if X is compact,
in which case it will be denoted by C(X). Endowed with the sup-norm

‖f‖ := ‖f‖∞ = sup{|f(x)|; x ∈ X},

and the ∗-operation induced by complex conjugation

f 7→ f∗, f∗(x) = f(x),

C0(X) can be easily shown to satisfy all the axioms of a C∗-algebra, including the
all-important C∗-identity (1.3). Thus to any locally compact Hausdorff space we
have associated a commutative C∗-algebra, and this C∗-algebra is unital if and
only if the space is compact. The characters of C0(X) are easy to describe, as we
show next.

For any x ∈ X we have the evaluation character

χ = χx : C0(X)→ C, χx(f) = f(x).

It can be shown that all characters of C0(X) are of this form and that the map

X → Ĉ0(X), x 7→ χx,

is a homeomorphism. Thus, we can recover X, including its topology, as the space
of characters of C0(X).

By a fundamental theorem of Gelfand and Naimark [82] (see below), any com-
mutative C∗-algebra A is isomorphic to C0(X) where X is the space of characters
of A. The isomorphism is implemented by the Gelfand transform, to be recalled
next.

For any commutative Banach algebra A, the Gelfand transform

Γ: A→ C0(Â)

is defined by Γ(a) = â, where
â(χ) = χ(a).

It is a norm contractive algebra homomorphism, as can be easily seen. In general
Γ need not be injective or surjective, though its image separates the points of
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the spectrum. The kernel of Γ is the nilradical of A consisting of quasi-nilpotent
elements of A, that is, elements whose spectrum consists only of zero. In [82]
Gelfand and Naimark, building on earlier work of Gelfand, show that under some
extra assumptions on A, which is equivalent to A being a C∗-algebra, Γ is a ∗-
algebra isometric isomorphism between A and C0(Â).

Theorem 1.1.1 (Gelfand–Naimark Theorem [82]). For any commutative C∗-
algebra A with spectrum Â, the Gelfand transform

Γ: A→ C0(Â), a 7→ â,

is an isomorphism of C∗-algebras.

Theorem 1.1.1 is the main technical result needed to establish the equivalence
of categories in (1.1) and (1.2). The description of these correspondences is a bit
easier in the compact case (1.2) and that is what we shall do first.

Let S denote the category whose objects are compact Hausdorff spaces and
whose morphisms are continuous maps between such spaces. Let C denote another
category whose objects are commutative unital C∗-algebras and whose morphisms
are unital C∗-algebra morphisms between such algebras.

We define contravariant functors

C : S ; C and ̂ : C ; S

as follows. We send a compact Hausdorff space X, to C(X), the algebra of
complex-valued continuous functions on X. If f : X → Y is a continuous map, we
let

C(f) = f∗ : C(Y )→ C(X), f∗(g) = g ◦ f,
be the pullback of f . It is clearly a C∗-algebra homomorphism which preserves the
units. We have thus defined the functor C.

The functor ̂, called the functor of points or the maximal ideal spectrum func-
tor, sends a commutative unital C∗-algebra A to its space of characters, or equiv-
alently maximal ideals, Â, and sends a C∗-morphism f : A→ B to the continuous
map f̂ : B̂ → Â defined by

f̂(χ) = χ ◦ f
for any character χ ∈ B̂.

To show that C and ̂ are equivalences of categories, quasi-inverse to each
other, we must show that the functor C ◦ ̂ is isomorphic to the identity functor of
C and similarly the functor ̂ ◦C is isomorphic to the identity functor of S. That
is, we have to show that for any compact Hausdorff space X and any commutative

unital C∗-algebra A, there are natural isomorphisms Ĉ(X) ' X and C(Â) ' A.
But in fact we have already done this. Consider the maps

X −−→∼ Ĉ(X), x 7→ χx,

A −−→∼ C(Â), a 7→ â.
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Here χx is the evaluation at x map defined by χx(f) = f(x), and a 7→ â is
the Gelfand transform Γ defined above by â(χ) = χ(a). The first isomorphism
is elementary and does not require the theory of Banach algebras. The second
isomorphism is the content of Gelfand–Naimark’s Theorem 1.1.1 whose proof is
based on Gelfand’s theory of commutative Banach algebras.

Care must be applied in the more general non-compact/non-unital case. The
main issue is to get the morphisms right. Let us define a category S0 consisting
of locally compact Hausdorff spaces and proper continuous maps between them.
Recall that a continuous map f : X → Y between locally compact spaces is called
proper if for any compact K ⊂ Y , f−1(Y ) is compact. Let C0 be another category
whose objects are commutative not necessarily unital C∗-algebras. For morphisms
between A and B we take proper C∗-algebra homomorphisms f : A → B. Here
proper means that for any approximate identity ei, i ∈ I, of A, f(ei), i ∈ I is
an approximate identity for B. Equivalently, for any nonzero character χ on B,
χ ◦ f should be nonzero. Alternatively, f is proper if and only if f(A)B is dense
in B. Recall that an approximate identity for a C∗-algebra A is a net ei, i ∈ I of
elements of A such that for all a ∈ A, aei → a and eia→ a. Thus the properness
of a morphism can be seen as a replacement for being unital. In particular the
zero map, while it is a C∗-map, is not proper.

Define two contravariant functors, similar to what we had before,

C0 : S0 ; C0 and ̂ : C0 ; S0

as follows. We send a locally compact Hausdorff space X to C0(X) and send a
proper continuous map f : X → Y , to its pullback C0(f) = f∗ : C0(Y ) → C0(X).
It is easily seen that, thanks to properness of f , C0(f) is well defined and is a
proper morphism of C∗-algebras. The definition of the spectrum functor is the
same as in the unital case. Notice that under a proper morphism f : A → B, the
map f∗ : B̂ → Â sends a nonzero character to a nonzero character and hence is
well defined. Using unitization and 1-point compactification, one can deduce the
equivalence (1.2) from (1.1) as follows.

If A is a commutative C∗-algebra, its unitization A+ = A ⊕ C is obtained
by adjoining a unit to A. Thus its multiplication and ∗-structure are defined by
(a, λ)(b, µ) = (ab+λb+µa, λµ), (a, λ)∗ = (a∗, λ̄). The definition of its norm is less
obvious and one should take the left action of A+ on A by multiplication and the
corresponding operator norm. Thus ‖(a, λ)‖ := sup{‖ab+ λb‖; ‖b‖ ≤ 1}. Then it
can be shown that A+ is a (unital) C∗-algebra. Let χ0 : A+ → C be the character

defined by χ0(a, λ) = λ. Now we have Â = Â+ \{χ0}, which shows that, being the
complement of a closed set in a compact Hausdorff space, Â is a locally compact
Hausdorff space. Now if f : A → B is a proper morphism, then one checks that
f̂(χ) := χ ◦ f is a non-trivial character. This defines the functor of spectrum in
the non-unital case. One can now deduce the equivalence (1.1) from (1.2).

Example 1.1.2. The spectrum of a commutative C∗-algebra may not be ‘visible’
at first sight, unless the algebra is already in the form C0(X). For example, the
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algebra Cb(R) of bounded continuous functions on R is a unital commutative C∗-
algebra in a natural way. So, by Theorem 1.1.1, we know that Cb(R) = C(βR),
where βR denotes the spectrum of Cb(R). It is easy to see that βR is in fact the
Stone–Čech compactification of R. More generally, for a locally compact Hausdorff
space X, the spectrum of Cb(X) can be shown to be homeomorphic to βX, the
Stone–Čech compactification of X (cf. also the next example).

For an example of a different flavor, let X be a topological space which is
manifestly non-Hausdorff and let A = C0(X). Then the spectrum of A has the
effect of turning X into a Hausdorff space and is in some sense the ‘Hausdorff-
ization’ of X. For yet a different type of example, the reader should try to describe
the spectrum of L∞[0, 1], the algebra of essentially bounded measurable functions
on [0, 1].

Example 1.1.3 (Essential ideals and compactifications). Let X be a locally com-
pact Hausdorff space. Recall that a Hausdorff compactification of X is a compact
Hausdorff space Y , where X is homeomorphic to a dense subset of Y . We consider
X as a subspace of Y . Then X is open in Y and its boundary Y \X is compact.
We have an exact sequence

0→ C0(X)→ C(Y )→ C(Y \X)→ 0,

where C0(X) is an essential ideal of C(Y ). (An ideal I ⊂ A is called essential if
whenever aI = 0, then a = 0.) Conversely, any extension

0→ C0(X)→ A→ B → 0,

where A, and hence B, is a commutative unital C∗-algebra and C0(X) is an es-
sential ideal of A, defines a Hausdorff compactification of X. Thus, we have a
one-to-one correspondence between Hausdorff compactifications of X and (iso-
morphism classes of) essential extensions of C0(X). In particular, the 1-point
compactification and the Stone–Čech compactification correspond to

0→ C0(X)→ C0(X)+ → C→ 0,

and
0→ C0(X)→ Cb(X)→ C(βX \X)→ 0.

Example 1.1.4. Under the correspondence (1.1), constructions on spaces have
their algebraic counterparts and vice versa. We list a few of these correspondences.
The disjoint union of spaces X∪Y corresponds to the direct sum of algebras A⊕B;
the Cartesian product of spaces X ×Y corresponds to a certain topological tensor
product A ⊗̂ B of algebras. Closed subspaces Y ⊂ X of a space correspond to
closed ideals; A compact Hausdorff space X is connected if and only if the algebra
C(X) has no non-trivial idempotent. Recall that an idempotent in an algebra is
an element e such that e2 = e. It is called non-trivial if e 6= 0, 1. The 1-point
compactification of a locally compact Hausdorff space corresponds to unitization,
i.e., the operation of adding a unit to the algebra. We record some of these
correspondences in the following table.
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Space Algebra

compact unital
1-point compactification unitization

Stone–Čech compactification multiplier algebra
closed subspace; inclusion closed ideal; quotient algebra

surjection injection
injection surjection

homeomorphism automorphism
Borel measure positive functional

probability measure state
disjoint union direct sum

Cartesian product minimal tensor product

Theorem 1.1.1 and the correspondence (1.1) form the foundation of the idea that
the category of noncommutative C∗-algebras may be regarded as the dual of an,
otherwise undefined, category of noncommutative (NC) spaces. Thus formally one
can propose a category of noncommutative spaces as the dual of the category of
C∗-algebras and C∗-morphisms:

{NC locally compact spaces} := {NC C∗-algebras and C∗-morphisms}op

(1.4)
Notice that while (1.1) is a theorem, (1.4) is a proposal and at the moment there
is no other way to define its left-hand side by any other means. Various operations
and concepts for spaces can be paraphrased in terms of algebras of functions
on spaces and then one can try to generalize them to noncommutative spaces.
This is the rather easy part of noncommutative geometry. The more interesting
and harder part is to find properties and phenomena that have no commutative
counterpart.

While (1.4) is a useful definition, it is by far not enough and one should take
a broader perspective on the nature of a noncommutative space. For example,
(1.4) captures only the topological aspects, and issues like smooth or complex
structures, metric and Riemannian structures, etc. are totally left out. One can
probe a space with a hierarchy of classes of functions:

polynomial ⊂ analytic ⊂ smooth ⊂ continuous ⊂ measurable

There is a similar hierarchy in the noncommutative realm, though it is much less
well understood at the moment.

Our working definition of a noncommutative space is a noncommutative alge-
bra, possibly endowed with some extra structure. Operator algebras, i.e., algebras
of bounded operators on a Hilbert space, provided the first really deep insights
into this noncommutative realm.
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Example 1.1.5. The quintessential example of a noncommutative C∗-algebra is
the algebra L(H) of all bounded linear operators on a complex Hilbert space H.
The adjoint T ∗ of a bounded linear operator T : H → H is defined by the usual
equation 〈Tx, y〉 = 〈x, T ∗y〉. It is easy to see that, endowed with this ∗-structure
and the operator norm

‖T‖ := sup{‖T (x)‖; ‖x‖ ≤ 1},

L(H) is a C∗-algebra. If H is finite dimensional then L(H) is isomorphic to the
algebra Mq(C) of q×q matrices over C, where q = dimCH. A direct sum of matrix
algebras

A = Mn1
(C)⊕Mn2

(C)⊕ · · · ⊕Mnk(C)

is a C∗-algebra as well and it can be shown that any finite dimensional C∗-algebra
is indeed a direct sum of matrix algebras [66]. Thus, finite dimensional C∗-algebras
are semi-simple. The most interesting examples of C∗-algebras are clearly infinite
dimensional ones. Here is a very general method of defining them.

It is clear that any subalgebra A ⊂ L(H) which is selfadjoint in the sense that
if T ∈ A then T ∗ ∈ A, and is closed under the norm topology, is a C∗-algebra.
(More generally, any selfadjoint norm closed subalgebra of a C∗-algebra is itself a
C∗-algebra). An example is the algebra K(H) of compact operators on H. By a
fundamental theorem of Gelfand and Naimark any C∗-algebra is defined in this
way. That is, it can be realized as a closed ∗-subalgebra of the algebra of bounded
operators on a Hilbert space.

A von Neumann algebra is a unital selfadjoint subalgebra of L(H) which is
closed in the weak operator topology. By definition the weak operator topology on
L(H) is the weakest topology for which the maps T 7→ 〈Tx, y〉 are continuous for al
x, y ∈ H. Clearly a von Neumann algebra is a C∗-algebra. The relation between
commutative von Neumann algebras and measure spaces is similar to the rela-
tionship between commutative C∗-algebras and locally compact Hausdorff spaces.
Given a measure space (X,µ), let L∞(X,µ) denote the ∗-algebra of essentially
bounded, measurable and complex valued functions on X. This algebra acts on
the Hilbert space H = L2(X,µ) as multiplication operators and its image in L(H)
can be shown to be closed in the weak operator topology, hence is a commuta-
tive von Neumann algebra. Conversely, any commutative von Neumann algebra
can be shown to be algebraically isomorphic to L∞(X,µ) for some measure space
(X,µ). Because of this correspondence the theory of von Neumann algebras is
often regarded as noncommutative measure theory.

The paper of Gelfand and Naimark [82] is the birthplace of the theory of C∗-
algebras. Together with Murray–von Neumann’s series of papers on von Neumann
algebras [147], they form the foundation stone of operator algebras. The following
two fundamental results on the structure of C∗-algebras are proved in this paper.
We have already discussed the first part.
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Theorem 1.1.2 (Gelfand–Naimark [82]). a) For any commutative C∗-algebra A
with spectrum Â the Gelfand transform

A→ C0(Â), a 7→ â, (1.5)

defines an isomorphism of C∗-algebras.

b) Any C∗-algebra is isomorphic to a C∗-subalgebra of the algebra L(H) of
bounded operators on a Hilbert space H.

In Appendix A we shall sketch a proof of both parts.

Example 1.1.6 (Noncommutative spaces from groups). To any locally compact
topological group G one can associate two C∗-algebras, the full and the reduced
group C∗-algebras of G, denoted by C∗(G) and C∗r (G), respectively. Both alge-
bras are completions of the group algebra (convolution algebra) of G, but under
different norms. Their universal properties are as follows: there is a one-to-one cor-
respondence between unitary representations of G and representations of C∗(G),
and a one-to-one correspondence between unitary representations of G which are
equivalent to a sub-representation of its left regular representation and representa-
tions of C∗r (G). There is always a surjective C∗-morphism C∗(G)→ C∗r (G), which
is injective if and only if the group G is amenable. We describe these C∗-algebras
for discrete groups first.

Let Γ be a discrete group and let H = `2(Γ) denote the Hilbert space of square
summable complex-valued functions on Γ. It has a canonical orthonormal basis
consisting of delta functions {δg}, g ∈ Γ. Let CΓ denote the group algebra of Γ
over C. Elements of CΓ consist of functions ξ : Γ → C with finite support. Its
multiplication is defined by the convolution product:

ξη(g) =
∑
hk=g

ξ(h)η(k).

It is a ∗-algebra under the operation (ξ∗)(g) = ξ̄(g−1). The left regular represen-
tation of Γ is the unitary representation π : Γ→ L(`2(Γ)) defined by

(πg)ξ(h) = ξ(g−1h).

There is a unique linear extension of π to an (injective) ∗-algebra homomorphism

π : CΓ→ L(H).

The reduced group C∗-algebra of Γ, denoted by C∗rΓ, is the norm closure of π(CΓ)
in L(H). It is obviously a unital C∗-algebra. The linear functional

τ(a) = 〈aδe, δe〉, a ∈ C∗rΓ,

defines a positive and faithful trace τ : C∗rΓ→ C. This means, for all a, b,

τ(ab) = τ(ba), and τ(aa∗) > 0 if a 6= 0.
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Checking the faithfulness of the trace τ on the dense subalgebra CΓ is straightfor-
ward. We refer to [66] for its faithfulness on C∗rΓ in general.

The full group C∗-algebra of Γ is the norm completion of CΓ under the norm

‖ξ‖ = sup{‖π(ξ)‖; π is a ∗-representation of CΓ},

where by a ∗-representation we mean a ∗-representation on a Hilbert space. Note
that ‖ξ‖ is finite since for any ∗-representation π we have

‖π(ξ)‖ ≤
∑
‖ξ(g)π(g)‖ =

∑
|ξ(g)|.

By its very definition it is clear that there is a one-to-one correspondence
between unitary representations of Γ and C∗ representations of C∗Γ. Since the
identity map id: (CΓ, ‖ ‖) → (CΓ, ‖ ‖r) is continuous, we obtain a surjective C∗-
algebra homomorphism

C∗Γ→ C∗rΓ.

It is known that this map is an isomorphism if and only if Γ is an amenable
group [15]. Abelian groups, compact groups and solvable groups are amenable.
Non-abelian free groups, on the other hand, are not amenable.

Let now Γ be an abelian group. Then C∗Γ (= C∗rΓ) is a unital commutative
C∗-algebra and so by the Gelfand–Naimark theorem it is isomorphic to the algebra
of continuous functions on a compact Hausdorff space X. It is easy to describe X
directly in terms of Γ. Let Γ̂ = Hom(Γ, T) be the group of unitary characters of Γ,
also known as the Pontryagin dual of Γ. Under pointwise multiplication and with
the compact-open topology, it is a compact topological group and it is easy to see
that it is homeomorphic to the space of characters of the commutative C∗-algebra
C∗Γ. Thus the Gelfand transform (1.5) coincides with the Fourier transform and
defines a C∗-algebra isomorphism

C∗Γ ' C(Γ̂). (1.6)

Under this isomorphism, the canonical trace τ on the left-hand side can be iden-
tified with the normalized Haar measure on C(Γ̂). As a special case, for Γ = Zn,
we obtain an isomorphism of C∗-algebras

C∗Zn ' C(Tn).

The isomorphism (1.6) identifies the group C∗-algebra of an abelian group Γ
with the ‘algebra of coordinates’ on the unitary dual of Γ. When Γ is noncommuta-
tive, the unitary dual is a badly behaved space in general, but the noncommutative
dual C∗Γ is a perfectly legitimate noncommutative space (see the unitary dual of
the infinite dihedral group in [41] and its noncommutative replacement).

We look at another special case. When the group Γ is finite the group C∗-
algebra coincides with the group algebra CΓ. From basic representation theory we
know that the group algebra CΓ decomposes as a direct sum of matrix algebras

C∗Γ ' CΓ ' ⊕Mni(C),
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where the summation is over the set of conjugacy classes of Γ.
We extend the definition of group C∗-algebras to topological groups. Let G

be a locally compact topological group and µ a left Haar measure on G. For
f, g ∈ L1(G,µ), their convolution product f ∗ g is defined by

(f ∗ g)(t) =

∫
G

f(s)g(s−1t) dµ(s).

Under this convolution product, L1(G,µ) is a Banach ∗-algebra. The ∗-structure
is defined by f∗(t) := ∆G(t−1)f̄(t−1) for all f ∈ L1(G,µ). Here ∆G : G → R× is
the modular character of G. The left regular representation λ of L1(G) on L2(G)
is defined by

(λ(f)ξ)(s) =

∫
G

f(t)ξ(t−1s) dµ(t).

It is an (injective) ∗-representation of L1(G). The reduced group C∗-algebra of G,
C∗r (G), is, by definition, the C∗-algebra generated by the image of λ in L(L2(G)).
The full group C∗-algebra of G, C∗(G), is defined as in the discrete case as the
completion of L1(G) under the norm

‖f‖ = sup{‖π(f)‖; π is a ∗-representation of L1(G)}.

The estimate ‖π(f)‖ ≤ ‖f‖1 shows that ‖f‖ <∞ for all f ∈ L1(G).
Now if G is a locally compact abelian group, the Gelfand–Naimark theorem

shows that C∗(G) ' C0(Ĝ), where Ĝ, the Pontryagin dual of G, is the locally
compact abelian group of continuous characters of G. Notice that in this case
the Gelfand transform coincides with the Fourier transform for locally compact
abelian groups.

Example 1.1.7 (From quantum mechanics to noncommutative spaces; noncommu-
tative tori). One of the most intensively studied noncommutative spaces is a class
of algebras known as noncommutative tori. They provide a testing ground for
many ideas and techniques of noncommutative geometry. As we shall gradually
see in this book, these algebras can be defined in a variety of ways, e.g. as the
C∗-algebra of the Kronecker foliation of the two-torus by lines of constant slope
dy = θdx; as the crossed product algebra C(S1) o Z associated to the automor-
phism of the circle by rotating by an angle 2πθ; as strict deformation quantization;
as a twisted group algebra; or by generators and relations as we define them now.
First, a connection with quantum mechanics.

The so called canonical commutation relation of quantum mechanics pq− qp =
h

2πi1 relates the position q and momentum p operators. It can be realized by
unbounded selfadjoint operators but has no representation by bounded opera-
tors. In fact the selfadjoint unbounded operators q, p : L2(R)→ L2(R) defined by
(qf)(x) = xf(x) and (pf) = h

2πi
d
dx (f) are easily seen to satisfy this relation. Weyl

proposed an integrated bounded form of the commutation relation which, among
other things, provides an opening to one of the most intensively studied noncom-
mutative spaces, that is, noncommutative tori. Let Ut = eitp and Vs = eisq, be the
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one parameter groups of unitary operators generated by the selfadjoint operators
p and q. Then, using the canonical commutation relation, it is easy to check that
these unitary operators satisfy the relation

VsUt = e2πi~st UtVs,

where ~ = h
2π .

Let θ ∈ R and λ = e2πiθ. The noncommutative torus Aθ is the universal unital
C∗-algebra generated by unitaries U and V subject to the following relation:

V U = λUV (1.7)

By universality we mean the following property: given any unital C∗-algebra B
with two unitaries u and v satisfying vu = λuv, there exists a unique unital C∗-
morphism Aθ → B sending U to u and V to v.

Unlike the purely algebraic case where any set of generators and relations
automatically defines a universal algebra, this is not the case for universal C∗-
algebras. Care must be applied in defining a norm satisfying the C∗-identity, and
in general the universal problem does not have a solution (cf. [15] and Exercise 1.1.6
at the end of this section). For the noncommutative torus we proceed as follows.
Consider the unitary operators U, V : L2(S1)→ L2(S1) defined by

(Uf)(x) = e2πixf(x), (V f)(x) = f(x+ θ). (1.8)

Here we think of S1 as R/Z with its canonical normalized Haar measure. They
clearly satisfy the relation V U = λUV . Let Aθ be the unital C∗-subalgebra of
L(L2(S1)) generated by U and V . It is not difficult to show that it satisfies the
required universal property.

Let O(T2
θ) := C〈U, V 〉/(V U − λUV ) denote the unital ∗-algebra generated by

unitaries U and V subject to the relation V U = λUV . We think of O(T2
θ) as the

coordinate ring of an algebraic noncommutative torus. We often think of it as the
dense subalgebra of Aθ generated by U and V .

Let en = e2πinx, n ∈ Z. They form an orthonormal basis for L2(S1). It can be
shown ([151]) that the formula

τ(a) = 〈ae0, e0〉 (1.9)

defines a positive and faithful trace τ : Aθ → C. That is, for all a, b we have

τ(ab) = τ(ba), and τ(aa∗) > 0 if a 6= 0.

Using the relations Uen = en+1 and V en = e2πiθen one checks that on the dense
subalgebra O(T2

θ) we have

τ
(∑
m,n

amnU
mV n

)
= a00.
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The structure of Aθ strongly depends on θ. Of course, for any integer n,
Aθ+n ' Aθ, and for θ = 0 simple Fourier theory shows that A0 is isomorphic
to the algebra C(T2) of continuous functions on the 2-torus. We also have the
isomorphism Aθ ' A1−θ induced by the map sending U to V and V to U . Thus
we can restrict the range of θ to [0, 1

2 ]. It is known that for distinct θ in this range
the algebras Aθ are mutually non-isomorphic. It is also known that for irrational
θ, Aθ is a simple C∗-algebra, i.e., it has no proper closed two-sided ideal. In
particular it has no finite dimensional representation.

Let θ = p
q be a rational number, where we assume that p and q are relatively

prime and q > 0. Then Aθ has a finite dimensional representation and in fact we
have the following

Proposition 1.1.1. There is a flat rank q complex vector bundle E on the 2-torus
such that A p

q
is isomorphic to the algebra of continuous sections of the endomor-

phism bundle of E:

A p
q
' C(T2, End(E)).

Proof. The required bundle E is obtained as the quotient of the trivial bundle
T2 × Cq by a free action of the abelian group G = Zq × Zq. Consider the unitary
q × q matrices

u =


1 0 · · · · · · 0
0 λ 0 · · · 0
0 0 λ2 · · · 0
· · ·
0 · · · · · · 0 λq−1

 and v =


0 0 · · · · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
· · ·
0 · · · · · · 1 0

 .

(1.10)
They satisfy the relations

vu = λuv and uq = vq = 1. (1.11)

The formulae

T2 × Cq 3 (z1, z2, ξ) 7→ (λz1, z2, uξ),

T2 × Cq 3 (z1, z2, ξ) 7→ (z1, λz2, vξ)

define a pair of commuting automorphisms of order q of the trivial vector bundle
T2 ×Cq and hence an action of Zq ×Zq. This action is clearly free. Moreover the
quotient of the base space is again the torus and in this way we obtain a flat bundle
E over T2. From its definition it is clear that the space of sections of End(E))
is the fixed point algebra of the induced action of G on C(T2, Mq(C)) under the
action of G. Using the basis uivj , 1 ≤ i, j ≤ q for Mq(C), we can write a section of
this bundle as

∑q
i,j=1 fij(z1, z2)⊗ uivj . It is then easy to see that such a section

is G-invariant if and only if its coefficients are of the form fij(z
q
1 , z

q
2).
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Now within A p
q
, we have UqV = V Uq and V qU = UV q which show that Uq

and V q are in the center of A p
q
. Also, any element of A p

q
has a unique expression

a =

q∑
i,j=1

fij(U
q, V q)U iV j

with fij ∈ C(T2). Now the required isomorphism is defined by the map

q∑
i,j=1

fij(U
q, V q)U iV j 7−→

q∑
i,j=1

fij(z
q
1 , z

q
2)⊗ uivj .

Notice that the above proof shows that the closed subalgebra generated by Uq

and V q is in fact all of the center of A p
q
:

Z(A p
q
) ' C(T2).

There is a dense ∗-subalgebra Aθ ⊂ Aθ that deserves to be called the algebra
of ‘smooth functions’ on the noncommutative torus. By definition a ∈ Aθ if it is
of the form

a =
∑

(m,n)∈Z2

amnU
mV n,

where (amn) ∈ S(Z2) is a rapidly decreasing Schwartz class sequence. By definition
this means

sup
m,n∈Z

(1 +m2 + n2)k |amn| <∞ for all k ∈ N. (1.12)

Notice that for θ = 0, condition (1.12) on the Fourier coefficients of a function
f ∈ C(T2) is necessary and sufficient for f to be in C∞(T2). This is one rationale
to call Aθ the algebra of smooth functions on the noncommutative torus. Let us
denote the algebras Aθ and Aθ by C∞(T2

θ) and C(T2
θ), respectively. So we have

the hierarchy of algebras

O(T2
θ) ⊂ C∞(T2

θ) ⊂ C(T2
θ)

resembling the hierarchy of algebras of functions algebraic ⊂ smooth ⊂ continuous
in the noncommutative world. If θ = p

q is rational, the proof of Theorem 1.1.1

shows that A p
q

is isomorphic to the space of smooth sections of the bundle End(E)

over T2:

A p
q
' C∞(T2, End(E)).

A derivation on an algebra A is a C-linear map δ : A → A such that δ(ab) =
aδ(b)+δ(a)b for all a, b ∈ A. (Cf. Chapter 3 for a more general notion of derivation.)
Notice that a derivation is determined by its values on a set of generators for the
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algebra. It is easy to see that the following formulae define derivations δ1, δ2 : Aθ →
Aθ:

δ1

(∑
amnU

mV n
)

= 2πi
∑

mamnU
mV n,

δ2

(∑
amnU

mV n
)

= 2πi
∑

namnU
mV n.

They are uniquely defined by the following relations:

δ1(U) = 2πiU, δ1(V ) = 0,

δ2(U) = 0, δ2(V ) = 2πiV.
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The trace τ defined by (1.9) has a beautiful invariance property which is the
noncommutative analogue of the invariance property of the Haar measure for the
torus. Indeed, it is easy to check that

τ(δi(a)) = 0 for all a ∈ Aθ and i = 1, 2.

Note that δ1 and δ2 are ∗-derivations in the sense that δi(a
∗) = δi(a)∗ for all

a ∈ Aθ, i = 1, 2. These derivations generate commuting one-parameter groups of
C∗-automorphisms of Aθ and in fact a continuous action of the 2-torus T2 on Aθ
which on generators is defined by

(z1, z2)U = z1U, (z1, z2)V = z2V.

Exercise 1.1.1. Show that the map

X → Ĉ0(X), x 7→ χx,

in Example 1.1.1 is a homeomorphism of topological spaces.

Exercise 1.1.2. Show that the category of commutative C∗-algebras and C∗-
morphisms is anti-equivalent to the category of pointed compact Hausdorff spaces
and base point preserving continuous maps.

Exercise 1.1.3. Show that the C∗-algebra generated by two unitaries u and v
subject to relations (1.11) is isomorphic to Mq(C).

Exercise 1.1.4. Let θ be an irrational number. Show that Z(Aθ) = C1, where Z
denotes the center, and that any trace on Aθ is a multiple of the canonical trace
τ .

Exercise 1.1.5. Assume H is infinite dimensional. Show that any trace on the
algebra L(H) of bounded operators on H vanishes identically. The same holds for
traces on the algebra K(H) of compact operators on H.

Exercise 1.1.6. An element u in an involutive unital algebra is called a unitary
if u∗u = uu∗ = 1. Show that C(S1) is the universal C∗-algebra generated by
a unitary. Give similar descriptions for C(Sn) (continuous functions on the n-
sphere) for all n. Show that there is no universal C∗-algebra generated by a single
selfadjoint element. (Hint: In C[0, a] the function f(x) = x is selfadjoint and has
norm ‖f‖ = a).

1.2 Vector bundles, finite projective modules, and
idempotents

Swan’s theorem [166] states that the category of complex vector bundles on a
compact Hausdorff space X is equivalent to the category of finite (i.e., finitely
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generated) projective modules over the algebra C(X) of continuous complex valued
functions on X:

{vector bundles on X} ' {finite projective C(X)-modules} (1.13)

There are similar results for real and quaternionic vector bundles [166]. Swan’s
theorem was motivated and in fact is the topological counterpart of an analogous
earlier result, due to Serre [163], which characterizes algebraic vector bundles over
an affine algebraic variety as finite projective modules over the coordinate ring
of the variety. The two theorems are collectively referred to as the Serre–Swan
theorem.

Motivated by these results, we can think of a finite projective module E over
a not necessarily commutative algebra A as a noncommutative vector bundle over
the noncommutative space represented by A:

{NC vector bundles on A} := {finite projective A-modules} (1.14)

That this is a useful point of view is completely justified, as will be indicated in
this book, by a rich source of examples, a powerful topological K-theory based on
noncommutative vector bundles, the existence of a noncommutative Chern–Weil
theory, and a viable Yang–Mills theory on noncommutative vector bundles.

Let us explain the Serre–Swan correspondence (1.13) between vector bundles
and finite projective modules. Recall that a right module P over a unital algebra
A is called projective if there exists a right A-module Q such that

P ⊕Q ' AI

is a free A-module. Equivalently, P is projective if every A-module surjection
P → Q → 0 splits as a right A-module map. P is called finite if there exists a
surjection An → P → 0 for some integer n. Thus P is finite projective if and only
if there is an integer n and a module Q such that

P ⊕Q ' An.

Given a vector bundle p : E → X, let

P = Γ(E) = {s : X → E; ps = idX}

be the set of all continuous global sections of E. It is clear that, under fiberwise
scalar multiplication and addition, P is a C(X)-module. If f : E → F is a bundle
map, we define a module map Γ(f) : Γ(E)→ Γ(F ) by Γ(f)(s)(x) = f(s(x)) for all
s ∈ Γ(E) and x ∈ X. We have thus defined a functor Γ, called the global section
functor, from the category of vector bundles over X and continuous bundle maps
to the category of C(X)-modules and module maps.
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Using compactness of X and a partition of unity one shows that there is a
vector bundle F on X such that E ⊕ F ' X × Cn is a trivial bundle. Let Q be
the space of global sections of F . We have

P ⊕Q ' An,

which shows that P is finite projective.
To show that all finite projective C(X)-modules arise in this way we proceed

as follows. Given a finite projective C(X)-module P , let Q be a C(X)-module
such that P ⊕Q ' An, for some integer n. Let e : An → An be the right A-linear
map corresponding to the projection onto the first coordinate: (p, q) 7→ (p, 0). It is
obviously an idempotent in Mn(C(X)). Since the rank of an idempotent in Mn(C)
is equal to its trace, the rank of the family e(x) is continuous in x and hence is
locally constant. This shows that one can define a vector bundle E as the image
of this idempotent e, and as a subbundle of the trivial bundle X × Cn:

E = {(x, v); e(x)v = v for all x ∈ X, v ∈ Cn} ⊂ X × Cn.

Now it is easily shown that Γ(E) ' P . With some more work it is shown that the
functor Γ is full and faithful and hence defines an equivalence of categories. This
finishes the proof of Swan’s theorem and now we start looking at (1.14) in earnest.

Where do finite projective modules come from? We can show that they are all
constructed from idempotents in matrix algebras over the given algebra. Let A be
a unital algebra and let Mn(A) denote the algebra of n by n matrices with entries
in A. If we think of An as a right A-module then clearly Mn(A) = EndA(An). Let

e ∈Mn(A), e2 = e,

be an idempotent. Left multiplication by e defines a right A-module map

e : An → An, ξ 7→ eξ,

where we think of An as the space of column matrices. Let

P = eAn and Q = (1− e)An

be the image and kernel of this map. Then, using the idempotent condition e2 = e,
we obtain a direct sum decomposition

P ⊕Q = An,

which shows that both P and Q are projective modules. Moreover, they are
obviously finitely generated. It follows that both P and Q are finite projective
modules.

Conversely, given any finite projective right A-module P , let Q be a module
such that P ⊕Q ' An for some integer n. Let e : An → An be the right A-module
map that corresponds to the projection map

(p, q) 7→ (p, 0).



1.2 Vector bundles, finite projective modules, and idempotents 19

Then it is easily seen that we have an isomorphism of A-modules

P ' eAn.

We have shown that any idempotent e ∈ Mn(A) defines a finite projective A-
module and that all finite projective A-modules are obtained from an idempotent
in some matrix algebra over A.

The idempotent e ∈ Mn(A) associated to a finite projective A-module P de-
pends of course on the choice of the splitting P ⊕ Q ' An. Let P ⊕ Q′ ' Am

be another splitting and f ∈ Mm(A) the corresponding idempotent. Define the
operators u ∈ HomA(Am, An), v ∈ HomA(An, Am) as compositions

u : Am −−→∼ P ⊕Q→ P → P ⊕Q′ −−→∼ An,

v : An −−→∼ P ⊕Q′ → P → P ⊕Q −−→∼ Am.

We have

uv = e, vu = f.

In general, two idempotents satisfying the above relations are called Murray–von
Neumann equivalent. Conversely, it is easily seen that Murray–von Neumann
equivalent idempotents define isomorphic finite projective modules.

Here are a few examples starting with a commutative one.

Example 1.2.1. The Hopf line bundle on the two-sphere S2, also known as the
magnetic monopole bundle, can be defined in various ways. (It was discovered,
independently, by Hopf and Dirac in 1931, motivated by very different considera-
tions.) Here is an approach that lends itself to noncommutative generalizations.
Let σ1, σ2, σ3, be three matrices in M2(C) that satisfy the canonical anticommu-
tation relations:

σiσj + σjσi = 2δij

for all i, j = 1, 2, 3. Here δij is the Kronecker symbol. A canonical choice is the so
called Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Define a function

F : S2 →M2(C), F (x1, x2, x3) = x1σ1 + x2σ2 + x3σ3,

where x1, x2, x3 are coordinate functions on S2, so that x2
1 + x2

2 + x2
3 = 1. Then

F 2(x) = 1, the identity matrix, for all x ∈ S2, and therefore

e =
1 + F

2
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is an idempotent in C(S2,M2(C)) 'M2(C(S2)). It thus defines a complex vector
bundle on S2. We have

e(x1, x2, x3) =
1

2

(
1 + x3 x1 + ix2

x1 − ix2 1− x3

)
.

Since
rank e(x) = trace e(x) = 1

for all x ∈ S2, we have in fact a complex line bundle over S2. It can be shown
that it is the line bundle associated to the Hopf fibration

S1 → S3 → S2.

Incidentally, e induces a map f : S2 → P 1(C), where f(x) is the 1-dimensional
subspace defined by the image of e(x), which is one-to-one and onto. Our line
bundle is just the pull back of the canonical line bundle over P 1(C).

This example can be generalized to higher-dimensional spheres. One can con-
struct matrices σ1, . . . , σ2n+1 in M2n(C) satisfying the Clifford algebra relations
[103]

σiσj + σjσi = 2δij

for all i, j = 1, . . . , 2n+1. Define a matrix-valued function F on the 2n-dimensional

sphere S2n, F ∈M2n(C(S2n)), by

F =

2n+1∑
i=1

xiσi. (1.15)

Then F 2(x) = 1 for all x ∈ S2n, so that e = 1+F
2 is an idempotent and defines a

vector bundle over S2n.

Example 1.2.2 (Hopf line bundle on quantum spheres). The Podleś quantum
sphere S2

q is the C∗-algebra generated by the elements a, a∗ and b subject to the
relations

aa∗ + q−4b2 = 1, a∗a+ b2 = 1, ab = q−2ba, a∗b = q2ba∗.

The quantum analogue of the Dirac (or Hopf) monopole line bundle over S2

is given by the following idempotent in M2(S2
q ) [91] (cf. also [24]):

eq =
1

2

[
1 + q−2b qa
q−1a∗ 1− b

]
.

It can be directly checked that e2
q = eq. Similar to the commutative case for S2,

for any integer n ∈ Z there is a quantum ‘line bundle’ with ‘topological charge’ n
over S2

q . We refer to [91] for its explicit description in terms of projections.
Is there a noncommutative analogue of the Hopf 2-plane bundle over the 4-

sphere S4, associated to the principal SU(2)-bundle SU(2) → S7 → S4 ? The
answer is positive and we refer to the survey [119] and references therein for its
description.
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Example 1.2.3 (Projective modules on noncommutative tori). The noncommu-
tative torus Aθ and its dense subalgebra Aθ were defined in Example 1.1.7. We
saw that when θ is rational Aθ (resp. Aθ) is isomorphic to the algebra of continuous
(resp. smooth) sections of a bundle of full matrix algebras on the torus T2. This
in particular implies that Aθ (resp. Aθ) is Morita equivalent to the commutative
algebra C(T2) (resp. C∞(T2)). Morita equivalent algebras, to be defined in the
next chapter, have equivalent categories of modules, projective modules, and finite
projective modules. Using Swan’s theorem, this implies that, for rational θ, there
is a one-to-one correspondence between (isomorphism classes of) finite projective
modules on Aθ and vector bundles on T2.

Notice that, since T2 is connected, for θ ∈ Z, Aθ = C(T2) does not contain
a non-trivial idempotent. For θ /∈ Z, the existence of a non-trivial idempotent in
Aθ was eventually settled by the following Powers–Rieffel projection, as we briefly
recall next. Let 0 < θ ≤ 1

2 . Consider the following element of Aθ:

p = f−1(U)V −1 + f0 + f1(U)V,

where f−1, f0, f1 are in C∞(R/Z). Using the concrete realization of U and V
given by (1.8) one can show that the conditions p2 = p = p∗ are equivalent to the
following relations

f1(t)f1(t− θ) = 0,

f1(t)f0(t− θ) = (1− f0(t))f1(t),

|f1(t)|2 + |f1(t+ θ)|2 = f0(t)(1− f0(t)).

It is rather elementary to see that these equations have (many) solutions and
in this way one obtains a non-trivial projection in Aθ (cf. [41], [85] for concrete
examples). Computing the trace of this projection is instructive. This is carried
out in [85] and we just cite the final result:

τ(p) =

∫ 1

0

f0(t) dt =

∫ θ

0

f0(t) dt+

∫ θ

0

(1− f0(t)) dt = θ.

Let E = S(R) be the Schwartz space of rapidly decreasing functions on R,
where a function f is called rapidly decreasing if for all its derivatives f (n), and
all k ∈ N, there is a constant C, depending on n and k, such that

|f (n)(x)|(1 + x2)k < C for all x ∈ R.

The following formulas define a left Aθ-module structure on E:

(Uf)(x) = f(x− θ), (V f)(x) = e2πixf(x).

It can be shown that E is finitely generated and projective [35]. Using E and the
following observation we can construct more Aθ-modules.

Let E1 (resp. E2) be left Aθ1- (resp. Aθ2-) modules, where the generators U
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and V of Aθ act by U1 and V1 (resp. U2 and V2). The following formulas define a
left action of Aθ1+θ2 on E1 ⊗ E2:

U(ξ1 ⊗ ξ2) = U1ξ1 ⊗ U2ξ2, V (ξ1 ⊗ ξ2) = V1ξ1 ⊗ V2ξ2. (1.16)

For each pair of integers p, q with q > 0, the q × q matrices u and v defined
by (1.10) define a finite dimensional representation of A p

q
on the vector space

E′p,q = Cn. Now we can take θ1 = θ − p
q and θ2 = p

q in (1.16) and obtain a
sequence of Aθ-modules

Ep,q = E

(
θ − p

q

)
⊗ E′p,q.

We give an equivalent definition of Ep,q [35], [59]. Let Ep,q = S(R×Zq), where
Zq is the cyclic group of order q. The following formulas define an Aθ-module
structure on Ep,q:

(Uf)(x, j) = f

(
x+ θ − p

q
, j − 1

)
,

(V f)(x, j) = e2πi(x−j pq )f(x, j).

It can be shown that for p − qθ 6= 0, the module Ep,q is finite and projective.
In particular for irrational θ it is always finite and projective.

For more examples of noncommutative vector bundles see [46], [85], [119].

Exercise 1.2.1. Let A be a unital algebra. Show that idempotents e and f in A
are Murray–von Neumann equivalent if and only if the finite projective modules
eA and fA are isomorphic (as right A-modules).

Exercise 1.2.2. Idempotents e and f in a unital algebra A are called similar if
there is an invertible u ∈ A such that e = ufu−1. This is an equivalence relation,
and clearly similarity implies Murray–von Neumann equivalence. Give examples
of idempotents which are Murray–von Neumann equivalent but not similar. Find
necessary and sufficient conditions for idempotents in L(H) to be Murray–von
Neumann equivalent or similar.

Exercise 1.2.3. Compute the rank of the vector bundle defined by (1.15).

Exercise 1.2.4. Verify that (1.16) defines a left Aθ1+θ2-module.

1.3 Affine varieties and finitely generated com-
mutative reduced algebras

In algebraic geometry, Hilbert’s Nullstellensatz [93], [33] immediately implies that
the category of affine algebraic varieties over an algebraically closed field F is equiv-
alent to the opposite of the category of finitely generated commutative reduced
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unital F-algebras:

{affine algebraic varieties}
'

{finitely generated commutative reduced algebras}op
(1.17)

This is a perfect analogue of the Gelfand–Naimark correspondence (1.1) in the
world of affine algebraic geometry.

An affine algebraic variety (sometimes called an algebraic set) over an alge-
braically closed field F is a subset V ⊂ Fn of an affine space which is the set of
zeros of a collection I of polynomials in n variables over F:

V = V (I) = {z ∈ Fn; p(z) = 0 for all p ∈ I}. (1.18)

Without loss of generality we can assume that I is an ideal in F[x1, . . . , xn]. A
morphism between affine varieties V ⊂ Fn and W ⊂ Fm is a map f : V → W
which is the restriction of a polynomial map Fn → Fm. It is clear that affine
varieties and morphisms between them form a category. This is the category that
appears on the left hand side of (1.17).

A reduced algebra is by definition an algebra with no nilpotent elements, i.e., if
xn = 0 for some n, then x = 0. Consider the category of unital finitely generated
commutative and reduced algebras and unital algebra homomorphisms. This is
the category that appears on the right-hand side of (1.17).

The equivalence (1.17) is defined by a functor that associates to a variety
V ⊂ Fn its coordinate ring O[V ] defined by

O[V ] := Hom(V, pt) ' F[x1, . . . , xn]/I,

where I is the vanishing ideal of V defined by

I = {p ∈ F[x1, . . . , xn]; p(x) = 0 for all x ∈ V }.

Obviously O[V ] is a finitely generated commutative unital reduced algebra. More-
over, given a morphism of varieties f : V → W , its pullback defines an algebra
homomorphism f∗ : O[W ]→ O[V ]. We have thus defined a contravariant functor

V ; O[V ]

from affine varieties to finitely generated reduced commutative unital algebras.
Given a finitely generated commutative unital algebra A with n generators we

can obviously write it as a quotient:

A ' F[x1, . . . , xn]/I.

Notice that A is a reduced algebra, i.e., it has no nilpotent elements, if and only
if the ideal I is a radical ideal in the sense that if xn ∈ I then x ∈ I. One of the
classical forms of the Nullstellensatz [93] states that if F is algebraically closed and
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I is a radical ideal, then A can be recovered as the coordinate ring of the variety
V defined by (1.18):

O[V ] ' A = F[x1, . . . , xn]/I.

This shows that the coordinate ring functor V 7→ O[V ] is essentially surjective in
the sense of Appendix D and is the main step in establishing (1.17). Showing that
the functor is full and faithful is much easier. In Appendix A we sketch a proof of
the Nullstellensatz when F is the field of complex numbers.

Much as in the Gelfand–Naimark correspondence, under the correspondence
(1.17) geometric constructions can be translated into algebraic terms and vice-
versa. Thus, for example we have O[V1] ⊕ O[V2] ' O[V1 ∪ V2] (disjoint union);
O[V1] ⊗ O[V2] ' O[V1 × V2]; and V is irreducible if and only if O[V ] is an in-
tegral domain. There are also various equivalent ways of characterizing smooth
(nonsingular) varieties in terms of their coordinate rings.

Unlike the Gelfand–Naimark correspondence, at present the correspondence
(1.17) does not seem to indicate what is the right notion of a noncommutative
affine variety, or noncommutative (affine) algebraic geometry in general. There
seems to be a lot remains to be done in this area, but we indicate one possible
approach that has been pursued at least in the smooth case.

A particularly important characterization of non-singularity that lends itself to
noncommutative generalization is the following result of Grothendieck explained
in [124]: a variety V is smooth if and only if its coordinate ring A = O[V ] has the
lifting property with respect to nilpotent extensions. More precisely, V is smooth
if and only if for any pair (C, I), where C is a commutative algebra and I is a
nilpotent ideal, the map

Homalg(A, C)→ Homalg(A, C/I) (1.19)

is surjective.

Motivated by this characterization of smoothness, in [61] a not necessarily
commutative algebra A over C is called NC smooth (or quasi-free) by Cuntz and
Quillen, if the lifting property (1.19) holds in the category of all algebras, i.e., C
is now allowed to be noncommutative. Obviously a free algebra (also known as
tensor algebra, or algebra of noncommutative polynomials) A = T (W ) is smooth
in this sense. The bad news is that algebras which are smooth in the commutative
world need not be smooth in this new sense. In fact one can show that an algebra
is NC smooth if and only if it has Hochschild cohomological dimension one [61].
In particular polynomials in n ≥ 2 variables and in general coordinate rings of
smooth varieties of dimension n ≥ 2 are not NC smooth. Nevertheless this notion
of NC smoothness has played a very important role in the development of a version
of noncommutative algebraic geometry in [113], [123].

An alternative approach to noncommutative algebraic geometry is proposed
in [5] and references therein. One of the underlying ideas here is the projective
Nullstellensatz theorem [93] that characterizes the graded coordinate ring of a
projective variety defined as sections of powers of an ample line bundle over the
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variety. Thus in this approach a noncommutative variety is represented by a
noncommutative graded ring with certain extra properties.

1.4 Affine schemes and commutative rings

The above correspondence (1.17) between finitely generated reduced commutative
algebras and affine varieties is not an ideal result. One is naturally interested in
larger classes of algebras, like algebras with nilpotent elements as well as algebras
over fields which are not algebraically closed or algebras over arbitrary commuta-
tive rings; this last case is particularly important in number theory. In general one
wants to know what kind of geometric objects correspond to a commutative ring
and how this correspondence goes. Affine schemes are exactly defined to address
this question. We follow the exposition in [93].

Let A be a commutative unital ring. The prime spectrum (or simply the spec-
trum) of A is a pair (SpecA,OA) where SpecA is a topological space and OA is
a sheaf of rings on SpecA defined as follows. As a set SpecA consists of all prime
ideals of A (an ideal I ⊂ A is called prime if I 6= A, and for all a, b in A, ab ∈ A
implies that either a ∈ I or b ∈ I). Given an ideal I ⊂ A, let V (I) ⊂ SpecA
be the set of all prime ideals which contain I. We can define a topology on
SpecA, called the Zariski topology, by declaring sets of the type V (I) to be closed
(this makes sense since the easily established relations V (IJ) = V (I) ∪ V (J) and
V
(∑

Ii
)

=
⋂
V (Ii) show that the intersection of a family of closed sets is closed

and the union of two closed sets is closed as well). One checks that SpecA is
always compact but is not necessarily Hausdorff.

For each prime ideal p ⊂ A, let Ap denote the localization of A at p. For an open
set U ⊂ SpecA, let OA(U) be the set of all continuous sections s : U →

⋃
p∈U Ap.

(By definition a section s is called continuous if locally around any point p ∈ U it
is of the form f

g , with g /∈ p). One checks that OA is a sheaf of commutative rings
on SpecA.

Now (SpecA,OA) is a so-called ringed space and A 7→ (SpecA,OA) is a functor
called the spectrum functor. A unital ring homomorphism f : A → B defines a
continuous map f∗ : SpecB → SpecA by f∗(p) = f−1(p) for all prime ideals
p ⊂ B. Note that if I is a maximal ideal f−1(I) is not necessarily maximal. This
is one of the reasons one considers, for arbitrary rings, the prime spectrum and
not the maximal spectrum, as we did in the case of commutative C∗-algebras.

An affine scheme is a ringed space (X,O) such that X is homeomorphic to
SpecA for a commutative ring A and O is isomorphic to OA. The spectrum
functor defines an equivalence of categories:

{affine schemes} ' {commutative rings}op

The inverse equivalence is given by the global section functor that sends an affine
scheme to the ring of its global sections.
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In the same vein categories of modules over a ring can be identified with cate-
gories of sheaves of modules over the spectrum of the ring. Let A be a commutative
ring and let M be an A-module. We define a sheaf of modules M over SpecA
as follows. For each prime ideal p ⊂ A, let Mp denote the localization of M at
p. For any open set U ⊂ SpecA let M(U) denote the set of continuous sections
s : U →

⋃
pMp (this means that s is locally a fraction m

f with m ∈M and f ∈ Ap).
One can recover M from M by showing that M ' ΓM is the space of global sec-
tions of M. Sheaves of OA-modules on Spec A obtained in this way are called
quasi-coherent sheaves. They are local models for a more general notion of quasi-
coherent sheaves on arbitrary schemes. The functors M 7→ M and M 7→ ΓM
define an equivalence of categories [93]:

{modules over A} ' {quasi-coherent sheaves on Spec A}

Based on this correspondence, given a, not necessarily commutative, algebra A,
we can think of the category of A-modules as a replacement for the category of
quasi-coherent sheaves over the noncommutative space represented by A. This is
a very fruitful idea in the development of the subject of noncommutative algebraic
geometry, about which we shall say nothing in this book (see [5], [113], [123]).

1.5 Compact Riemann surfaces and algebraic func-
tion fields

It can be shown that the category of compact Riemann surfaces is equivalent to
the opposite of the category of algebraic function fields:

{compact Riemann surfaces} ' {algebraic function fields}op

For a proof of this correspondence see, e.g., [78], Section IV.11.

A Riemann surface is a complex manifold of complex dimension one. A mor-
phism between Riemann surfaces X and Y is a holomorphic map f : X → Y . An
algebraic function field is a finite extension of the field C(x) of rational functions
in one variable. A morphism of function fields is simply an algebra map.

To a compact Riemann surface one associates the field M(X) of meromorphic
functions on X. For example the field of meromorphic functions on the Riemann
sphere is the field of rational functions C(x). In the other direction, to a finite
extension of C(x) one associates the compact Riemann surface of the algebraic
function p(z, w) = 0. Here w is a generator of the field over C(x). This cor-
respondence is essentially due to Riemann. Despite its depth and beauty, this
correspondence so far has not revealed any way of finding the noncommutative
analogue of complex geometry.



1.6 Sets and Boolean algebras 27

1.6 Sets and Boolean algebras

Perhaps the simplest notion of space of any kind, free of any extra structure, is
the notion of a set. In a sense set theory can be regarded as the geometrization
of logic. There is a duality between the category of sets and set maps, and the
category of complete atomic Boolean algebras [7]:

{sets} ' {complete atomic Boolean algebras}op

A Boolean algebra is a unital ring B in which x2 = x for all x in B. A Boolean
algebra is necessarily commutative as can be easily shown. One defines an order
relation on B by declaring x ≤ y if there is an y′ such that x = yy′. It can be
checked that this is in fact a partial order relation on B. An atom in a Boolean
algebra is an element x such that there is no y with 0 < y < x. A Boolean algebra
is atomic if every element x is the supremum of all the atoms smaller than x.
A Boolean algebra is complete if every subset has a supremum and infimum. A
morphism of complete Boolean algebras is a unital ring map which preserves all
infs and sups. (Of course, any unital ring map between Boolean algebras preserves
finite sups and infs).

Now, given a set S let

B = 2S = {f : S → 2},

where 2 := {0, 1}. Note that B is a complete atomic Boolean algebra. Any map
f : S → T between sets defines a morphism of complete atomic Boolean algebras
via pullback: f∗(g) := g ◦ f , and

S ; 2S

is a contravariant functor from the category of sets to the category of complete
atomic Boolean algebras.

In the opposite direction, given a Boolean algebra B, one defines its spectrum
B̂ by

B̂ = HomBoolean(B, 2),

where we now think of 2 as a Boolean algebra with two elements. Any algebra
map f : B → C induces a set map f̂ : Ĉ → B̂ by f̂(χ) = χ ◦ f for all χ ∈ Ĉ. It
can be shown that the two functors that we have just defined are anti-equivalences
of categories, quasi-inverse to each other. Thus once again we have a duality
between a certain category of geometric objects, namely sets, and a category of
commutative algebras, namely complete atomic Boolean algebras. This result is a
special case of the Stone duality between Boolean algebras and a certain class of
topological spaces [102].

This result, unfortunately, does not indicate a way of extending the notion
of a set to some kind of ‘noncommutative set’. As was mentioned before, the
commutativity of a Boolean algebra is automatic and hence a naive approach to
‘quantizing set theory’ via ‘noncommutative Boolean algebras’ is doomed to fail.
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1.7 From groups to Hopf algebras and quantum
groups

The game that we have been playing so far in this chapter should be familiar
by now. We encode geometric or topological structures on a space in terms of a
suitable algebra of functions on that space and then try to see how much of this
structure makes sense without the commutativity hypothesis on the part of the
algebra. If we are lucky we can then find a noncommutative analogue of the given
structure. Let us apply this idea to one last example.

Let G be a group. Can we encode the group structure on G in terms of the
algebra of functions on G? The answer is yes and by relaxing the commutativity
assumption on the resulting structure we obtain an object which in many ways
behaves like a group but is not a group. It is called a Hopf algebra. Quantum
groups are closely related objects. They contain a dense Hopf subalgebra, but
typically, as in Woronowicz’ compact quantum groups, they are not Hopf algebras
in the strict algebraic sense of this concept (see Example 1.7.1 iv) for more on
this).

We start with a simple example. Let G be a finite group and let H = C(G)
denote the commutative algebra of complex-valued functions on G. Notice that
the algebra structure on H has nothing to do with the group structure on G. The
group structure on G is usually defined via the multiplication, inversion and unit
maps

p : G×G→ G,

i : G→ G,

u : ∗ → G,

where ∗ denotes a set with one element. These maps are assumed to satisfy the
associativity, inverse, and unit axioms. By dualizing these maps, we obtain algebra
homomorphisms

∆ = p∗ : H → H ⊗H,
S = i∗ : H → H,

ε = u∗ : H → C,

called the comultiplication, antipode, and counit of H respectively. Notice that we
have identified C(G × G) with C(G) ⊗ C(G), which is fine since G is finite. Let
m : C(G) ⊗ C(G) → C(G) and η : C → C(G) denote the multiplication and unit
maps of C(G). The associativity, inverse, and unit axioms for groups are dualized
and in fact are easily seen to be equivalent to the following coassociativity, antipode,
and counit axioms for H:

(∆⊗ I)∆ = (I ⊗∆)∆: H → H ⊗H ⊗H, (1.20)

(ε⊗ I)∆ = (I ⊗ ε)∆ = I : H → H, (1.21)

m(S ⊗ I) = m(I ⊗ S) = ηε : H → H, (1.22)
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where I denotes the identity map. In short, we have shown that H = C(G) is a
commutative Hopf algebra. Now the group G can be recovered from the algebra
H as the set of grouplike elements of H, i.e., as those h ∈ H that satisfy

∆(h) = h⊗ h, h 6= 0.

The general definition of a Hopf algebra is as follows. Let H be a unital algebra
and let m : H ⊗H → H and η : C → H denote its multiplication and unit maps,
respectively.

Definition 1.7.1. A unital algebra (H, m, η) endowed with unital algebra homo-
morphisms ∆: H → H ⊗ H, ε : H → C and a linear map S : H → H satisfying
axioms (1.20)–(1.22) is called a Hopf algebra.

We call ∆ the comultiplication, ε the counit, and S the antipode of H. If
existence of an antipode is not assumed, then we say we have a bialgebra. For
example, if G is only a finite monoid then C(G) is a bialgebra. A Hopf algebra is
called commutative if it is commutative as an algebra, and is called cocommutative
if τ∆ = ∆, where τ : H ⊗H → H ⊗H is the flip map defined by τ(x⊗ y) = y⊗x.
Thus H = C(G) is cocommutative if and only if G is a commutative group.

Example 1.7.1. An important idea in Hopf algebra theory is that commutative
or cocommutative Hopf algebras are closely related to groups and Lie algebras. We
have already seen one example in H = C(G) above. We give a few more examples
to indicate this connection.

1. Let G be a discrete group (it need not be finite) and let H = CG denote the
group algebra of G. A typical element of CG is a finite formal linear combination∑
g∈G agg with ag ∈ C. Group multiplication in G then defines the multiplication

of CG. Let
∆(g) = g ⊗ g, S(g) = g−1, ε(g) = 1

for all g ∈ G, and linearly extend them to H. It is easy to check that (H, ∆, ε, S) is
a cocommutative Hopf algebra. It is commutative if and only if G is commutative.
Note that when G is finite we have already attached another Hopf algebra C(G)
to G. These two Hopf algebras are dual to each other in a sense to be defined
below.

2. Let g be a Lie algebra and let H = U(g) be the universal enveloping algebra
of g. By definition, U(g) is the quotient of the tensor algebra T (g) by the two-sided
ideal generated by x⊗ y− y⊗x− [x, y] for all x, y ∈ g. It is an associative algebra
and the canonical map i : g → U(g) is universal in the sense that for any other
associative algebra A, any linear map α : g→ A satisfying α([x, y]) = α(x)α(y)−
α(y)α(x) uniquely factorises through i. Using the universal property of U(g)
one checks that there are uniquely defined algebra homomorphisms ∆: U(g) →
U(g)⊗ U(g), ε : U(g)→ C and an anti-algebra map S : U(g)→ U(g), determined
by

∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, and S(X) = −X
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for all X ∈ g. One then checks that (U(g),∆, ε, S) is a cocommutative Hopf
algebra. It is commutative if and only if g is an abelian Lie algebra, in which case
U(g) = S(g) is the symmetric algebra of g.

3. Let H be a Hopf algebra. A group-like element of H is a nonzero element
h ∈ H such that

∆h = h⊗ h.

We have, using the axioms for the antipode, hS(h) = S(h)h = 1H , which shows
that a group-like element is invertible. It is easily seen that group-like elements of
H form a subgroup of the multiplicative group of H. For example, for H = CG the
set of grouplike elements coincides with the group G itself. A primitive element of
a Hopf algebra is an element h ∈ H such that

∆h = 1⊗ h+ h⊗ 1.

It is easily seen that the bracket [x, y] := xy−yx of two primitive elements is again
a primitive element. It follows that primitive elements form a Lie algebra. For
H = U(g) any element of g is primitive and in fact using the Poincaré–Birkhoff–
Witt theorem, one can show that the set of primitive elements of U(g) coincides
with the Lie algebra g.

4. (Compact groups) Let G be a compact topological group and let C(G)
denote the algebra of continuous complex-valued functions on G. Unless G is a
finite group, C(G) cannot be turned into a Hopf algebra in the sense that we
defined above. The problem is with defining the coproduct ∆ as the dual of the
multiplication of G and is caused by the fact that C(G) ⊗ C(G) is only dense in
C(G×G) and the two are different if G is not a finite group. There are basically
two methods to get around this problem: one can either restrict to an appropriate
dense subalgebra of C(G) and define the coproduct just on that subalgebra, or
one can broaden the notion of Hopf algebras by allowing completed topological
tensor products as opposed to algebraic ones. The two approaches are essentially
equivalent and eventually lead to Woronowicz’ theory of compact quantum groups
[180]. We start with the first approach.

A continuous function f : G → C is called a representative function if the set
of left translations of f by all elements of G forms a finite dimensional subspace of
C(G). It is easy to see that f is representative if and only if it appears as a matrix
entry of a finite dimensional complex representation of G. Let H = Rep(G) denote
the linear span of representative functions on G (we hope this is not confused with
the representation ring of G). It is a subalgebra of C(G) which is closed under
complex conjugation. By the Peter–Weyl Theorem (see, for example, [21]), Rep(G)
is a dense ∗-subalgebra of C(G). Now let p : G×G→ G denote the multiplication
of G and let

p∗ : C(G)→ C(G×G), p∗f(x, y) = f(xy),

denote its dual map. One checks that [21], [85] if f is representative, then

p∗f ∈ Rep(G)⊗ Rep(G) ⊂ C(G×G).
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Let e denote the identity of G. The formulas

∆f = p∗f, εf = f(e), and (Sf)(g) = f(g−1)

define a Hopf algebra structure on Rep(G). Alternatively, one can describe Rep(G)
as the linear span of matrix coefficients of isomorphism classes of all irreducible
finite dimensional complex representations ofG. The coproduct can also be defined
as

∆(fij) =

n∑
k=1

fik ⊗ fkj .

This algebra is finitely generated (as an algebra) if and only if G is a (compact)
Lie group.

For a concrete example, let G = U(1) be the group of complex numbers of
absolute value 1. Irreducible representations of G are all 1-dimensional and are
parameterized by integers n ∈ Z. With a little work one can show that H =
Rep(G) is the Laurent polynomial algebra

H = C[u, u−1]

with u a unitary (uu∗ = u∗u = 1) and with comultiplication and counit given by

∆(un) = un ⊗ un, ε(un) = 1, S(un) = u−n

for all n ∈ Z.
A more interesting example is when G = SU(2) is the group of unitary 2 by

2 complex matrices with determinant 1. The algebra C(SU(2)) = C(S3) is the
algebra of continuous functions on the three-sphere S3 = {(z1, z2) ∈ C2; |z1|2 +
|z2|2 = 1}. Let α and β denote the coordinate functions defined by α(z1, z2) = z1

and β(z1, z2) = z2. They satisfy the relation αα∗+ββ∗ = 1. It can be shown that
C(S3) is the universal unital commutative C∗-algebra generated by two generators
α and β with relation

αα∗ + ββ∗ = 1.

Notice that this relation amounts to saying that

U =

(
α β
−β∗ α∗

)
is a unitary matrix, i.e., UU∗ = U∗U = I. All irreducible unitary representations
of SU(2) are tensor products of the fundamental representation whose matrix is
U [21]. Though it is by no means obvious, it can be shown that Rep(SU(2)) is
the ∗-subalgebra of C(SU(2)) generated by α and β. Its coproduct, counit, and
antipode are uniquely induced by their values on the generators:

∆

(
α β
−β∗ α∗

)
=

(
α β
−β∗ α∗

)
.
⊗
(

α β
−β∗ α∗

)
,
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ε

(
α β
−β∗ α∗

)
=

(
1 0
0 1

)
,

S(α) = α∗, S(β) = −β, S(β∗) = −β∗, S(α∗) = α.

Here the notation
.
⊗ is meant to imply ∆(α) = α⊗ α+ β ⊗ (−β∗), etc.

5. (Affine group schemes) An affine algebraic group, say over C, is an affine
algebraic variety G such that G is a group and its multiplication and inversion
maps, p : G ×G → G and i : G → G, are morphisms of varieties. The coordinate
ring H = O[G] of an affine algebraic group G is a commutative Hopf algebra. The
maps ∆, ε, and S are the duals of the multiplication, unit, and inversion maps
of G, similar to what we did with finite and compact groups. Here is a concrete
example. Let G = GLn(C) be the general linear groups consisting of all invertible
n× n complex matrices. As an algebra, H = O[GLn(C)] is generated by pairwise
commuting elements xij , D for i, j = 1, . . . , n and the relation

det(xij)D = 1.

The coproduct, counit and antipode of H are given by

∆(xij) =

k∑
k=1

xik ⊗ xkj , ∆(D) = D ⊗D,

ε(xij) = δij , ε(D) = 1,

S(xij) = DAdj(xij), S(D) = D−1.

These formulas are obtained by dualizing the usual linear algebra formulas for
matrix multiplication, the identity matrix, and the adjoint formula for the inverse
of a matrix.

More generally, an affine group scheme over a commutative ring k is a com-
mutative Hopf algebra over k. This definition can be cast in the language of
representable functors à la Grothendieck [176]. In fact, given such a Hopf algebra
H, it is easy to see that for any commutative k-algebra A, the set

G = HomAlg(H, A)

of algebra maps from H to A is a group under the convolution product. The
convolution product of any two linear maps f, g : H → A, denoted by f ∗ g, is
defined as the composition

H
∆−−→ H ⊗H f⊗g−−−→ A⊗A m→ A,

or, equivalently, by

(f ∗ g)(h) =
∑

f(h(1))g(h(2)),

if we use Sweedler notation ∆(h) =
∑
h(1) ⊗ h(2) for the coproduct. Thus we can

define a functor

Com Algk ; Groups, A 7→ HomAlg(H, A)
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from the category of commutative k-algebras to the category of groups. This
functor is clearly representable, as it is represented by our commutative Hopf
algebra H.

Conversely, let F : Com Algk ; Groups be a representable functor represented
by a commutative algebra H. Then H⊗H represents F×F , and applying Yoneda’s
lemma we obtain maps ∆: H → H ⊗ H, ε : H → C and S : H → H satisfying
axioms (1.20)–(1.22). This shows that H is in fact a Hopf algebra. Thus the
category of affine group schemes is equivalent to the category of representable
functors Com Algk → Groups.

Here is a concrete example. Consider the functor µn : Com Algk → Groups
which sends a commutative algebra A to the group of its n-th roots of unity. This
functor is representable by the Hopf algebra H = k[X]/(Xn − 1), the quotient
of the polynomial algebra by the relation Xn = 1. Its coproduct, antipode, and
counit are given by

∆(X) = X ⊗X, S(X) = Xn−1, ε(X) = 1.

In general, an algebraic group, such as GLn or SLn, is an affine group scheme,
represented by its coordinate ring. See [176] for a good introduction to affine group
schemes.

Example 1.7.2 (Hopf duality). Let H be a finite dimensional Hopf algebra and
let H∗ = Hom(H, C) denote its linear dual. By dualizing the algebra, coalgebra,
and antipode maps of H, we obtain the maps

m∗ : H∗ → H∗ ⊗H∗, η∗ : H∗ → C, ∆∗ : H∗ → H∗ ⊗H∗,

ε∗ : C→ H∗, S∗ : H∗ → H∗.

It can be checked that these operations turn H∗ into a Hopf algebra, called the
dual of H. Notice that H is commutative (resp. cocommutative) if and only if
H∗ is cocommutative (resp. commutative). We also note that H∗∗ = H as Hopf
algebras. For example, when G is a finite group we have (CG)∗ = C(G). The
isomorphism is induced by the map

∑
agg 7→

∑
agδg.

We note that the linear dual of an infinite dimensional Hopf algebra is not a
Hopf algebra. The main problem is that when we dualize the product we only
obtain a map m∗ : H∗ → (H ⊗H)∗, and when H is infinite dimensional H∗ ⊗H∗
is only a proper subspace of (H ⊗ H)∗. Notice that the dual of a coalgebra is
always an algebra. One way to get around this problem is to consider the smaller
restricted dual of Hopf algebras which are always a Hopf algebra [65], [167]. The
main idea is to consider, instead of all linear functionals on H, only the continuous
ones (with respect to the linearly compact topology on H). The restricted dual H◦

may be too small though.
A better way to think about Hopf duality which covers the infinite dimensional

case as well is via a Hopf pairing. A Hopf pairing between Hopf algebras K and
H is a bilinear map

〈 , 〉 : H ⊗K → C
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satisfying the following relations for all h, h1, h2 in H and g, g1, g2 in K:

〈h1h2, g〉 =
∑
〈h1, g

(1)〉〈h2, g
(2)〉,

〈h, g1g2〉 =
∑
〈h(1), g1〉〈h(2), g2〉,

〈h, 1〉 = ε(h),

〈1, g〉 = ε(g).

For example, let H = U(g) be the enveloping algebra of the Lie algebra g of a Lie
group G and let K = Rep(G) be the Hopf algebra of representable functions on
G. There is a canonical non-degenerate pairing H ⊗K → C defined by

〈X1 ⊗ · · · ⊗Xn, f〉 = X1(X2(. . . X1(f)) . . . ), (1.23)

where

X(f) :=
d

dt
f(etX)|t=0

(cf. [85] for a thorough discussion).
We shall see that there is an analogous pairing between compact quantum

groups of classical Lie groups and their associated quantized enveloping algebras
(cf. (1.24)).

Example 1.7.3 (Structure of cocommutative Hopf algebras). Is every cocommu-
tative Hopf algebra a universal enveloping algebra? The answer is negative since,
for example, as we saw above group algebras are also cocommutative. We men-
tion two major structure theorems which completely settle this question over an
algebraically closed field of characteristic zero.

1. By a theorem of Kostant and, independently, Cartier [167], [32], any cocom-
mutative Hopf algebra H over an algebraically closed field k of characteristic zero is
isomorphic (as a Hopf algebra) to a crossed product algebra H = U(P (H))oG(H),
where P (H) is the Lie algebra of primitive elements of H and G(H) is the group
of all grouplike elements of H and G(H) acts on P (H) by inner automorphisms,
(g, h) 7→ ghg−1, for g ∈ G(H) and h ∈ P (H). The coalgebra structure of
H = U(P (H))oG(H) is simply the tensor product of the two coalgebras U(P (H))
and kG(H).

2. (Cartier–Milnor–Moore). Let H be a Hopf algebra over a field k of charac-

teristic zero (k need not be algebraically closed), let H̄ denote the kernel of the
counit map ε, and let ∆̄ : H̄ → H̄⊗ H̄ denote the reduced coproduct. By definition

∆̄(h) = ∆(h)− 1⊗ h− h⊗ 1.

Let H̄n ⊂ H̄ denote the kernel of the iterated coproduct ∆̄n+1 : H̄ → H̄⊗(n+1).
The increasing sequence of subspaces

H̄0 ⊂ H̄1 ⊂ H̄2 ⊂ · · ·
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is called the coradical filtration of H. It is a Hopf algebra filtration in the sense
that

H̄i · H̄j ⊂ H̄i+j and ∆̄(H̄n) ⊂
∑
i+j=n

H̄i ⊗ H̄j .

A Hopf algebra is called connected or co-nilpotent if its coradical filtration is ex-
haustive, that is, if

⋃
i H̄i = H̄, or, equivalently, for any h ∈ H̄, there is an n such

that ∆̄n(h) = 0. Now we can state the Cartier–Milnor–Moore theorem:

Proposition 1.7.1. A cocommutative Hopf algebra over a field of characteristic
0 is isomorphic, as a Hopf algebra, to the enveloping algebra of a Lie algebra if
and only if it is connected.

The Lie algebra in question is the Lie algebra of primitive elements of H,
namely those elements h such that ∆(h) = h⊗ 1 + 1⊗ h. A typical application of
the proposition is as follows. Let H =

⊕
i≥0Hi be a graded cocommutative Hopf

algebra. It is easy to see that H is connected if and only if H0 = k. The theorem
then implies that, if H is connected, we have H = U(g), an enveloping algebra.

Example 1.7.4 (Compact quantum groups). A prototypical example of a com-
pact quantum group is Woronowicz’ SUq(2), for 0 < q ≤ 1. As a C∗-algebra it is
the unital C∗-algebra, denoted C(SUq(2)), generated by α and β subject to the
relations

ββ∗ = β∗β, αβ = qβα, αβ∗ = qβ∗α, αα∗ + q2β∗β = α∗α+ β∗β = I.

Notice that these relations amount to saying that

U =

(
α qβ
−β∗ α∗

)
is unitary, i.e., UU∗ = U∗U = I. This C∗-algebra is not a Hopf algebra in the
strict algebraic sense of Definition 1.7.1, but, as with compact topological groups,
it has a dense subalgebra which is a Hopf algebra. Let O(SUq(2)) denote the dense
∗-subalgebra of C(SUq(2)) generated by elements α and β. This is the analogue
of the algebra of representative functions (Rep(SU(2))) in Example 1.7.1 iv). We
can turn O(SUq(2)) into a Hopf algebra as follows. Its coproduct and antipode
are defined by

∆

(
α β
−β∗ α∗

)
=

(
α β
−β∗ α∗

)
.
⊗
(

α β
−β∗ α∗

)
,

S(α) = α∗, S(β) = −q−1β, S(β∗) = −qβ∗, S(α∗) = α.

Notice that the coproduct is only defined on the algebra O(SUq(2)) of matrix
elements on the quantum group, and its extension to C(SUq(2)) lands in the
completed tensor product

∆: C(SUq(2))→ C(SUq(2)) ⊗̂ C(SUq(2)).

At q = 1 we obtain the algebra of continuous functions on SU(2). We refer to
[117] for a survey of compact and locally compact quantum groups.
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Example 1.7.5 (The quantum enveloping algebra Uq(su (2))). As an algebra
over C, Uq(su (2)) is generated by elements E, F and K, subject to the relations
KK−1 = K−1K = 1 and (see [111])

KEK−1 = qE, KFK−1 = q−1F, [F,E] =
K2 −K−2

q − q−1
.

One can then check that the following relations uniquely define the coproduct, the
antipode, and the counit of Uq(su (2)):

∆(K) = K ⊗K, ∆(F ) = F ⊗K +K−1 ⊗ F, ∆(E) = E ⊗K +K−1 ⊗ E,

S(K) = K−1, S(E) = −qE, S(F ) = −q−1F, ε(K) = 1, ε(E) = ε(F ) = 0.

There is a Hopf pairing

Uq(su (2))⊗O(SUq(2))→ C (1.24)

given on generators by

〈K,α〉 = q−1/2, 〈K−1, α〉 = q1/2, 〈K,α∗〉 = q1/2, 〈K−1, α∗〉 = q−1/2,

〈E, β∗〉 = −1, 〈F, β〉 = q−1,

and the pairing between all other couples of generators is 0. This pairing should
be compared with its classical counterpart (1.23).

Example 1.7.6 (Symmetry in noncommutative geometry; Hopf algebra actions).
The idea of symmetry in classical geometry is encoded via the action of a group
or Lie algebra on a space. This can be extended to noncommutative geometry by
considering an action or coaction of a Hopf algebra on a noncommutative algebra
(or coalgebra) representing a noncommutative space. We look at Hopf algebra
actions first.

Let H be a Hopf algebra. An algebra A is called a left H-module algebra if A
is a left H-module via a map ρ : H⊗A→ A and the multiplication and unit maps
of A are morphisms of H-modules, that is,

h(ab) =
∑

h(1)(a)h(2)(b) and h(1) = ε(h)1

for all h ∈ H and a, b ∈ A.
Using the relations ∆h = h ⊗ h and ∆h = 1 ⊗ h + h ⊗ 1, for grouplike and

primitive elements, it is easily seen that, in an H-module algebra, group-like ele-
ments act as unit preserving algebra automorphisms while primitive elements act
as derivations. In particular, for H = CG the group algebra of a discrete group,
an H-module algebra structure on A is simply an action of G by unit preserving
algebra automorphisms of A. Similarly, we have a one-to-one correspondence be-
tween U(g)-module algebra structures on A and Lie actions of the Lie algebra g
by derivations on A.
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Really novel examples occur when one quantizes actions of Lie algebras on
classical space. Here is an example. Recall from Example 1.2.2 that the Podleś
quantum sphere S2

q is the ∗-algebra generated by elements a, a∗ and b subject to
the relations

aa∗ + q−4b2 = 1, a∗a+ b2 = 1, ab = q−2ba, a∗b = q2ba∗.

By a direct computation one can show that the following formulas define a
Uq(su (2))-module algebra structure on S2

q :

K · a = qa, K · a∗ = q−1a∗, K · b = b,

E · b = q
5
2 a, E · a∗ = −q 3

2 (1 + q−2)b, E · a = 0,

F · a = q−
7
2 (1 + q2)b, F · b = −q− 1

2 a∗, F · a∗ = 0.

Recall from Example 1.2.2 that the quantum analogue of the Dirac (or Hopf)
monopole line bundle over S2 is given by the following idempotent in M2(S2

q ):

eq =
1

2

[
1 + q−2b qa
q−1a∗ 1− b

]
.

We can show that this noncommutative line bundle is equivariant in the following
sense. Consider the 2-dimensional standard representation of Uq(su(2)) on V = C2

defined by

E =

[
0 0
1 0

]
, F =

[
0 1
0 0

]
, K =

[
q−

1
2 0

0 q
1
2

]
.

We obtain an action of Uq(su(2)) on M2(S2
q ) = M2(C)⊗S2

q as the tensor product
of these two modules by the formula

h(m⊗ a) =
∑

h(1)(m)h(2)(a) for all h ∈ Uq(su(2)), m ∈M2(C), a ∈ S2
q .

The claim is that
h(eq) = ε(h)eq (1.25)

for all h ∈ Uq(su(2)) (Exercise 1.7.4).

Example 1.7.7 (Symmetry in noncommutative geometry; Hopf algebra coac-
tions). Let H be a Hopf algebra. A (left) corepresentation or comodule for H is a
vector space M together with a map ρ : M → H ⊗M such that

(∆⊗ IM ) ρ = (IH ⊗ ρ) ρ and (ε⊗ IM ) ρ = IM .

These conditions are duals of axioms for a module over an algebra. Now an
algebra A is called a left H-comodule algebra if A is a left H-comodule via a map
ρ : A→ H ⊗A, and if ρ is a morphism of algebras.

For example, the coproduct ∆: H → H ⊗ H gives H the structure of a left
H-comodule algebra. This is the analogue of the left action of a group on itself by
translations.
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For compact quantum groups like SUq(2) and their algebraic analogues such as
SLq(2) the coaction is more natural. Formally they are obtained by ‘dualizing and
quantizing’ group actions G×X → X for classical groups. Here is an example.

Let q be a nonzero complex number and let A = Cq[x, y] be the algebra of
coordinates on the quantum q-plane. It is defined as the quotient algebra

Cq[x, y] = C〈x, y〉/(yx− qxy),

where C〈x, y〉 is the free algebra with two generators and (yx−qxy) is the two-sided
ideal generated by yx− qxy. For q 6= 1, the algebra Cq[x, y] is noncommutative.

By direct computation one can show that there is a unique SLq(2)-comodule
algebra structure ρ : A→ SLq(2)⊗A on the quantum plane Cq[x, y] with

ρ

(
x
y

)
=

(
a b
c d

)
⊗
(
x
y

)
.

The proof boils down to checking that the elements ρ(x) = a ⊗ x + b ⊗ y and
ρ(y) = c ⊗ x + d ⊗ y satisfy the defining relation ρ(y)ρ(x) = qρ(x)ρ(y) for the
quantum plane, which is straightforward.

We can also define the coaction of a Hopf algebra on a coalgebra, and the
concept of a comodule coalgebra. This plays an important role in the next example.

Example 1.7.8 (Bicrossed products). The examples of Hopf algebras that are
really difficult to construct are the noncommutative and the non-cocommutative
ones. Of course, one can always start with a noncommutative Hopf algebra U ,
which exist in abundance, say as universal enveloping algebras of Lie algebras, and
a non-cocommutative Hopf algebra F , say the algebra of representative functions
on a compact group, and form the tensor product Hopf algebra

F ⊗ U (1.26)

which is clearly neither commutative nor cocommutative. But this is not that
significant. A variation of this method, however, provides really interesting ex-
amples as we shall explain. We should mention that another source of interesting
examples of noncommutative and non-cocommutative Hopf algebras is the theory
of quantum groups.

The idea is to deform the algebra and coalgebra structures in (1.26) via an
action of U on F and a coaction of F on U , through crossed products. First we
describe these crossed product constructions in general, which are of independent
interest as well.

Let A be a left H-module algebra. The underlying vector space of the crossed
product algebra AoH is A⊗H and its product is determined by

(a⊗ g)(b⊗ h) =
∑

a(g(1)b)⊗ g(2)h.

One checks that endowed with 1 ⊗ 1 as its unit, A o H is an associative unital
algebra. For example, for H = CG, the group algebra of a discrete group G acting
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by automorphisms on an algebra A, the algebra AoH is isomorphic to the crossed
product algebra AoG.

For a second simple example, let a Lie algebra g act by derivations on a com-
mutative algebra A. Then the crossed product algebra A o U(g) is a subalgebra
of the algebra of differential operators on A generated by derivations from g and
multiplication operators by elements of A. The simples example is when A = C[x]
and g = C acting via the differential operator d

dx on A. Then AoU(g) is the Weyl
algebra of differential operators on the line with polynomial coefficients.

Let D be a right H-comodule coalgebra with coaction d ∈ D 7→
∑
d(0)⊗d(1) ∈

D ⊗ H. The underlying linear space of the crossed product coalgebra H o D is
H ⊗D. It is a coalgebra under the coproduct and counit defined by

∆(h⊗ d) =
∑

h(1) ⊗ (d(1))(0) ⊗ h(2)(d(1))(1) ⊗ d(2), ε(h⊗ d) = ε(d)ε(h).

The above two constructions deform multiplication or comultiplication of al-
gebras or coalgebras, respectively. Thus to obtain a simultaneous deformation of
multiplication and comultiplication of a Hopf algebra it stands to reason to try to
apply both constructions simultaneously. This idea, going back to G. I. Kac in
the 1960s in the context of Kac–von Neumann Hopf algebras, has now found its
complete generalization in the notion of bicrossed product of matched pairs of Hopf
algebras due to Shahn Majid. See [128] for extensive discussions and references.
There are many variations of this construction, of which the most relevant for the
structure of the Connes–Moscovici Hopf algebra is the following. Another special
case is the Drinfeld double D(H) of a finite dimensional Hopf algebra [128], [105].

Let U and F be two Hopf algebras. We assume that F is a left U -module
algebra and U is a right F -comodule coalgebra via ρ : U → U ⊗ F . We say
that (U,F ) is a matched pair if the action and coaction satisfy the compatibility
condition:

ε(u(f)) = ε(u)ε(f), ∆(u(f)) = (u(1))(0)(f (1))⊗ (u(1))(1)(u(2)(f (2))),

ρ(1) = 1⊗ 1, ρ(uv) = (u(1))(0)v(0) ⊗ (u(1))(1)(u(2)(v(1))),

(u(2))(0) ⊗ (u(1)(f))(u(2))(1) = (u(1))(0) ⊗ (u(1))(1)(u(2)(f)).

Given a matched pair as above, we define its bicrossed product Hopf algebra
F oU to be F ⊗U with crossed product algebra structure and crossed coproduct
coalgebra structure. Its antipode S is defined by

S(f ⊗ u) = (1⊗ S(u(0)))(S(fu(1))⊗ 1).

It is a remarkable fact that, thanks to the above compatibility conditions, all the
axioms of a Hopf algebra are satisfied for F o U .

The simplest and first example of this bicrossed product construction is as
follows. Let G = G1G2 be a factorization of a finite group G. This means that
G1 and G2 are subgroups of G, G1 ∩ G2 = {e}, and G1G2 = G. We denote the
factorization of g by g = g1g2. The relation g · h := (gh)2 for g ∈ G1 and h ∈ G2
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defines a left action of G1 on G2. Similarly g • h := (gh)1 defines a right action of
G2 on G1. The first action turns F = F (G2) into a left U = kG1-module algebra.
The second action turns U into a right F -comodule coalgebra. The latter coaction
is simply the dual of the map F (G1)⊗ kG2 → F (G1) induced by the right action
of G2 on G1. Details of this example can be found in [128] and [55].

Example 1.7.9 (Connes–Moscovici Hopf algebras). A very important example for
noncommutative geometry and its applications to transverse geometry and number
theory is the family of Connes–Moscovici Hopf algebras Hn for n ≥ 1 [55], [56],
[57]. They are deformations of the group G = Diff(Rn) of diffeomorphisms of Rn
and can also be thought of as deformations of the Lie algebra an of formal vector
fields on Rn. These algebras appeared for the first time as quantum symmetries
of transverse frame bundles of codimension n foliations. We briefly treat the
case n = 1 here. The main features of H1 stem from the fact that the group
G = Diff(Rn) has a factorization of the form

G = G1G2,

where G1 is the subgroup of diffeomorphisms ϕ that satisfy

ϕ(0) = 0, ϕ′(0) = 1,

and G2 is the ax + b group of affine diffeomorphisms. We introduce two Hopf
algebras corresponding to G1 and G2 respectively. Let F denote the Hopf algebra
of polynomial functions on the pro-unipotent group G1. It can also be defined
as the continuous dual of the enveloping algebra of the Lie algebra of G1. It
is a commutative Hopf algebra generated by the Connes–Moscovici coordinate
functions δn, n = 1, 2, . . . , defined by

δn(ϕ) =
dn

dtn
(log(ϕ′(t))|t=0.

The second Hopf algebra, U , is the universal enveloping algebra of the Lie algebra
g2 of the ax+ b group. It has generators X and Y and one relation [X,Y ] = X.

As we explained in the previous example, the factorization G = G1G2 defines
a matched pair of Hopf algebras consisting of F and U . More precisely, the Hopf
algebra F has a right U -module algebra structure defined by

δn(X) = −δn+1 and δn(Y ) = −nδn.

The Hopf algebra U , on the other hand, has a left F -comodule coalgebra structure
via

X 7→ 1⊗X + δ1 ⊗X and Y 7→ 1⊗ Y.

One can check that they are a matched pair of Hopf algebras and the resulting
bicrossed product Hopf algebra

H1 = F ./ U
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is the Connes–Moscovici Hopf algebraH1. (See [55] for a slightly different approach
and fine points of the proof.)

Thus H1 is the universal Hopf algebra generated by {X, Y, δn; n = 1, 2, . . . }
with relations

[Y, X] = X, [Y, δn] = nδn, [X, δn] = δn+1, [δk, δl] = 0,

∆Y = Y ⊗ 1 + 1⊗ Y, ∆δ1 = δ1 ⊗ 1 + 1⊗ δ1,

∆X = X ⊗ 1 + 1⊗X + δ1 ⊗ Y,

S(Y ) = −Y, S(X) = −X + δ1Y, S(δ1) = −δ1,

for n, k, l = 1, 2, . . . .

Another recent point of interaction between Hopf algebras and noncommuta-
tive geometry is the work of Connes and Kreimer in renormalization schemes of
quantum field theory. We refer to [47], [48], [49], [51], [52] and references therein
for this fascinating and still developing subject.

An important feature of H1, and in fact its raison d’être, is that it acts as quan-
tum symmetries of various objects of interest in noncommutative geometry, like the
noncommutative ‘space’ of leaves of codimension one foliations or the noncommu-
tative ‘space’ of modular forms modulo the action of Hecke correspondences. Let
M be a 1-dimensional manifold and A = C∞0 (F+M) denote the algebra of smooth
functions with compact support on the bundle of positively oriented frames on M .
Given a discrete group Γ ⊂ Diff+(M) of orientation preserving diffeomorphisms
of M , one has a natural prolongation of the action of Γ to F+(M) by

ϕ(y, y1) = (ϕ(y), ϕ′(y)(y1)).

Let AΓ = C∞0 (F+M)oΓ denote the corresponding crossed product algebra. Thus
the elements of AΓ consist of finite linear combinations (over C) of terms fU∗ϕ with
f ∈ C∞0 (F+M) and ϕ ∈ Γ. Its product is defined by

fU∗ϕ · gU∗ψ = (f · ϕ(g))U∗ψϕ.

There is an action of H1 on AΓ given by [55]:

Y (fU∗ϕ) = y1
∂f

∂y1
U∗ϕ, X(fU∗ϕ) = y1

∂f

∂y
U∗ϕ,

δn(fU∗ϕ) = yn1
dn

dyn

(
log

dϕ

dy

)
fU∗ϕ.

Once these formulas are given, it can be checked, by a long computation, that AΓ

is indeed an H1-module algebra. In the original application, M is a transversal for
a codimension one foliation and thus H1 acts via transverse differential operators
[55].
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Remark 1. The theory of Hopf algebras and Hopf spaces has its roots in algebraic
topology and was born in the paper of H. Hopf in his celebrated computation of
the rational cohomology of compact connected Lie groups [101]. The cohomology
ring of such a Lie group is a Hopf algebra and this puts strong restrictions on
its structure as an algebra where it was shown that it is isomorphic to an exte-
rior algebra with odd generators. This line of investigation eventually led to the
Cartier–Milnor–Moore theorem [32], [137] characterizing connected cocommuta-
tive Hopf algebras as enveloping algebras of Lie algebras.

A purely algebraic theory, with motivations independent from algebraic topol-
ogy, was created by Sweedler in the 1960s who wrote the first book on Hopf
algebras [167]. This line of investigation took a big leap forward with the work
of Faddeev–Reshetikhin–Takhtajan, of Drinfeld, who coined the term quantum
group [71], and of Jimbo, resulting in quantizing all classical Lie groups and Lie
algebras. This latter line of investigations were directly motivated by the theory
of quantum integrable systems and quantum inverse scattering methods developed
by the Leningrad and Japanese school in the early 1980s.

In a different direction, immediately after Pontryagin’s duality theorem for lo-
cally compact abelian groups, attempts were made to extend it to noncommutative
groups. The Tannaka–Krein duality theorem was an important first step. This re-
sult was later sharpened by Grothendieck, Deligne, and, independently, Doplicher
and Roberts. Note that the dual, in any sense of the word, of a noncommutative
group cannot be a group and one is naturally interested in extending the cate-
gory of groups to a larger category which is closed under duality and hopefully is
even equivalent to its second dual, much as is the case for locally compact abelian
groups. The Hopf–von Neumann algebras of G. I. Kac and Vainerman achieve this
in the measure theoretic world of von Neumann algebras [75]. The theory of locally
compact quantum groups of Kustermans and Vaes [117] which was developed much
later achieves this goal in the category of C∗-algebras. An important step towards
this program was the theory of compact quantum groups of S. L. Woronowicz (cf.
[180] for a survey). We refer to [32], [105], [111], [128], [130], [131], [167], [169] for
the general theory of Hopf algebras and quantum groups.

The first serious interaction between Hopf algebras and noncommutative ge-
ometry started in earnest in the paper of Connes and Moscovici on transverse
index theory [54] (cf. also [55], [56], [57] for further developments). In that paper
a noncommutative and non-cocommutative Hopf algebra appears as the quantum
symmetries of the noncommutative space of codimension one foliations. The same
Hopf algebra was later shown to act on the noncommutative space of modular
Hecke algebras [58]. For a survey of Hopf algebras in noncommutative geometry
the reader can consult [85], [173].

Exercise 1.7.1. The dual of a coalgebra is an algebra and in fact we have a
functor Coalgk ; Algop

k which is an equivalence of categories if we restrict to
finite dimensional algebras and coalgebras (k is a field).

Exercise 1.7.2. Give an example of a functor from Com Algk → Groups which
is not representable.
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Exercise 1.7.3. Show that, for a commutative Hopf algebraH and a commutative
algebra A, G := HomAlg(H, A) is a group under the convolution product.

Exercise 1.7.4. Verify the formula (1.25).
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Chapter 2

Noncommutative quotients

In this chapter we recall the method of noncommutative quotients as advanced
by Connes in [41]. This is a technique that allows one to replace the so called
“bad quotients” by nice noncommutative spaces, represented by noncommutative
algebras. The good news is that most of the noncommutative spaces which are
currently in use in noncommutative geometry are constructed by this method.
In general these noncommutative algebras are defined as groupoid algebras. In
some cases, like quotients by group actions, the noncommutative quotient can be
defined as a crossed product algebra as well, without using groupoids. In general
however, like quotients by equivalence relations, the use of groupoids seems to
be unavoidable. Thus groupoids and groupoid algebras provide a unified approach
when dealing with bad quotients.

In Section 2.1 we recall the definition of a groupoid together with its various
refinements like topological, smooth and étale groupoids. In Section 2.2 we define
the groupoid algebra of a groupoid and give several examples. An important
concept is Morita equivalence of algebras. When the classical quotient is a nice
space, e.g. when a group acts freely and properly, the algebra of functions on the
classical quotient is (strongly) Morita equivalent to the noncommutative quotient.
As we shall see, this fully justifies the use of noncommutative quotients. We treat
both the purely algebraic Morita theory as well as the notion of strong Morita
equivalence for C∗-algebras in Sections 2.3 and 2.4. Finally, noncommutative
quotients are defined in Section 2.5.

2.1 Groupoids

Definition 2.1.1. A groupoid is a small category in which every morphism is an
isomorphism.

We recall that a category is called small if its objects form a set, and not just a
class. As a consequence, the collection of all morphisms of a small category form
a set as well, and we can safely talk about functions on the set of morphisms of a

45
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groupoid, as we shall often need to do in this chapter. Let G be a groupoid. We
denote the set of objects of G by G(0) and, by a small abuse of notation, the set
of morphisms of G by G itself. Every morphism has a source, has a target and has
an inverse. They define maps, denoted by s, t, and i, respectively:

s : G → G(0), t : G → G(0), i : G → G.

There is also a canonical map
u : G(0) → G

which sends an object to the unit morphism from that object to itself. The compo-
sition γ1 ◦γ2 of morphisms γ1 and γ2 is only defined if s(γ1) = t(γ2). Composition
defines a map

◦ : G(2) = {(γ1, γ2); s(γ1) = t(γ2)} → G
which is associative in an obvious sense.

Example 2.1.1 (Groupoids from groups). Every group G defines at least two
groupoids in a natural way.

(i) Define a category G with one object ∗ and with

HomG(∗, ∗) = G,

where the composition of morphisms is simply defined by the group multiplication.
This is obviously a groupoid. In fact any groupoid with one object is defined as
above.

(ii) Define a category G with

objG = G and HomG(s, t) = {g ∈ G; gsg−1 = t}.

Again, with composition defined by group multiplication, G is a groupoid.
Examples (i) and (ii) are special cases of the following general construction.

Let
G×X → X, (g, x) 7→ gx,

denote the action of a group G on a set X. We define a groupoid

G = X oG

called the transformation groupoid, or action groupoid, as follows. Let

objG = X and HomG(x, y) = {g ∈ G; gx = y}.

Composition of morphisms is defined via group multiplication. It is easily checked
that G is a groupoid. Its set of morphisms can be identified as

G ' X ×G,

where the composition of morphisms is given by

(gx, h) ◦ (x, g) = (x, hg).

Note that (i) corresponds to the action of a group on a point and (ii) corre-
sponds to the action of a group on itself via conjugation.
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Example 2.1.2 (Groupoids from equivalence relations). Let ∼ denote an equiv-
alence relation on a set X. We define a groupoid G, called the graph of ∼, as
follows. Let

objG = X,

and let

HomG(x, y) =

{
(x, y) if x ∼ y,
∅ otherwise.

Note that the set of morphisms of G is identified with the graph of the relation ∼:

G = {(x, y); x ∼ y} ⊂ X ×X.

Two extreme cases of this graph groupoid construction are particularly impor-
tant. When the equivalence relation reduces to equality, i.e., x ∼ y if and only if
x = y, we have

G = ∆(X) = {(x, x); x ∈ X}.

On the other extreme when x ∼ y for all x and y, we obtain the groupoid of pairs
where

G = X ×X.

As we shall see, one cannot get very far with just discrete groupoids. To get
really interesting examples like the groupoids associated to continuous actions of
topological groups and to foliations, one needs to consider topological as well as
smooth groupoids, much in the same way as one studies topological and Lie groups.

A topological groupoid is a groupoid such that its set of morphisms G and set
of objects G(0) are topological spaces, and its composition, source, target and
inversion maps are continuous.

A special class of topological groupoids, called étale groupoids, are particularly
convenient to work with. An étale groupoid is a topological groupoid such that its
set of objects G(0) is a locally compact Hausdorff space and its source map s (and
hence its target map t) is an étale map, i.e., is a local homeomorphism.

A Lie groupoid is a groupoid such that G and G(0) are smooth manifolds, the
inclusion G(0) → G as well as the maps s, t, i and the composition map ◦ are
smooth, and s and t are submersions. This last condition will guarantee that
the domain G(2) = {(γ1, γ2); s(γ1) = t(γ2)} of the composition map is a smooth
manifold.

Example 2.1.3. LetG be a discrete group acting by homeomorphisms on a locally
compact Hausdorff space X. Then the transformation groupoid G = X o G is
naturally an étale groupoid. In fact since G = X × G, we can endow G with the
product topology. The composition, source and target maps

s(x, g) = x, t(x, g) = gx

are clearly continuous and the t-fibers Gx are discrete subsets of X ×G.
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Here is a concrete example of paramount importance for noncommutative ge-
ometry. Let Z act by rotation through a fixed angle 2πθ on the circle T. The
corresponding transformation groupoid is the étale groupoid

T o Z.

As we shall see in the next section its groupoid algebra is the noncommutative
torus.

If G is a locally compact group acting continuously on X, then clearly X oG
is a locally compact groupoid. Similarly, if G is a Lie group acting smoothly on a
smooth manifold X, then the transformation groupoid X oG is a Lie groupoid.

Example 2.1.4 (The fundamental groupoid of a space). Let X be a topological
space. We define an étale groupoid π1(X) as follows. The set of objects of π1(X)
is X itself and for all x, y ∈ X, morphisms from x to y are homotopy classes of
continuous paths from x to y. Under composition of paths this defines an abstract
groupoid. This groupoid can be topologized as follows. Using the compact-open
topology we first topologize the set of all continuous maps from [0, 1] → X. The
topology of π1(X) is defined by quotienting with respect to the homotopy equiv-
alence relation. If X is locally path connected and locally simply connected, then
π1(X) is an étale groupoid.

Example 2.1.5 (The holonomy groupoid of a foliation). Let V be a smooth man-
ifold and let TV denote its tangent bundle. A smooth subbundle F ⊂ TV is called
integrable if for any two vector fields X and Y on V with values in F their Lie
bracket [X, Y ] takes its values in F . We call the pair (V, F ) a foliated manifold.
The leaves of the foliation (V, F ) are the maximal connected submanifolds L of V
with Tx(L) = Fx for all
x ∈ L. The Frobenius integrability theorem guarantees that there is a unique
leaf passing through each point of V and this decomposes V into p-dimensional
submanifolds. Here p is the rank of the integrable bundle F . We denote the
leaf passing through x by Lx. A foliation chart for (V, F ) is a coordinate system
ϕ : U ⊂ V → Rn for V such that for all x ∈ U ,

ϕ−1(Rp × y) = Lx ∩ U,

where y is defined by ϕ(x) = (y0, y) ∈ Rp × Rn−p. A smooth transversal for
(V, F ) is a submanifold N ⊂ V such that for all x ∈ N , the tangent space TxN
is transversal to Fx, i.e., TxV = TxN ⊕ Fx. For example, fixing a foliation chart
around x ∈ V as above, Nx := ϕ−1(y0 × Rn−p) is a transversal through x.

Let L be a leaf and a and b be points in L. A leafwise path between a and b is
a continuous path in L connecting a to b. We define an equivalence relation on the
set of all continuous leafwise paths connecting a to b, called holonomy equivalence
as follows. Given such a leafwise path α : [0, 1] → L, we can choose an integer
k such that for all 0 ≤ i < k, α[ ik ,

i+1
k ] ⊂ Ui is inside the domain of a foliation

chart (Ui, ϕi). Let N0, N1, . . . , Nk−1 denote the corresponding local transversals
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at α( ik ), i = 0, 1, . . . , k − 1. We then have local diffeomorphisms fi : Ni → Ni+1

for all i, and by composing them we obtain a local diffeomorphism

Hα
ab = fk−1 ◦ fk−2 ◦ · · · ◦ f0 : Na → Nb.

It can be shown that the germ of this map is independent of the choice of foliation
charts and local transversals Ni. Two leafwise paths α and β from a to b are called
holonomy equivalent if their corresponding holonomy maps are equal:

Hα
ab = Hβ

ab : Na → Nb.

Leafwise homotopy equivalent paths are holonomy equivalent, though the converse
need not be true. In particular if the leaf L is simply connected then all paths in
L with the same endpoints are holonomy equivalent.

In general, holonomy equivalence defines an equivalence relation on the set of
paths in L from a to b and we denote the quotient of the space of leafewise paths
from a to b under this holonomy equivalence relation by Hol(a, b). Composition
of paths and inversion define associative operations

Hol(a, b)×Hol(b, c)→ Hol(a, c),

Hol(a, b)→ Hol(b, a).

We can now define the holonomy groupoid of a foliation (V, F ), denoted by
G(V, F ).

Definition 2.1.2. Let (V, F ) be a foliated space. The set of objects of G(V, F ) is
V itself and its morphisms are defined by

Hom(a, b) =

{
∅ if a and b are not in the same leaf,

Hol(a, b) if a and b are in the same leaf.

It turns out that G(V, F ) is more than just an abstract groupoid and one can
in fact define a smooth, but not necessarily Hausdorff, manifold structure on it to
turn it into a smooth groupoid [41].

In practice it is a lot easier to work with an étale groupoid which is Morita
equivalent to G(V, F ) in an appropriate sense. For Morita equivalence of groupoids
see [98], [146]. Let us fix a complete transversal N in V . This means that N is
transversal to the leaves of the foliation and each leaf has at least one intersection
with N . The smooth étale groupoid GN (V, F ) is defined as the full subcategory of
the holonomy groupoid G(V, F ) whose set of objects is now equal to N . Changing
the transversal N will change the groupoid GN (V, F ), but its Morita equivalence
class is independent of the choice of transversal. As we shall indicate later, this
in particular implies that their corresponding groupoid algebras will be Morita
equivalent as well.

Here is a concrete example. Let θ ∈ R. The Kronecker foliation of the 2-torus
T2 = R2/Z2 is defined by the integral curves of the differential equation dy = θdx.
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When θ is a rational number each leaf is compact and in fact is a circle, while for
irrational θ all leaves are homeomorphic to R and are dense in T2. We assume
that θ is irrational. Then leaves are simply connected and there is no holonomy.
To describe the étale holonomy groupoid, let us fix a complete transversal, say the
image of the x-axis under the projection map R2 → T2. Then it is easy to see that
the étale holonomy groupoid is the transformation groupoid of the action of Z on
the circle T by rotation through an angle 2πθ.

For an insightful treatment of foliations and their place in noncommutative
geometry see [41]. For an introduction to foliation theory and groupoids see [141],
[142].

Exercise 2.1.1. Describe the étale holonomy groupoid of the Kronecker foliation
when θ is rational.

Exercise 2.1.2. An action of a groupoid G on a small category C is by definition
a functor F : G → C. This idea extends the concept of action of a group on a set or
a topological space. Define the transformation groupoid CoG of an action. A par-
ticular case is the action of a groupoid G on a set X and the corresponding action
groupoid X × G. Extend the definitions to topological and smooth groupoids.

2.2 Groupoid algebras

The groupoid algebra of a groupoid is a generalization of the notion of group algebra
(or convolution algebra) of a group and it reduces to group algebras for groupoids
with one object. To define the groupoid algebra of a locally compact topological
groupoid in general one needs the analogue of a Haar measure for groupoids. For
discrete groupoids as well as étale and Lie groupoids, however, the convolution
product can be easily defined. We start by recalling the definition of the groupoid
algebra of a discrete groupoid. As we shall see, in the discrete case the groupoid
algebra can be easily described in terms of matrix algebras and group algebras.
We also look at C∗-algebra completions of groupoid algebras.

Let G be a discrete groupoid and let

CG =
⊕
γ∈G

Cγ

denote the vector space generated by the set of morphisms of G as its basis. Thus
an element of CG is a finite sum

∑
aγγ, where γ is a morphism of G and aγ = 0

for all but a finite number of γ’s. The formulas

γ1γ2 =

{
γ1 ◦ γ2 if γ1 ◦ γ2 is defined,

0 otherwise,
(2.1)

and (∑
γ

aγγ
)∗

=
∑
γ

aγγ
−1 (2.2)
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define an associative ∗-algebra structure on CG. The resulting algebra is called
the groupoid algebra of the groupoid G. Note that CG is unital if and only if the
set G(0) of objects of G is finite. The unit then is given by

1 =
∑
x∈G(0)

idx.

An alternative description of the groupoid algebra CG which is more appropri-
ate for generalization to topological groupoids is as follows. We have an isomor-
phism

CG ' {f : G → C; f has finite support},
under which the groupoid product formula (2.1) and the ∗-operation (2.2) are
transformed to the convolution product

(f ∗ g)(γ) =
∑

γ1◦γ2=γ

f(γ1)g(γ2) =
∑

γ1∈t−1(γ)

f(γ1)g(γ−1
1 γ),

and
(f∗)(γ) = f(γ−1).

Remark 2. Given a small category C and any ground ring k, let kC denote the
k-module generated by the morphisms of C. Then formula (2.1) defines an algebra
structure on kC. In practice we do not even need to start with a category. Instead
we can start with a quiver Q (which is nothing but an oriented graph) and consider
the set PQ of paths in Q. It is a category and the corresponding algebra is called
the quiver algebra of Q.

The advantage of working with groupoids and over C is that in this case,
thanks to (2.2), the groupoid algebra is a ∗-algebra and we can then complete it
to a C∗-algebra. This will then enables us to bring in tools of functional analysis
and operator algebras to probe the resulting noncommutative space.

Example 2.2.1. If the groupoid has only one object with automorphism group
G, then the groupoid algebra is just the group algebra of G:

CG = CG.

At the other extreme, if the groupoid is the groupoid of pairs on a finite set X,
that is, the groupoid of the indiscrete equivalence relation, then

CG ' End(V ),

where V is the vector space generated by X. To see this assume that X =
{1, 2, . . . , n} is a finite set of n elements. The morphisms of G can be indexed as

G = {(i, j); i, j = 1, . . . , n}

with composition given by

(l, k) ◦ (j, i) = (l, i) if k = j.
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(Composition is not defined otherwise.)
We claim:

CG 'Mn(C)

Indeed, it is easily checked that the map∑
ai,j(i, j) 7−→

∑
ai,jEi,j ,

where Ei,j is the matrix with 1 in the (i, j) entry and 0 elsewhere, defines an alge-
bra isomorphism between our groupoid algebra and the algebra of n×n matrices.

Remark 3. As emphasized in the opening section of [41], the way matrices appear
as a groupoid algebra is in fact closely related to the way Heisenberg discovered
matrices in the context of his matrix quantum mechanics [94]. Roughly speaking,
classical states are labeled by i = 1, . . . , n, and ai,j are the transition amplitudes in
moving from state i to state j. Thus, noncommutative algebras appeared first in
quantum mechanics as a groupoid algebra! We recommend the reader to carefully
examine the arguments of [94] and [41].

Example 2.2.2. We saw in the first example that matrix algebras and group
algebras are examples of groupoid algebras. We now proceed to show that the
groupoid algebra of any discrete groupoid can be expressed in terms of these two
basic examples. Any groupoid G can be canonically decomposed as a disjoint union
of transitive groupoids:

G =
⋃
i

Gi. (2.3)

By definition a groupoid is called transitive if, for any two of its objects x and y,
there is a morphism from x to y. From (2.3) we obtain a direct sum decomposition
of the groupoid algebra CG:

CG '
⊕
i

CGi.

Now, let T be a transitive groupoid and choose a point x0 ∈ obj T and let

G = HomT (x0, x0)

be the isotropy group of x0. The isomorphism class of G is independent of the
choice of the base point x0. Then we have a (non-canonical) isomorphism of
groupoids

T ' T1 × T2 (2.4)

where T1 is a groupoid with one object with automorphism group G and T2 is the
groupoid of pairs on the set of objects of T . Assuming the set of objects of T is
finite, from (2.4) we obtain an isomorphism

CT ' CT1 ⊗ CT2 ' CG⊗Mn(C),

where n is the number of elements of the set of objects of T .
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Putting everything together, we have shown that for any groupoid G, at least
when each connected component of G is finite, we have an algebra isomorphism

CG '
⊕
i

CGi ⊗Mni(C)

where the summation is over connected components of G, ni is the cardinality of
the given connected component, and Gi is the corresponding isotropy group.

Example 2.2.3. The groupoid algebra of any discrete groupoid can be easily
completed to a C∗-algebra. Although this is a special case of the C∗-algebra of
a topological groupoid to be defined later in this section, we shall nevertheless
discuss this case first. Let G be a discrete groupoid. For each object x ∈ G(0) we
define a ∗-representation of the groupoid algebra, πx : CG → L(`2(Gx)), by

(πxγ)(γ′) = γγ′,

if the composition γγ′ is defined, and is 0 otherwise. Here Gx = s−1(x) is the fiber
of the source map s : G → G0 at x. Then the formula

‖f‖ := sup{‖πx(f)‖; x ∈ G0},

defines a pre-C∗-norm on CG. The reduced groupoid C∗-algebra of G is by defi-
nition the completion of CG under this norm. For example, if G is the groupoid
of pairs on a set X, the corresponding groupoid C∗-algebra can be shown to be
isomorphic to the algebra of compact operators on the Hilbert space H = `2(X)
with an orthonormal basis indexed by the set X:

C∗G ' K(H).

To define the convolution algebra of a topological groupoid and its C∗-completion
in general, we need an analogue of Haar measure for groupoids. A Haar mea-
sure on a locally compact groupoid G is a family of measures µx on each t-fiber
Gx = t−1(x). The family is assumed to be continuous and left-invariant in an
obvious sense (cf. [154] for details; notice that, unlike locally compact topological
groups, locally compact groupoids need not have an invariant Haar measure in
general). Let

Cc(G) = {f : G → C; f is continuous and has compact support}

denote the space of continuous, complex-valued functions on G with compact sup-
port. Given a Haar measure, we can then define, for functions with compact sup-
port
f, g ∈ Cc(G), a convolution product by

(f ∗ g)(γ) =

∫
γ1γ2=γ

f(γ1)g(γ2) :=

∫
Gt(γ)

f(γ1)g(γ−1
1 γ) dµt(γ). (2.5)
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This turns Cc(G) into a ∗-algebra, where the involution is defined by

f∗(γ) = f(γ−1).

To put a pre-C∗-norm on Cc(G), note that for each t-fiber Gx = t−1(x) we have
a ∗-representation πx of Cc(G) on the Hilbert space L2(Gx, µx) defined by

(πxf)(ξ)(γ) =

∫
γ1γ2=γ

f(γ1)ξ(γ2) :=

∫
Gt(γ)

f(γ1)ξ(γ−1
1 γ) dµt(γ).

We can then define a pre-C∗-norm on Cc(G) by

‖f‖ := sup{‖πx(f)‖; x ∈ G0}.

The completion of Cc(G) under this norm is the reduced C∗-algebra of the groupoid
G and will be denoted by C∗r (G).

There are two special cases that are particularly important and convenient to
work with: étale and smooth groupoids. Notice that for an étale groupoid each
fiber is a discrete set and with the counting measure on each fiber we obtain a
Haar measure. The convolution product is then given by

(f ∗ g)(γ) =
∑

γ1γ2=γ

f(γ1)g(γ2) =
∑
Gt(γ)

f(γ1)g(γ−1
1 γ).

Notice that for each γ this is a finite sum since the support of f is compact and
hence contains only finitely many points of each fiber.

We look at groupoid algebras of certain étale groupoids.

Example 2.2.4. We start with an example from [41]: an étale groupoid defined
by an equivalence relation. Let

X = [0, 1]× {1} ∪ [0, 1]× {2}

denote the disjoint union of two copies of the interval [0, 1]. Let ∼ denote the
equivalence relation that identifies (x, 1) in the first copy with (x, 2) in the second
copy for 0 < x < 1. Let G denote the corresponding groupoid with its topology
inherited from X ×X. It is clear that G is an étale groupoid. The elements of the
groupoid algebra Cc(G) can be identified as continuous matrix-valued functions on
[0, 1] satisfying a boundary condition:

Cc(G) = {f : [0, 1]→M2(C); f(0) and f(1) are diagonal}.

Example 2.2.5 (Non-Hausdorff manifolds). Let

X = S1 × {0, 1}

be the disjoint union of two copies of the circle. We identify (x, 0) ∼ (x, 1) for all
x 6= 1 in S1. The quotient space X/∼ is a non-Hausdorff manifold, as the points
(1, 0) and (1, 1) cannot be separated. The groupoid of the equivalence relation ∼,

G = {(x, y) ⊂ X ×X; x ∼ y },
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is a smooth étale groupoid. Its smooth groupoid algebra is given by

C∞(G) = {f ∈ C∞(S1, M2(C)); f(1) is diagonal}.

A second interesting case where one can do away with Haar measures is smooth
groupoids. For this we need the notion of a density on an smooth manifold.
Each complex number λ ∈ C defines a 1-dimensional representation of the group
GLn(R) by the formula g 7→ | det(g)|λ. Let |Ω|λ(M) denote the corresponding
associated line bundle of the frame bundle of an n-dimensional manifold M . Using
Jacobi’s change of variable formula, one checks that for a smooth 1-density with
compact support ω ∈ C∞c (M, |Ω|1) the integral

∫
M
ω is well defined. Also note

that |Ω|λ(M)⊗|Ω|µ(M) ' |Ω|λ+µ (M). Since the product of two half-densities is a
1-density and hence has a well-defined integral, we obtain an inner product 〈ω, η〉 =∫
M
ωη̄ on the space of half-densities with compact support on any manifold M .

Completing the pre-Hilbert space of smooth half-densities with compact support
on M , we then obtain a Hilbert space canonically attached to M . In particular
the first integral in (2.5) for f, g ∈ C∞c (G, |Ω| 12 ) is well defined and we obtain the
smooth convolution algebra C∞c (G) [41], [142].

It is clear that if G is a groupoid with one object with automorphism group G
then C∗r (G) is isomorphic to the reduced group C∗-algebra C∗rG. As for groups,
we can define the full C∗-algebra of a groupoid by completing Cc(G) with respect
to the maximal norm

‖f‖max := sup ‖π(f)‖,
where π now ranges over the set of all bounded ∗representations of Cc(G) on
Hilbert spaces. The resulting C∗-algebra is denoted by C∗(G). Notice that there
is an obvious surjection C∗(G) → C∗r (G). A groupoid is called amenable if this
map is injective.

Example 2.2.6. Let X be a locally compact space with a Borel probability mea-
sure µ and G be the groupoid of pairs on X. Then for f, g ∈ Cc(X × X) the
convolution product (2.5) reduces to

(f ∗ g)(x, z) =

∫
X

f(x, y)g(y, z) dµ(y),

which is reminiscent of matrix multiplication or products of integral operators. In
fact the map T : Cc(X ×X)→ K(L2(X,µ)) sending f to the integral operator

(Tf)(g)(x) =

∫
X

f(x, y)g(y) dµ(y)

is clearly an algebra map, is one-to-one and its image is dense in the algebra of com-
pact operators K(L2(X,µ)). From this we conclude that C∗(G) ' K(L2(X,µ)).

On the other extreme, if G is the groupoid of the discrete equivalence relation
(i.e., x ' y if and only if x = y) on a locally compact space X then clearly

Cc(G) ' Cc(X) and C∗r (G) ' C0(X).

These two examples are continuous C∗-analogues of Example 2.2.1 above.
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Example 2.2.7 (Crossed products). When the groupoid is the transformation
groupoid of a group action, the groupoid algebra reduces to a crossed product
algebra. To motivate its definition, we start with a purely algebraic case first. Let
Aut(A) denote the group of automorphisms of an algebra A. An action of a group
G on A is a group homomorphism

α : G→ Aut(A).

Sometimes one refers to the triple (A, G, α) as a noncommutative dynamical sys-
tem, or a covariant system. We use the simplified notation g(a) := αg(a) to denote
the action. The (algebraic) crossed product or semidirect product algebra Aoα G
is defined as follows. As a vector space,

Aoα G = A⊗ CG.

Its product is uniquely defined by the rule

(a⊗ g)(b⊗ h) = ag(b)⊗ gh

for all a, b ∈ A and g, h ∈ G. It is easily checked that, endowed with the above
product, A oα G is an associative algebra. It is unital if and only if A is unital
and G acts by unital automorphisms.

One checks that Aoα G is the universal algebra generated by the subalgebras
A and CG subject to the relation

gag−1 = g(a) (2.6)

for all g in G and a in A. Representations of Aoα G are easily described. Given
a representations Aoα G→ End(V ), we obtain a pair of representations π : A→
End(V ) and ρ : G→ GL(V ) satisfying the covariance condition

ρ(g)π(a)ρ(g)−1 = π(αg(a)).

Conversely, given such a pair of covariant representations ρ and π on the same
vector space V one obtains a representation ρo π of A×α G on V by setting

(ρo π)(a⊗ g) = π(a)ρ(g).

This defines a one-to-one correspondence between representations of Aoα G and
covariant representations of (A,G, α).

Next, let us describe the C∗-algebraic analogue of the above construction. So,
let

α : G→ Aut(A)

denote the action of a locally compact group G by ∗-automorphisms of a C∗-
algebra A. We assume that the action is continuous in the sense that for all
a ∈ A, the map g 7→ αg(a) from G → A is continuous. The triple (A, G, α)
is sometimes called a covariant system or a C∗-dynamical system. A classical
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example is when A = C0(X) and the action of G on A is induced from its action
on X by (αgf)(x) = f(g−1(x)). A covariant representation of (A, G, α) is a C∗-
representation π of A and a unitary representation ρ of G on the same Hilbert
space H, satisfying the covariance condition

ρ(g)π(a)ρ(g)−1 = π(αg(a))

for all a in A and g in G. Now the idea behind the definition of the C∗-crossed
product algebra is to construct a C∗-algebra whose representations are in one-
to-one correspondence with covariant representations of (A,G, α). This universal
problem indeed has a solution as we shall explain next.

Let us fix a right Haar measure µ on G and let ∆: G→ R+ denote the modular
character of G. The following formulae define a product (the convolution prod-
uct) and an involution on the space Cc(G,A) of continuous compactly supported
functions on G with values in A:

(f ∗ g)(t) =

∫
G

f(s)αs(g(s−1t)) dµ(s),

f∗(t) = ∆G(t−1)αt(f(t−1)∗).

Endowed with the L1-norm ‖f‖1 =
∫
G
‖f(t)‖ dµ(t), Cc(G,A) is an involutive

normed algebra. We let L1(G,A) denote its completion which is a Banach algebra,
but not a C∗-algebra. Let (π, ρ) be a covariant representation of (A,G, α) on a
Hilbert space H. We can define a representation π o ρ of L1(G,A) by

(π o ρ)(f) =

∫
G

π(f(t))ρ(t) dµ(t).

Much as in the definition of the full group C∗-algebra, we now define

‖f‖ = sup ‖(π o ρ)(f)‖,

where the supremum is over the set of all covariant representations (π, ρ) of
(A,G, α), and the norm on the right-hand side is the operator norm. This is
clearly a finite number since ‖(πo ρ)(f)‖ ≤ ‖f‖1 and is in fact a pre C∗-norm on
L1(G,A). The full crossed product C∗-algebra AoαG is defined as the completion
of L1(G,A) under this norm. By its very definition it is almost obvious that AoαG
satisfies the required universal property with respect to covariant representations.

There is also a reduced crossed product C∗-algebra. To define it, let π : A →
L(H) be a faithful representation of A on a Hilbert space H, and let L2(G,H) =
L2(G) ⊗̂ H denote the Hilbert space tensor product of L2(G) and H. Using π we
can define a covariant representation (π, ρ) for (A,G, α) on L2(G,H) by

(π(a)ξ)(t) = αt(a)(ξ(t)),

(ρ(t)ξ)(s) = ξ(t−1s).
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This then defines a (faithful) representation of L1(G,A) and a pre-C∗-norm, known
as the reduced norm,

‖f‖r = ‖(π o ρ)(f)‖.

It can be shown that this norm is independent of the choice of the faithful rep-
resentation π. The completion of L1(G,A) under this norm is called the reduced
crossed product C∗-algebra. There is always a surjection AoαG→ AorαG, which
is injective if G acts amenably on A. Amenable groups always act amenably [3].
Finally we mention that if G is a finite group, then the algebraic crossed product
coincides with its C∗-algebraic version.

Fast forwarding to the next section for a moment we mention that one of the
key ideas of noncommutative geometry is the following principle:

crossed product algebra = noncommutative quotient space

Example 2.2.8. Let G = Zn be the cyclic group of order n and X = Zn =
{0, 1, . . . , n− 1}. The map i 7→ i+ 1 (mod n) defines an action of G on X and, by
duality, on A = C(Zn). The group algebra CZn is generated by a unitary U and a

single relation Un = 1. The isomorphism A ' C Ẑn shows that A is generated by
a unitary V and a single relation V n = 1. Using (2.6), the crossed product algebra
C(Zn) o Zn is then seen to be generated by elements U and V with relations

Un = 1, V n = 1, UV U−1 = λ−1V,

where λ = e
2πi
n . We claim that

C(Zn) o Zn 'Mn(C). (2.7)

To verify this, consider the unitary n× n matrices

u =


1 0 · · · · · · 0
0 λ 0 · · · 0
0 0 λ2 · · · 0
...

. . .

0 · · · · · · 0 λn−1

 , v =


0 0 · · · · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .

0 · · · · · · 1 0

 .

They satisfy the relations

un = vn = 1, vu = λuv. (2.8)

It follows that there is a unique (C∗-)algebra map

C(Zn) o Zn →Mn(C)

for which U 7→ u and V 7→ v. Now it is easy to see that the subalgebra generated
by u and v in Mn(C) is all of Mn(C). Since both algebras have dimension n2 the
map is an isomorphism.
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This example is really fundamental in that it contains several key ideas that
can be extended in various directions. For example, if G is a locally compact
abelian group, then, as any other group, it acts on itself by left translation and,
by duality, on C0(G). Now there is a generalization of (2.7) in the form

C0(G) oG ' K(L2(G)),

where K denotes the algebra of compact operators.
As a further extension of (2.7), we recall the Takai duality theorem ([168], [15]).

Let (A,G, α) be a C∗ dynamical system where G is abelian. There is a dual action,
denoted α̂, of the dual group Ĝ on Aoα G defined by

α̂χ(f)(g) = χ(g)f(g).

One can thus form the double crossed product (Aoα G)oα̂ Ĝ. The Takai duality
theorem states that there is a natural isomorphism of C∗-algebras

(Aoα G) oα̂ Ĝ ' A⊗K(L2(G)). (2.9)

Example 2.2.9 (Noncommutative torus). As another example of a crossed prod-
uct algebra we show that the noncommutative torus Aθ is a crossed product al-
gebra. Consider the covariant system (C(S1), αθ, Z), where Z acts on S1 = R/Z,
and hence dually on C(S1), by rotation through the angle 2πθ. We define a co-
variant representation (π, ρ) for this system on H = L2(S1), where π(f) is the
multiplication operator by f and ρ(n) is the unitary operator

(ρ(n)f)(x) = f(x+ nθ).

Invoking the universal property of crossed products, we obtain a C∗-algebra map
πoρ : C(S1)oθZ→ L(H). Comparing with our original definition of the noncom-
mutative torus in Example 1.1.7 and relations (1.8), we see that we have defined
a surjection

π o ρ : C(S1) oθ Z→ Aθ.

Using the universal property of Aθ we can construct an inverse to this map by
sending U to e2πix and V to 1, the generator of Z.

Example 2.2.10. Let G be a locally compact topological group acting contin-
uously on a locally compact Hausdorff space X, and let G = X o G denote the
transformation groupoid associated to this action. Then we have an isomorphism
of C∗-algebras

C∗rG ' C0(X) or G,

where the action of G on C0(X) is defined by (gf)(x) = f(g−1x). There is also
an isomorphism between the full groupoid C∗-algebra and the full crossed product
algebra.

For X = S1 and G = Z acting through rotation by an angle 2πθ, we re-
cover the noncommutative torus as a groupoid algebra, which is one among many
incarnations of Aθ.
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Example 2.2.11 (Twisted group algebras). A curious feature of the noncommu-
tative torus Aθ is that although it is a deformation of C(T2), it lacks one of the
basic properties of the torus in that it is not a group or Hopf algebra. This is
related to the fact that Aθ is not a group algebra. It is however a twisted group
algebra, as we shall show in this example. First a general definition.

Let G be a locally compact group. A 2-cocycle (or multiplier) on G is a mea-
surable function c : G×G→ T satisfying the cocycle condition

c(g1, g2)c(g1g2, g3) = c(g1, g2g3)c(g2, g3) (2.10)

for all g1, g2, g3 in G. Using this 2-cocycle c, the convolution product on Cc(G)
can be twisted (or deformed) to

(f ∗c g)(t) =

∫
G

f(s)g(s−1t)c(s, s−1) dµ(s).

Thanks to the cocycle property of c, this new product is associative and the C∗-
completion of Cc(G) is the twisted group C∗-algebra C∗(G, c).

For example, let us define a 2-cocycle cθ on Z2 by

cθ((m,n), (m′, n′)) = exp(2πiθ(mn′ − nm′)). (2.11)

Then it is easy to see that the resulting twisted group algebra is isomorphic to the
noncommutative 2-torus: C∗(Z2, cθ) = Aθ.

We indicate two common sources of group 2-cocycles: from projective repre-
sentations and from magnetic perturbations of quantum mechanical Hamiltonians
(cf.[41] and [134]). Let ρ : G→ PU(H) be a projective unitary representation of a
group G on a Hilbert space. Here PU(H) is the quotient of the group of unitary
operators on a Hilbert space H by its center T. For each g ∈ G, let ρ̃(g) ∈ U(H)
be a lift of ρ(g). Let

c(g1, g2) := ρ̃(g1g2)−1ρ̃(g1)ρ̃(g2) ∈ T1.

It is easy to see that c(g1, g2) is indeed a scalar multiple of the identity operator
and it satisfies the cocycle condition (2.10). One may not be able to choose a
continuous lifting, but a measurable lifting is enough. Notice that if G is discrete
this problem will not arise and any lifting can be used.

For another series of examples, let G = π1(M) be the fundamental group of a
smooth manifold M . Let ω ∈ Ω2(M̃) be a closed invariant 2-form, representing a
magnetic field strength on the universal cover of M . By invariance we mean g∗ω =
ω for all g ∈ G under the natural action of G on the simply connected manifold M̃ .
We have ω = dθ for a 1-form θ on M̃ , where the 1-form θ is known as the vector
potential. By invariance of ω we have d(θ− g∗θ) = 0 and hence θ− g∗θ = dϕg, for
a smooth function ϕg. It is given by the line integral ϕg(x) =

∫ x
x0

(θ − g∗θ). Let

c(g1, g2) := exp(iϕg1(g2x0)). (2.12)
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It can be checked that c is indeed a group 2-cocycle on G. (Notice that ϕg1(x)−
ϕg2(g1x) − ϕg1g2(x) is independent of x.) As is shown in [41], this is exactly the
way noncommutative tori appeared in the noncommutative geometry treatment
of the quantum Hall effect (cf. [12] for a full treatment, and also [134] for recent
developments).

Exercise 2.2.1. We saw that the algebra of n× n matrices Mn(C) is a groupoid
algebra. Show that it is not a group algebra for any group (n ≥ 2).

Exercise 2.2.2. Show that the algebra of upper triangular n × n matrices is a
quiver algebra. (It is however not a groupoid algebra.)

Exercise 2.2.3 (Lack of functoriality). Show that the association G 7→ CG from
the category of groupoids to the category of algebras is not a functor. Notice that
G 7→ CG is a functor from the category of groups to the category of algebras.

Exercise 2.2.4. Define the disjoint union G1 ∪G2 and cartesian products G1×G2

of two groupoids and show that

C(G1 ∪ G2) = C(G1)⊕ C(G2) and C(G1 × G2) = C(G1)⊗ C(G2).

(For the latter assume that the sets of objects of G1 and G2 are finite.)

Exercise 2.2.5. Let p : E →M be a smooth vector bundle on a smooth manifold
M . Fiberwise addition of vectors turns E into a groupoid with M as its set of
objects and its source and target maps given by s = t = p : E → M . Show that
C∗rE ' C0(M,E).

Exercise 2.2.6. Let G = π1(S1) be the fundamental groupoid of the circle. It is
an étale smooth groupoid. Describe the groupoid algebras C∞c (G) and C∗r (G).

Exercise 2.2.7. Let Θ = (θij) be a skew-symmetric real n×n matrix. Show that
the map c : Zn × Zn → T defined by

c(u, v) = exp(2πi〈Θu, v〉)

is a 2-cocycle on Zn. The corresponding twisted group C∗-algebraAΘ = C∗(Zn, Θ)
is called the n-dimensional noncommutative torus and can be alternatively defined
as the universal C∗-algebra generated by unitaries U1, . . . , Un subject to the rela-
tions

UiUj = exp(2πiθij)UjUi, i, j = 1, . . . , n.

Exercise 2.2.8. Let a group G act by automorphisms on an algebra A and let
τ0 : A→ C be a trace. Define a linear map τ : Aoα G→ C by

τ(a⊗ g) =

{
τ0(a) if g = e,

0 if g 6= e.
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Show that τ is a trace if and only if τ0 is G-invariant in the sense that

τ0(g(a)) = τ0(a) for all g ∈ G, a ∈ A.

Extend this to topological crossed products. Show that the canonical trace on the
noncommutative torus is obtained this way.

Exercise 2.2.9. Give a proof of (2.9) for G = Zn along the lines of the proof of
(2.7) given in the text.

Exercise 2.2.10. Let the cyclic group Zn act on C(S1) by rotation through an
angle 2π

n . Show that C(S1) o Zn 'Mn(C(S1)).

Exercise 2.2.11. Let G be a finite group acting on itself by left translation. Show
that C(G) oG 'Mn(C) where n is the order of G.

Exercise 2.2.12. Show that the 2-cocycle (2.11) is an example of (2.12). Show
that it can also be defined via a projective representation. (Hint: For the first part
let M = T2 be the 2-torus and let ω be the volume form of R2.)

2.3 Morita equivalence

Morita theory, which has its origins in the representation theory of algebras [143]
(cf. also [4], [8] for a textbook treatment), turns out to be a powerful tool for
noncommutative geometry as well. Morita equivalent algebras share many com-
mon features, in particular they have isomorphic K-theory, Hochschild and cyclic
cohomology. Moreover, for good quotients, the commutative algebra of functions
on the classical quotient is Morita equivalent to the noncommutative quotient al-
gebra. To formulate this latter result properly one needs to extend the Morita
theory to the context of C∗-algebras. This will be done in the next section. We
start by sketching the purely algebraic theory in this section.

In this section algebra means an associative, not necessarily commutative, uni-
tal algebra over a commutative ground ring k. In particular k need not be a field.
All modules are assumed to be unitary in the sense that the unit of the algebra
acts as the identity operator on the module. Let A and B be algebras. We denote
by MA, AM, and AMB the categories of right A-modules, left A-modules and
A–B-bimodules, respectively. They are abelian categories. In the following defi-
nition the equivalence of categories is assumed to be implemented by an additive
functor.

Definition 2.3.1. The algebras A and B are called Morita equivalent if there is
an equivalence of categories

MA 'MB .

In general there are many ways to define an additive functor F : MA →MB .
By a result of Eilenberg [72] and Watts [178], however, if F is right exact and
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commutes with arbitrary direct sums then there exists an essentially unique A–B-
bimodule X (= F (A)) such that

F (M) = M ⊗A X for all M ∈MA. (2.13)

Notice that the converse statement is obvious. Now an equivalence of module cat-
egories is certainly right exact and commutes with direct sums and therefore is of
the form (2.13). Composition of functors obtained in this way simply corresponds
to the balanced tensor product of the defining bimodules.

It is therefore clear that algebras A and B are Morita equivalent if and only
if there exists an A–B-bimodule X and a B–A-bimodule Y such that we have
isomorphisms of bimodules

X ⊗B Y ' A, Y ⊗A X ' B, (2.14)

where the A-bimodule structure on A is defined by a(b)c = abc, and similarly for
B. Such bimodules are called equivalence (or invertible) bimodules. It also follows
from this result that A and B are Morita equivalent if and only if we have an
equivalence of categories of left modules

AM ' BM.

Similarly it can be shown that A and B are Morita equivalent if and only if we
have an equivalence of categories of bimodules

AMA ' BMB .

Example 2.3.1. Any unital algebra A is Morita equivalent to the algebra Mn(A)
of n × n matrices over A. The A–Mn(A) equivalence bimodules are defined by
spaces of row and column vectors. That is, X = An considered as row vectors with
obvious left A-action and right Mn(A)-action and Y = An considered as column
vectors with its obvious left Mn(A) and right A-modules structures. The maps

(a1, . . . , an)⊗ (b1, . . . , bn) 7→
∑

aibi,

(a1, . . . , an)⊗ (b1, . . . , bn) 7→ (aibj)

induce the isomorphisms (2.14). Thus an algebra cannot be recovered from its
module category. Also note that even when A is commutative Mn(A) is not
commutative (n ≥ 2). This example will be generalized below.

In general it is rather hard to characterize equivalence bimodules satisfying
(2.14). Given an A–B-bimodule X, we define algebra homomorphisms

A→ EndB(X), Bop → EndA(X),

a 7→ La, b 7→ Rb,

where La is the operator of left multiplication by a and Rb is the operator of right
multiplication by b. The following theorem is one of the main results of Morita
(cf. [8] for a proof):
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Theorem 2.3.1. An A–B-bimodule X is an equivalence bimodule if and only if X
is finitely generated and projective both as a left A-module and as a right B-module,
and the natural maps

A→ EndB(X), Bop → EndA(X),

are algebra isomorphisms.

Example 2.3.2. Let P be a finitely generated projective left A-module and let

B = EndA(P )op.

The algebras A and B are Morita equivalent. An equivalence A–B-bimodule is
given by X = P with obvious A–B-bimodule structure. As a special case we
obtain the following geometric example.

Example 2.3.3. Let X be a compact Hausdorff space and E be a complex vector
bundle on X. The algebras A = C(X) of continuous functions on X and B =
Γ(End(E)) of continuous global sections of the endomorphism bundle of E are
Morita equivalent. In fact, in view of Swan’s theorem, this is a special case of
the last example with P = Γ(E) the module of global sections of E. There are
analogous results for real as well as quaternionic vector bundles. If X happens to
be a smooth manifold and E a smooth vector bundle, we can let A be the algebra
of smooth functions on X and B be the algebra of smooth sections of End(E).
The next example is a special case where it is shown that the noncommutative
tori Aθ for rational values of θ are Morita equivalent to a commutative algebra.

Example 2.3.4 (Rational noncommutative tori). We showed in Proposition 1.1.1
that when θ = p

q is a rational number there is a (flat) vector bundle E of rank q

over T2 such that the noncommutative torus A p
q

is isomorphic to the algebra of

continuous sections of the endomorphism bundle of E,

A p
q
' Γ(End(E)).

In view of the above example this shows that A p
q

is Morita equivalent to C(T2).

Every continuous vector bundle on a smooth manifold has a natural smooth struc-
ture. This shows that the smooth noncommutative torus A p

q
is Morita equivalent

to C∞(T2).

Given a category C, we can consider its functor category Fun(C) whose ob-
jects are functors from C → C and whose morphisms are natural transformations
between functors. The center of a category C is by definition the set of natural
transformations from the identity functor to itself:

Z(C) := HomFun(C)(id, id).

Equivalent categories obviously have isomorphic centers.
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Let Z(A) = {a ∈ A; ab = ba for all b ∈ A} denote the center of an algebra A.
It is easily seen that for C = MA, the category of right A-modules, the natural
map

Z(A)→ Z(C), a 7→ Ra,

where Ra(m) = ma for any module M and any m ∈M , is one-to-one and onto and
identifies the center ofMA with the center of A. It follows that Morita equivalent
algebras have isomorphic centers:

A
M.E.∼ B ⇒ Z(A) ' Z(B).

In particular two commutative algebras are Morita equivalent if and only if they
are isomorphic.

We notice that commutativity is not a Morita invariant property in that a com-
mutative algebra can be Morita equivalent to a noncommutative algebra (as with
A and Mn(A)). In general, a property P of algebras is called a Morita invariant
property if for any two Morita equivalent algebras, either both satisfy the property
P or does not satisfy it. Similarly one can speak of a Morita invariant cohomology
theory for algebras. In a sense, Morita invariant properties of algebras are those
properties that can be expressed completely in terms of module categories, even
if they were originally defined in terms of the algebra itself.

For example, as we saw above, the center of an algebra can be completely
described in terms of its module category and hence is Morita invariant. It can
be shown that being simple (i.e., having no non-trivial two-sided ideal), or being
semisimple is a Morita invariant property for algebras. In fact an algebra A is
semisimple if and only if any short exact sequence in AM splits, which clearly
shows that semisimplicity is a Morita invariant property. It can also be shown
that there is a one-to-one correspondence between the lattices of two-sided ideals
of Morita equivalent algebras (cf. [4], [8], [152] for a complete discussion).

We shall see in Chapter 3 that Morita equivalent algebras have isomorphic
Hochschild and cyclic cohomology groups. See Exercise 2.3.4 below for a warmup.
They have isomorphic algebraic K-theory as well (cf. Exercise 2.3.6 below).

Example 2.3.5 (Azumaya algebra). An Azumaya algebra over a smooth manifold
M is an algebra A = Γ(A) of global sections of a smooth bundle of algebras with
fibers isomorphic to Mn(C). A simple example is obtained with A = Γ(End(P )),
the algebra of sections of the endomorphism bundle of a vector bundle. This
algebra is of course Morita equivalent to C∞(M). But not all Azumaya algebras
are Morita equivalent to the algebra of functions on the base. A less trivial example
is obtained withA = Cliff(TM) the complex Clifford algebra bundle of the tangent
bundle of an even-dimensional Riemannian manifold. It can be shown that this
Azumaya algebra is Morita equivalent to C∞(M) if and only if M has a Spinc

structure. In fact the existence of a Spinc structure on M is equivalent to the
existence of a complex vector bundle S on M with a pointwise irreducible action
of Cliff(TM). This in turn implies that Cliff(TM) ' Γ(End(S)). See [150], [85],
[174] and references therein for full details.
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Example 2.3.6 (The Morita category of noncommutative spaces). We can think
of the category Algk of unital k-algebras and unital algebra homomorphisms as
the opposite of a category of noncommutative spaces. One problem with this
category is that it does not have enough morphisms. For example, if A is a simple
algebra, then, unless A = k, there are no algebra maps A→ k. So, it is better to

embed this category into a ‘larger’ category Ãlgk which has the same objects as
Algk but with more morphisms. A (generalized) morphism from A to B is now
an isomorphism class of an A–B-bimodule. Composition of morphisms is defined
as tensor products of bimodules

Y ◦X := Y ⊗B X

which is clearly associative. Our first characterization of Morita equivalence in
terms of equivalence bimodules as in (2.14) shows that algebras A and B are
Morita equivalent if and only if they are isomorphic as objects of the category

Ãlgk. Let Mor(A,B) denote the set of isomorphism classes of A–B equivalence

bimodules, or, equivalently, the set of isomorphism from A to B in Ãlgk. Clearly,
A is Morita equivalent to B if and only if Mor(A,B) is non-empty and in that case
Mor(A,B) is a torsor, i.e., a principal homogeneous space, for the group Mor(A,A)
acting on the left, or the isomorphic group Mor(B,B) acting on the right.

Given an algebra map f : A → B, we can turn B into an A–B-bimodule by

defining a·b·b′ = f(a)bb′. This in fact defines a functor Algk → Ãlgk. The group of
self Morita equivalences of A, sometimes called the noncommutative Picard group
of A ([26]), is the group of invertible A–A-bimodules

G = Aut
Ãlgk

(A).

Notice that there is a natural map

Aut(A)→ Aut
Ãlgk

(A).

Remark 4. There is a similar problem with the category of C∗-algebras and C∗-
morphisms between them. There are not that many morphisms available in the
noncommutative case. For example, if A is a simple C∗-algebra, any naive attempt
at defining the fundamental group of A as the set of homotopy classes of C∗-maps
A→ C(S1) is bound to fail as there are no such maps in this case. There is now
a proposal [136] for a homotopy category of noncommutative spaces based on C∗-
algebras called the KK-category. Objects of the KK-category are C∗-algebras and
morphisms are Kasparov’s KK-groups. It is a triangulated category with many
features that resembles the category of spectra in algebraic topology.

There is a very useful method of constructing Morita equivalence bimodules,
in particular finite projective modules, for involutive algebras that we recall now.
This is the purely algebraic counterpart of some of the concepts introduced in the
next section for C∗-algebras. By an involutive algebra, also known as an ∗-algebra,
we mean an algebra B over the field of complex numbers endowed with a conjugate
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linear map ∗ : B → B, b 7→ b∗ such that for all a, b ∈ B we have (ab)∗ = b∗a∗ and
(a∗)∗ = a. Let B be a unital ∗-algebra and X be a unitary right B-module. A
B-valued inner product on X is a sesquilinear form, conjugate linear in the first
variable and linear in the second variable,

〈· , · 〉B : X ×X → B

such that for all x, y in X and b in B we have

i) 〈x, y〉B = 〈y, x〉∗B ,

ii) 〈x, yb〉B = 〈x, y〉B b.
The inner product is called full if in addition we have

〈X,X〉B = B,

that is for any b ∈ B, there are elements xi, yi, i = 1, . . . , n, such that

b =
∑
i

〈xi, yi〉B

Similarly one can define an A-valued inner product for a left module over a ∗-
algebra A. In this case the inner product

A〈· , · 〉 : X ×X → A

is assumed to be linear in the first variable and conjugate linear in the second
variable and it satisfies

i)′ A〈x , y〉 = A〈y , x〉∗,
ii)′ A〈ax , y〉 = aA〈y , x〉∗.
Now let A and B be unital ∗-algebras over C. let X be an A–B-bimodule en-

dowed with full A-valued and B-valued inner products A〈· , · 〉 and 〈· , · 〉B , respec-
tively. We further assume that these two inner products satisfy the associativity
condition: that is, for all x, y, z in X, we have

A〈x , y〉z = x〈y , z〉B .

In this case we say X is an imprimitivity bimodule. Here is a simple example.

Example 2.3.7. Let A be a unital ∗-algebra and B = Mn(A) the algebra of n by
n matrices over A which is an ∗-algebra in a natural way. Let X = An. Considered
as the space of column matrices, X is an Mn(A)–A-bimodule in a natural way.
Then the inner products

〈x , y〉A = x∗y =
∑
i

x∗i yi,

Mn(A)〈x , y〉 = xy∗ = (xiy
∗
j )ij

turn X into an imprimitivity Mn(A)–A-bimodule.



68 2 Noncommutative quotients

Now let X be an imprimitivity A–B-bimodule. We claim that X is finite
projective both as a left A-module and as a right B-module. To see this, let 1B
be the unit of B. By fullness of 〈· , · 〉B , we can find xi, yi, i = 1, . . . , k, in X such
that

1B =

k∑
i=1

〈xi , yi〉B .

Let ei, i = 1, . . . , k, be a basis for Ak. Define the map

P : Ak → X, P (ei) = yi.

We claim that P splits as an A-module map and hence X is a finite projective left
A-module. To this end consider the A-linear map

I : X → Ak, I(x) =
∑
i

A〈x , xi〉ei.

We have

(PI)(x) =
∑
i

A〈x , xi〉yi =
∑
i

x〈xi , yi〉B (by associativity)

= x.

A similar proof shows that X is finite and projective as a right B-module. But in
fact more is true. We can show that X is an equivalence bimodule. To this end let
X∗ denote the complex conjugate of the complex vector space X whose elements
we denote by x̄, x ∈ X. It is a B–A-bimodule by

bx̄a := a∗xb∗.

Although we do not need it here, we can also endow X∗ with algebra valued inner
products by setting

B〈x̄, ȳ〉 = 〈x, y〉B and 〈x̄, ȳ〉A = A〈x, y〉.

Consider the maps

f : X ⊗B X∗ → A, x⊗ ȳ 7→ A〈x , y〉, g : X∗ ⊗A X → B, x̄⊗ y 7→ 〈x , y〉B .

Both maps are clearly bimodule maps. They are also surjective thanks to the
fullness of inner products. It follows from Proposition 4.4 in [8] that f and g
are isomorphisms. This of course shows that X is a Morita equivalence bimodule
and the algebras A and B are Morita equivalent. We give a couple of examples
illustrating this method.

Example 2.3.8. Let M be a smooth compact manifold and let E be a smooth
complex vector bundle on M . Let X = C∞(E) denote the set of smooth sections
of E. It is an A–B-bimodule in an obvious way, with A = C∞(EndE)) acting on
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the left and B = C∞(M) acting on the right. A Hermitian inner product 〈 , 〉 on
E, which is assumed to be conjugate linear in the first variable, will enable us to
define algebra valued inner products A〈· , · 〉 and 〈· , · 〉B on X by

〈ξ, η〉B(m) = 〈ξ(m), η(m)〉, A〈ξ , η〉(ζ)(m) = 〈η(m), ζ(m)〉 ξ(m),

where ξ, η, and ζ are sections of E and m ∈ M . It is easy to see that AXB

satisfies both the fullness and associativity conditions and hence is an equivalence
bimodule. This gives another proof of the Morita equivalence of C∞(M) and
C∞(End(E)).

Example 2.3.9. Let us show that the smooth noncommutative tori Aθ and A 1
θ

are Morita equivalent by exhibiting an equivalence bimodule between them. Let
X = S(R) be the Schwartz space of rapidly decreasing functions on R. It is easily
checked that the following formulae define a right Aθ-module structure on X:

(ξ · U)(x) = ξ(x+ θ), (ξ · V )(x) = e2πixξ(x)

for all ξ ∈ S(R) and x ∈ R. Let us denote the generators of A 1
θ

by Ū and V̄ . We
can define a left action of A 1

θ
on X by

(Ūξ)(x) = ξ(x+ 1), (V̄ ξ)(x) = e
−2πix
θ ξ(x).

Since the two actions commute, X is an A 1
θ
–Aθ-bimodule. To show that it is an

equivalence bimodule we endow X with algebra valued inner products:

1
θ
〈· , · 〉 : X ⊗X → A 1

θ
, 〈· , · 〉θ : X ⊗X → Aθ,

given by

1
θ
〈ξ, η〉 =

∑
m,n

∑
k

ξ(n− k)η̄(n− k −mθ)ŪmV̄ n

and

〈ξ, η〉θ =
∑
m,n

∑
k

ξ̄(n− kθ)η(n−m− kθ)UmV n.

We leave it to the reader to check the axioms of inner products and the associativity
condition (see Exercise 2.3.9 below).

Exercise 2.3.1. Let X be a Morita equivalence A–B-bimodule. Show that X is
finitely generated projective both as an A-module and as a B-module.

Exercise 2.3.2. Show that if two discrete groupoids, with finite sets of objects,
are equivalent (as categories), then their groupoid algebras are Morita equivalent.
This can be extended to topological groupoids and their corresponding C∗-algebras
and it forms an important principle in noncommutative geometry. For example, it
allows one to replace the holonomy groupoid of a foliation by a Morita equivalent
étale holonomy groupoid which is much easier to work with.
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Exercise 2.3.3 (Duality). Let X be a Morita equivalence A–B-bimodule and let
X∗ = HomA(X,A). Show that X∗ is a B–A-bimodule and we have isomorphism
of bimodules:

X ⊗B X∗ ' A, X∗ ⊗A X ' B.
Thus in (2.14) we can take Y = X∗.

Exercise 2.3.4. For an algebra A, let [A, A] denote the linear subspace of A
spanned by commutators ab − ba for a, b ∈ A (the commutator subspace of A).
Show that the ‘trace map’

Tr: Mn(A)→ A, Tr(aij) =
∑

aii

induces a k-linear isomorphism between the commutator quotient spaces of A and
Mn(A):

Mn(A)

[Mn(A), Mn(A)]
' A

[A, A]
.

In particular the space of traces of A and of Mn(A) are isomorphic. Extend
this fact to arbitrary Morita equivalent algebras. This is a special case of Morita
invariance of Hochschild and cyclic homology, another important principle in non-
commutative geometry, to be discussed in the next chapter.

Exercise 2.3.5. Let e ∈ A be an idempotent and let f = 1 − e. Show that the
algebras eAe and fAf are Morita equivalent. Example 2.3.1 is a special case of
this exercise.

Exercise 2.3.6 (Morita invariance of K-theory). Show that an additive equiva-
lence of categories F : MA ; MB sends a finitely generated projective module
over A to a module of the same type over B and induces an equivalence of the
corresponding categories of finitely generated projective modules. Since the def-
inition of the algebraic K-theory of an algebra depends solely on its category of
finitely generated projective modules (cf. e.g. [160]), it follows that Morita equiv-
alent algebras have isomorphic algebraic K-theories.

Exercise 2.3.7. Let G be a finite group acting on a finite set X. Show that the
algebras C(X/G) and C(X)oG are Morita equivalent if and only if the action of G
is free. When the action is free, define an equivalence C(X)oG–C(X/G)-bimodule
structure on C(X) with algebra valued inner products.

Exercise 2.3.8. Let G be a finite group and H and K be subgroups of G. Then
H acts by right multiplication on the right coset space K\G and K acts by left
multiplication on the left coset space G/H. Show that the algebras

A = C(K\G) oα H and B = C(G/H) oβ K

are Morita equivalent. (Hint: Let X = C(G) and turn X into an equivalence A–B-
bimodule by defining on X covariant representations for (C(K\G), H, α) and
(C(G/H), K, β) and algebra valued inner products X×X → A and X×X → B.
See also Example 2.4.5.)

Exercise 2.3.9. Verify the claim at the end of Example 2.3.9.
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2.4 Morita equivalence for C∗-algebras

To extend the Morita theory to non-unital and to topological algebras needs more
work and new ideas. For C∗-algebras we have Rieffel’s notion of Morita equivalence
[155], originally called strong Morita equivalence, that we recall in this section. For
a complete account see [15], [41], [152] and references therein. In this section C∗-
algebras are not assumed to be unital.

For C∗-algebras one is mostly interested in their ∗-representations by bounded
operators on a Hilbert space as opposed to general representations. Let A and B
be C∗-algebras. To compare their corresponding categories of representations, we
need A–B-bimodules X such that if H is a Hilbert space and a right A-module,
then H ⊗A X is also a Hilbert space in natural way. This observation leads
one to the concepts of Hilbert module and equivalence bimodule recalled below.
Hilbert modules can also be thought of as simultaneous generalizations of notions
of Hilbert space and C∗-algebra.

Definition 2.4.1. Let B be a C∗-algebra. A right Hilbert B-module is a right
B-module X endowed with a B-valued inner product

〈· , · 〉 : X ×X → B

such that X is complete with respect to its natural norm. More precisely, 〈· , · 〉 is
a sesquilinear form, conjugate linear in the first variable and linear in the second
variable, such that for all x, y in X and b in B we have

i) 〈x, y〉 = 〈y, x〉∗,
ii) 〈x, yb〉 = 〈x, y〉 b,
iii) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 implies that x = 0,

iv) X is complete with respect to the norm

‖x‖ := ‖〈x, x〉‖1/2.

When only conditions i)–iii) are satisfied, X is called a right pre-Hilbert B-
module. It can be easily shown that any B-valued inner product satisfying condi-
tions i)–iii) above satisfies the generalized Cauchy–Schwarz inequality

〈x, y〉∗〈y, x〉 ≤ ‖〈x, x〉‖ 〈y, y〉 as elements of B.

From this it follows that ‖ · ‖ := 〈x, x〉1/2 defines a norm on X. Any pre-Hilbert
module can be completed to a Hilbert module. A Hilbert B-module X is called
full if the ideal

I = span{〈x, y〉; x, y ∈ X}

is dense in B. Notice that if B is unital and its unit acts as the identity operator on
X, then X is automatically full. The notion of a left Hilbert B-module is defined
similarly.
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Example 2.4.1. 1. For B = C, a right Hilbert B-module is just a Hilbert space
where the inner product is antilinear in the first factor (physicists’ convention).

2. For any C∗-algebra B, X = B with its natural right B-module structure
and the inner product

〈a, b〉 = a∗b

is clearly a right Hilbert B-module. Notice that the norm of B as a Hilbert B-
module is the same as its norm as a C∗-algebra because of the C∗-axiom ‖a∗a‖ =
‖a‖2.

3. For any C∗-algebra B let X = `2(B) denote the space of square summable
sequences (b1, b2, . . . ) fromB with the natural rightB-action and the inner product

〈(a1, a2, . . . ), (b1, b2, . . . )〉 =

∞∑
i=1

a∗i bi.

It is clearly a Hilbert B-module.

4. A nice geometric example to keep in mind is the following. Let M be a
locally compact Hausdorff space, let E be a complex vector bundle on M endowed
with a Hermitian inner product, and let X = Γ0(E) be the space of continuous
sections of E vanishing at infinity. One defines a Hilbert C0(M)-module structure
on X by letting

〈s, t〉(m) = 〈s(m), t(m)〉

for continuous sections s and t of E. It is however not true that all Hilbert modules
over C0(M) are of this type. It can be shown that an arbitrary Hilbert module
over C0(M) is isomorphic to the space of continuous sections of a continuous field
of Hilbert spaces over X (cf. [69], [41] for definitions).

Every bounded linear operator on a Hilbert space has an adjoint. The analo-
gous statement for Hilbert modules, however, is not true. This is simply because,
for the existence of the adjoint operator, the existence of complementary submod-
ules is crucial, but, even purely algebraically, a submodule of a module need not
have a complementary submodule.

Definition 2.4.2. Let X be a Hilbert B-module. A B-linear map T : X → X is
called adjointable if there is a B-linear map T ∗ : X → X such that for all x and y
in X

〈Tx, y〉 = 〈x, T ∗y〉.

It is easy to show that an adjointable operator is bounded in the operator norm
and the algebra LB(X) of adjointable operators on X is a C∗-algebra. For B = C
we recover the algebra L(H) of bounded operators on a Hilbert space.

Another important C∗-algebra attached to a Hilbert module is its algebra of
compact operators. For any x, y ∈ X the operator T = |x〉〈y| ∈ LB(X) is defined,
using Dirac’s ‘bra-ket’ notation, by

T (z) = |x〉〈y| (z) := x 〈y, z〉 for all z ∈ X.



2.4 Morita equivalence for C∗-algebras 73

The operator T is clearly B-linear and adjointable with adjoint given by T ∗ =
|y〉〈x|. The linear span of such ‘rank one operators’ is a two-sided ∗-ideal of
LB(X), called the ideal of finite rank operators. The C∗-algebraKB(X) of compact
endomorphism of X is defined as the norm closure of the ideal of finite rank
operators in LB(X). Again, for B = C, we recover the algebra K(H) of compact
operators on a Hilbert space.

Finite projective modules over C∗-algebras have a very useful characterization
in terms of Hilbert modules [155]:

Proposition 2.4.1. Let B be a unital C∗-algebra. A right B-module E is finite
and projective if and only if there is a right Hilbert B-module structure on E such
that

1E ∈ KB(E).

Definition 2.4.3. Let A and B be C∗-algebras. An A–B equivalence bimodule
is an A–B-bimodule X such that

(a) X is a full left Hilbert A-module and a full right Hilbert B-module,

(b) for all x, y, z ∈ X, the “associativity formula”

A〈x, y〉 z = x 〈y, z〉B (2.15)

holds.

Equivalence bimodules are also known as imprimitivity bimodules.

Definition 2.4.4. Two C∗-algebras A and B are called (strongly) Morita equiv-
alent if there exists an equivalence A–B-bimodule.

Thanks to associativity condition (2.15) and fullness, the operators of left and
right multiplications La(x) = ax and Rb(x) = xb are easily seen to be adjointable.
In fact, for all a ∈ A, b ∈ B and x, y, z ∈ X we have

z〈ax, y〉B = A〈z, ax〉 y = A〈z, x〉 a∗x = z〈x, a∗y〉B ,

and hence 〈ax, y〉B = 〈x, a∗y〉B , since X is a full right Hilbert B-module. It follows
that La is adjointable with L∗a = La∗ . Similarly Ra is adjointable with R∗a = Ra∗ .
We obtain C∗-algebra representations

L : A→ LB(X) and R : Bop → LA(X).

Example 2.4.2. 1. Any C∗-algebra A is Morita equivalent to itself where the
equivalence A–A-bimodule is X = A with inner products A〈x, y〉 = xy∗ and
〈x, y〉A = x∗y.

2. Any Hilbert space H is an equivalence K(H)–C-bimodule. This shows that
the algebra K(H) of compact operators on a Hilbert space is Morita equivalent
to C and hence for H = Cn one recovers the basic Morita equivalence between
Mn(C) and C. More generally, any full right Hilbert B-module X is an equivalence
KB(X)–B-bimodule.



74 2 Noncommutative quotients

3. It can be shown that two unital C∗-algebras are Morita equivalent as C∗-
algebras if and only if they are Morita equivalent as abstract algebras as defined
in Section 2.3 (see [11]). It is also known that σ-unital C∗-algebras A and B are
(strongly) Morita equivalent if and only if their stabilizations are isomorphic: A⊗
K ' B⊗K. (A C∗-algebra is called σ-unital if it has a countable approximate iden-
tity.) In particular this implies that Morita equivalent σ-unital C∗-algebras have
isomorphic K-theories
(cf. [23]). It is shown in [77] that Morita equivalent C∗-algebras have the same
K-theory, whether they are σ-unital or not.

Example 2.4.3 (Correspondences, tensor products, and duality). Let A and B
be C∗-algebras. A correspondence (or generalized homomorphism) from A to be
B consists of a right Hilbert B-module X and a homomorphism φ : A→ LB(X).
The most obvious correspondences are defined by homomorphisms f : A → B
since we can then take X = B with its right Hilbert B-module structure as in
Example 2.4.1. 2) and with left A-action induced by f . A less trivial example is
an equivalence bimodule.

Correspondences can be composed and the composition is via tensor products
of Hilbert modules. In general, let X be a Hilbert right A-module, Y a Hilbert
right B-module and let φ : A → LB(Y ) be a ∗-homomorphism. Then Y is an
A–B-bimodule and we can form the algebraic tensor product X ⊗A Y and define
a B-valued inner product on it by

〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈y1, φ(〈x1, x2〉A)y2〉.

The completion of X ⊗A Y under the above inner product is a Hilbert B-module,
denoted by X ⊗φ Y . This operation of tensor product is associative up to natural
isomorphism. We can thus conceive of a category whose objects are C∗-algebras
and whose morphisms are isomorphism classes of correspondences between C∗-
algebras. Since correspondences can be added it is an additive category. This
should be compared with the purely algebraic Morita category of noncommutative
spaces introduced in Example 2.3.6. The category of correspondences is closely
related to Kasparov’s KK-theory. For example the KK-group KK(A,B) is the set
of homotopy classes of correspondences with a generalized Fredholm operator.

There is an alternative description of Morita equivalence via tensor products
of correspondences [41]. Let 1A denote the equivalence A–A-bimodule defined in
Example 2.4.2. 1). It can be shown that C∗-algebras A and B are Morita equivalent
if and only if there is an A-B correspondence X and a B-A correspondence Y with

X ⊗B Y ' 1A, Y ⊗A X ' 1B .

In fact, if X is an equivalence A–B-bimodule we can take Y = X∗, the complex
conjugate of X. It is a B–A-bimodule by bx̄a := a∗xb∗. With inner products

B〈x̄, ȳ〉 = 〈x, y〉B and 〈x̄, ȳ〉A = A〈x, y〉 it is an equivalence B–A-bimodule, and
one can show that

X ⊗B X∗ = 1A, X∗ ⊗A X = 1B .
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Example 2.4.4 (Morita equivalence and group actions). Let G be a locally com-
pact topological group acting continuously on a locally compact Hausdorff space
X. The action is called proper if the map G×X → X×X sending (g, x) to (gx, x)
is proper. For example the action of a compact group is always proper. One checks
that the orbit space X/G of a proper action is locally compact and Hausdorff. To
gain a better feeling for proper actions, let G be a discrete group. Then an action
of G on a topological space X is continuous if and only if each element of G acts
as a homeomorphism of X. In this case the action is proper if and only if for any
compact subset ∆ ⊂ X the set

{g ∈ G; g∆ ∩∆ 6= ∅}

is a finite subset of G. Roughly speaking, each compact subset of X is ‘eventually
pushed to infinity’. The action is called free if for all g ∈ G, x ∈ X, gx = x iff
g = e, the identity of the group.

We show, following [156], that when the action is free and proper the commu-
tative C∗-algebra B = C0(X/G) of continuous functions on the quotient space
vanishing at infinity, is Morita equivalent to the crossed product algebra A =
C0(X) oG. To this end, we turn

E = Cc(X)

into a pre-Hilbert right B-module on which B acts by pointwise multiplication
(elements of B are regarded as G-invariant functions on X). The B-valued inner
product on E is defined by

〈f , g〉B(x) =

∫
G

f̄(t−1x)g(x−1t) dt.

To define a left action of the crossed product algebra A = C0(X)oG on E we need
a covariant action of G and C0(X) on X. Let C0(X) act on Cc(X) by pointwise
multiplication and G act on Cc(X) by

(t · f)(x) = ∆(t)−
1
2 f(t−1(x)) for all t ∈ G,

where ∆ is the modular character of G. Then the covariance condition is easily
checked. The associativity condition

A〈f, g〉h = f〈g , h〉B

of course fixes the A-valued inner product. This defines a pre-equivalence bimodule
which one can then complete to obtain an equivalence bimodule.

In particular, for X = G and G acting by right translations, which is obviously
a free and proper action, we obtain the known Morita equivalence

C M∼ C∗(G,G) = K(L2(G)).
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Example 2.4.5 (Morita equivalence and noncommutative tori). We saw in Ex-
ample 2.3.9 that smooth noncommutative tori Aθ and A 1

θ
are Morita equivalent

by defining an explicit equivalence bimodule for these two algebras. A similar tech-
nique works to show that the corresponding C∗-algebras Aθ and A 1

θ
are Morita

equivalent. Let us recall a much more general result from [156] that contains this
as a special case. Let G be a locally compact topological group and let H and
K be closed subgroups of G. Then H acts by right multiplication on the right
coset space K\G and K acts by left multiplication on the left coset space G/H.
Let α and β denote the corresponding dual actions of H and K on C0(K\G) and
C0(G/H), respectively. Then the result is that the crossed product algebras

A = C0(K\G) oα H, B = C0(G/H) oβ K (2.16)

are Morita equivalent. We refer to [156] for a description of the equivalence bi-
module in this case (cf. also [85] for an exposition).

As a special case we can take G = R, H = Z, and K = θZ. It is easy to see that
the corresponding crossed product algebras are Aθ and A 1

θ
. Now the group GL2(Z)

acts on the space of parameters θ ∈ R of noncommutative tori by linear fractional
transformations θ 7→ aθ+b

cθ+d , for any
(
a b
c d

)
∈ GL2(Z). We have seen that for θ′ = 1

θ
and θ′ = θ+ 1 the noncommutative tori Aθ′ and Aθ are Morita equivalent; in fact
Aθ+1 = Aθ. Since GL2(Z) is generated by these transformations, we see that for
any g ∈ GL2(Z), the noncommutative tori Aθ and Agθ are Morita equivalent:

Aθ
M∼ Agθ.

The converse is also true: if Aθ and Aθ′ are Morita equivalent then there is a
matrix g ∈ GL2(Z) such that θ′ = gθ. These results have been extended to higher
dimensional noncommutative tori in [126], [159].

Exercise 2.4.1. Consider the antipodal action of Z2 on the two-sphere S2. Show
that the algebras M2(C(S2)) and C(S2) o Z2 are not Morita equivalent. (Hint:
By Example 2.4.4, C(S2) o Z2 is Morita equivalent to C(S2/Z2), the algebra of
continuous functions on the real projective plane.)

2.5 Noncommutative quotients

From a purely set theoretic point of view, all that one needs in order to form a
quotient space X/∼ is an equivalence relation ∼ on a set X. If X is a topological
space, then there is of course a canonical topology, the quotient topology, on the
quotient space. If X has some extra features like being a Hausdorff space, a
manifold, or a smooth algebraic variety, etc., we may want these features to be
shared by the quotient space as well. If this can be done, then we say that we
have a good quotient, and otherwise the quotient is called a bad quotient. Now
the quotient of a Hausdorff space may easily fail to be Hausdorff. Similarly the
quotient of a manifold by an equivalence relation can easily fail to be a manifold
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again. So we have a problem: how to deal with bad quotients. In the context
of algebraic geometry, bad quotients are dealt with by enlarging the category of
schemes to the category of stacks, about which we shall say nothing, but check
[139] for an introduction to this circle of ideas.

The solution of this problem, as pioneered by Connes, in noncommutative
geometry involves extending the category of classical spaces to noncommutative
spaces. It hinges on the fact that an equivalence relation is usually obtained from
a much richer structure by forgetting part of this structure. For example, an
equivalence relation ∼ may arise from an action of a group G on a set X where
x ∼ y if and only if gx = y for some g in G (orbit equivalence). Note that there may
be, in general, many g’s with this property. That is, x may be identifiable with y in
more than one way. In particular an element x ∈ X may have a non-trivial group of
automorphisms, or self-equivalences. When we form the equivalence relation this
extra information is completely lost. The key idea in dealing with bad quotients in
noncommutative geometry is to keep track of this extra information and organize
it into a (discrete, topological, or smooth) groupoid. We call, rather vaguely, this
extra structure the quotient data.

Now Connes’ dictum in forming noncommutative quotients can be summarized
as follows:

quotient data  groupoid  groupoid algebra

where the noncommutative quotient is defined to be the groupoid algebra itself:

noncommutative quotient space = groupoid algebra (2.17)

Depending on what we want to do, we may want to consider a purely algebraic,
smooth, continuous, or measure theoretic groupoid algebra, represented by an
abstract algebra, a topological Fréchet algebra, a C∗-algebra, or a von Neumann
algebra, respectively. The type of algebra is usually dictated by the nature of the
problem at hand.

Why is this a reasonable approach? The answer is that first of all, by Theo-
rem 2.5.1 below, when the classical quotient is a reasonable space, the algebra of
continuous functions on the classical quotient is Morita equivalent to the groupoid
algebra. Now it is known that Morita equivalent algebras have isomorphic K-
theory, Hochschild, and cyclic cohomology groups. Thus the topological invariants
defined via noncommutative geometry are the same for classical and noncommu-
tative quotients and no information is lost.

For bad quotients there is no reasonable classical space to deal with but we
think of the noncommutative algebra defined as a groupoid algebra as representing
a noncommutative quotient space. Thanks to noncommutative geometry, tools like
K-theory, K-homology, cyclic cohomology, the local index formula, etc., can be
applied to great advantage in the study of these noncommutative spaces.

Example 2.5.1. We start with a simple example from [41]. Let X = {a, b} be
a set with two elements and define an equivalence relation on X that identifies a
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and b, a ∼ b:
a•! b•

The corresponding groupoid G here is the groupoid of pairs on the set X whose
morphisms (arrows) are indexed by pairs (a, a), (a, b), (b, a), (b, b). By Exam-
ple 2.2.1 the groupoid algebra CG is isomorphic to the algebra of 2 by 2 matrices
M2(C). The algebra isomorphism is given by the map

faa(a, a) + fab(a, b) + fba(b, a) + fbb(b, b) 7→
(
faa fab
fba fbb

)
.

The algebra of functions on the classical quotient, on the other hand, is given by

{f : X → C; f(a) = f(b)} ' C.

Thus the classical quotient and the noncommutative quotient are Morita equiva-
lent.

M2(C)
noncommutative quotient←−−−−−−−−−−−−−−−− a•! b• classical quotient−−−−−−−−−−−→ C

Example 2.5.2. The above example can be generalized. For example let X be a
finite set with n elements with the equivalence relation i ∼ j for all i, j in X.

1•! 2• · · · · · · · · · n−1• ! n•

The corresponding groupoid G is the groupoid of pairs on X and, again by Exam-
ple 2.2.1, its groupoid algebra, representing the noncommutative quotient, is

CG 'Mn(C).

The algebra of functions on the classical quotient is given by

{f : X → C; f(a) = f(b) for all a, b ∈ X} ' C.

Again the classical quotient is obviously Morita equivalent to the noncommutative
quotient.

Example 2.5.3. Let G be a finite group acting on a finite set X. The algebra of
functions on the classical quotient is

C(X/G) = {f : X → C; f(x) = f(gx) for all g ∈ G, x ∈ X} '
⊕
O

C,

where O denotes the set of orbits of X under the action of G.
The noncommutative quotient, on the other hand, is defined to be the groupoid

algebra of the transformation groupoid G = X o G. Note that as we saw before
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this algebra is isomorphic to the crossed product algebra C(X)oG. From Section
2.2 we have

CG ' C(X) oG '
⊕
i∈O

CGi ⊗Mni(C),

where Gi is the isotropy group of the i-th orbit, and ni is the size of the i-th orbit.
Comparing the classical quotient with the noncommutative quotient we see the
following:

i) The two algebras are Morita equivalent if and only if the action of G is free,
that is Gi = {1} for all orbits i (compare with Theorem 2.5.1). In this case we
have

C(X/G) '
⊕
O

C M∼
⊕
i∈O

Mni(C) ' CG.

It is still interesting to spell out the form of the equivalence bimodule when the
action is free. Let M = C(X) be the space of functions on X. In Exercise 2.3.7
we ask the reader to turn M into a CG-C(X/G) equivalence bimodule.

ii) When the action is not free, the information about the isotropy groups is not
lost in the noncommutative quotient construction, whereas the classical quotient
totally neglects the isotropy groups.

Example 2.5.4. Let G be a finite group acting freely and continuously on a
compact Hausdorff space X. The classical quotient X/G is a compact Hausdorff
space and we consider this a good quotient. What about the noncommutative
quotient? By (2.17) the noncommutative quotient should be the groupoid algebra
of the transformation groupoidXoG. We saw in Example 2.2.10 that the groupoid
algebra in this case is the crossed product algebra C(X)oG. We can describe the
noncommutative quotient algebra C(X) o G geometrically as follows. Consider
the principal G-bundle

G→ X → X/G.

There is an action of G, by algebra automorphisms, on the finite dimensional
matrix algebra EndC(CG) defined by

(gT )(h) = T (g−1h) for all T ∈ EndC(CG), g, h ∈ G.

The associated vector bundle is a flat vector bundle E of finite dimensional n× n
matrix algebras over X/G, where n is the order of the finite group G. Let Γ(E)
denote the algebra of continuous sections of E . We leave it to the reader to show
that there is an algebra isomorphism

C(X) oG ' Γ(E). (2.18)

Notice that since E is in general a non-trivial bundle, the crossed product algebra
C(X)oG is not always isomorphic to C(X/G)⊗Mn(C), though we know that it
is Morita equivalent to C(X/G).

Here is a concrete example. Let X = T2 and λ = exp(2πipq ) where p and q

are positive relatively prime integers with q > 1. The map (z1, z2) 7→ (λz1, λz2)
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defines an free action of G = Zq on T2. The corresponding crossed product algebra
is the rational noncommutative torus for θ = p

q :

C(T2) o Zq ' Γ(E) = A p
q
.

Example 2.5.5. Let G be a locally compact group acting continuously on a
locally compact Hausdorff space X. Assume the action is free and proper. Then
the classical quotient space X/G is locally compact and Hausdorff. This is a
good quotient. The corresponding noncommutative quotient is defined as the
groupoid algebra of the transformation groupoid X o G, which is isomorphic to
the crossed product algebra C0(X) oG. As we saw in Example 2.4.4, in this case
the commutative C∗-algebra of functions on the classical quotient, C0(X/G), is
Morita equivalent to the crossed product algebra C0(X) o G. That is, when the
action is free and proper, the classical quotient and the noncommutative quotient
are Morita equivalent. Due to its fundamental importance in justifying the whole
philosophy of noncommutative quotients we record this result in a theorem.

Theorem 2.5.1. Let a locally compact group G act freely and properly on a locally
compact Hausdorff space X. Then the C∗-algebras C0(X/G) and C0(X) oG are
Morita equivalent.

Example 2.5.6. Let X be a locally compact Hausdorff space and consider the
equivalence relation ∼ where x ∼ y for all x and y in X. The corresponding
groupoid is the groupoid of pairs, identifying all points with each other. The
classical quotient consists of a single point. To find out about the noncommutative
quotient, notice that the groupoid is a locally compact topological groupoid and
its groupoid C∗-algebra as we saw in Example 2.2.6 is the algebra of compact
operators K(L2(X,µ)). This algebra is obviously Morita equivalent to the classical
quotient algebra C.

Example 2.5.7 (Noncommutative torus). Let θ ∈ R be a fixed real number.
Consider the action of Z on the unit circle T = {z ∈ C; |z| = 1} via rotation
through an angle 2πθ:

(n, z) 7→ e2πinθz.

For θ = p
q a rational number, the quotient space T/Z is a circle and hence the

classical quotient algebra is given by

C(T/Z) = {f ∈ C(T); f(e2πinθz) = f(z) for all n, z} ' C(T).

Notice that even though the action is proper in this case, it is not free, and the
classical quotient algebra completely forgets any information about the isotropy
groups of fixed points.

If θ is irrational, the action is not proper though it is certainly free. In fact
the action is ergodic in this case; in particular each orbit is dense and the quotient
space T/Z has only two open sets. Thus the classical quotient is an uncountable set
with a trivial topology. In particular it is not Hausdorff. Obviously, a continuous
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function on the circle which is constant on each orbit is necessarily constant since
orbits are dense. Therefore the classical quotient algebra, for irrational θ, is given
by

C(T/Z) ' C.

The noncommutative quotient algebra, on the other hand, for any value of θ,
is the crossed product algebra

C(T) oθ Z,

which is the same as the groupoid algebra of the transformation groupoid ToZ of
the action. As we saw in Example 2.2.9 this algebra is isomorphic to the unital C∗-
algebra generated by two unitaries U and V subject to the relation V U = e2πiθUV ,
i.e., to the noncommutative torus Aθ.

Example 2.5.8 (Orbifolds). The map x 7→ −x defines an action of the group Z2

on R. The resulting quotient space is a simple example of an orbifold, a concept
that generalizes the notion of a smooth manifold. A more elaborate example is the
quotient of R2 by the action of the cyclic group Zn through rotation by an angle 2π

n .
In general, an orbifold is a topological space that locally looks like a quotient of a
Euclidean space Rn by an action of a finite group of diffeomorphisms. It is further
assumed that the transition functions are compatible with group actions (see [141]
for precise definitions and more general examples). There is a way to define an étale
groupoid for any orbifold [141]. One can then define the noncommutative quotient
as the groupoid algebra of this groupoid. In the simplest case when the orbifold is
a quotient X/G the corresponding groupoid is the transformation groupoid XoG.
In general it is an interesting problem to study orbifold invariants like the orbifold
Euler characteristic through invariants of this noncommutative quotient space (cf.
[134]).

Example 2.5.9 (The noncommutative space of leaves of a foliation). Recall that
in Example 2.1.5 we defined the notion of a foliation and its holonomy groupoid.
The space of leaves of a foliated manifold (V, F ) is, by definition, the quotient space
V/∼, where points x and y in V are considered equivalent if they belong to the
same leaf. For a generic foliation the resulting quotient space is poorly behaved
under its natural topology. For example, when there is an everywhere dense leaf,
the quotient space has only two open sets and is highly singular. An example of
this is the Kronecker foliation of the 2-torus by lines of constant irrational slope
θ as we saw in Example 2.1.5. Now to form the corresponding noncommutative
quotient space of leaves of a foliation we need a groupoid. The right groupoid turns
out to be the holonomy groupoid of the foliation. As we saw in Example 2.1.5, there
are two options here: the holonomy groupoid and the étale holonomy groupoid.
These two groupoids are in a certain sense Morita equivalent and as a result their
corresponding groupoid algebras are Morita equivalent. We can summarize the
situation as follows:

foliation  holonomy groupoid  groupoid algebra
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For a specific example, we look at the Kronecker foliation of the 2-torus. We
assume that the slope parameter θ is irrational. Then, since each leaf is homeo-
morphic to R and is simply connected, there is no holonomy and the holonomy
groupoid is reduced to the transformation groupoid

G = T2 oθ R,

where the R-action implementing the flow lines of the differential equation dy =
θdx on the torus is given by

(t, (z1, z2)) 7→ (z1, e
2πiθz2). (2.19)

The corresponding groupoid algebra, called the foliation algebra, is thus a crossed
product algebra and is given by

C∗(T2, Fθ) = C(T2) oθ R.

What is this algebra? Does it have any relation with the noncommutative torus?
To identify this algebra we can use the Morita equivalence of algebras in (2.16),
as explained in [85]. Let G = T × R with subgroups H = {1} × Z and K =
{(e2πit, t); t ∈ R}. Then G/K is the circle T and the action of H = Z is by
rotation through the angle − 2π

θ . Also, G/H = T2 where under this identification
the action of K = R is given by (2.19). It follows that we have a Morita equivalence
of C∗-algebras

C∗(T2, Fθ) = C(T2) oθ R
M∼ A− 1

θ
.

Now of course A− 1
θ

is isomorphic to A 1
θ

(why?), and we saw in Example 2.4.5
that the latter algebra is Morita equivalent to Aθ. We have therefore a Morita
equivalence

C∗(T2, Fθ)
M∼ Aθ (2.20)

which identifies, up to Morita equivalence, the foliation algebra of the Kronecker
foliation Fθ with the noncommutative torus. What about the étale holonomy
groupoid and its groupoid algebra? As we saw in Example 2.1.5, by choosing a
circle on T2 which is transverse to the foliation, the étale holonomy groupoid can
be identified with the transformation groupoid T oθ Z where the action of Z is
through rotation by 2πθ. The corresponding groupoid algebra is again a crossed
product algebra and is of course given by C∗(T oθ Z) = C(T) oθ Z = Aθ. Thus
(2.20) is an illustration of the general fact that the holonomy groupoid algebra
of a foliation is Morita equivalent to its étale holonomy groupoid algebra. For
a geometric interpretation of these Morita equivalences and more examples of
foliation algebras we refer to [41].

Example 2.5.10 (The unitary dual of a non-compact group). Let Ĝ denote the
set of isomorphism classes of (continuous) irreducible unitary representations of
a locally compact group G. It is possible to put a topology on Ĝ (cf. [68]) but
unless G is compact or abelian, or obtained from such groups by a finite exten-
sion, this space tends to be non-Hausdorff, and can be quite singular (cf. Section
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II.4 of [41] for a dramatic example with a discrete group G = Z2 o Z). Connes’
noncommutative replacement for the unitary dual Ĝ is the (full) group C∗-algebra
C∗(G), while the reduced group C∗-algebra C∗r (G) is the noncommutative space
representing the closed subspace Ĝr of Ĝ corresponding to irreducible representa-
tions that are weakly contained in the left regular representation (the support of
the Plancherel measure).

Why is all this reasonable? Part of the answer consists in looking at what
happens when G is abelian, or compact. In fact, if G is abelian, by Gelfand–
Naimark’s theorem we know that then C∗(G) ' C0(Ĝ) is indeed the algebra of
continuous functions (vanishing at infinity) on the unitary dual of G. Also, if G
is compact then Ĝ is a discrete space, while C∗(G) ⊂

∏
λ∈Ĝ End(Vλ) consists of

sequences of finite dimensional matrices whose norm converges to zero. Then of
course the noncommutative dual C∗(G) and the classical dual C0(Ĝ) are Morita
equivalent. In general, for noncommutative G there are close relations between the
noncommutative dual C∗(G) and the classifying space (for proper actions) of G
through the Baum–Connes conjecture. In fact this was one of the main motivations
behind noncommutative geometry and its applications to topology. We refer to
[41] for a first-hand account.

Exercise 2.5.1 (A noncommutative circle). A classical example of a smooth but
non-Hausdorff manifold is obtained by gluing two copies of a circle at all except
one point:

X = (S1 .
∪ S1)/∼ .

Identify the corresponding noncommutative quotient space. This example can be
generalized; e.g. one can glue the two circles at all but n points.

Exercise 2.5.2. Prove the isomorphism (2.18). Give an example of a free action
of a finite group G on a space X where C(X) oG and C(X/G)⊗Mn(C) are not
isomorphic (n is the order of G).

Exercise 2.5.3. Let M =
⋃
i Ui be a finite open covering of a smooth manifold

M by coordinate charts Ui ⊂M . Let V =
.⋃
iUi be the disjoint union of open sets

Ui and p : V →M the natural projection. Define an equivalence relation on V by
x ∼ y if p(x) = p(y). Show that the corresponding groupoid G, the graph of ∼, is
a smooth étale groupoid and there is a Morita equivalence

C∞(G)
M∼ C∞(M).

Exercise 2.5.4. In Example 2.5.9 show that even when θ is rational the foliation
algebra C∗(T2, Fθ) is Morita equivalent to Aθ.

2.6 Sources of noncommutative spaces

We finish this chapter by making some general remarks on the sources of non-
commutative spaces. At present we can identify at least four methods by which
noncommutative spaces are constructed in noncommutative geometry:
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i) noncommutative quotients;

ii) algebraic and C∗-algebraic deformations;

iii) Hopf algebras and quantum groups;

iv) cohomological constructions.

We stress that these methods are not mutually exclusive; there are in fact intimate
relations between these sources and sometimes a noncommutative space can be
described simultaneously by several methods, as is the case with noncommutative
tori. The majority of examples, by far, however, fall into the first category. We
shall not discuss the last method here (cf. [44]). Very briefly, the idea is that if one
writes the conditions for the Chern character of an idempotent in cyclic homology
to be trivial on the level of chains, then one obtains interesting examples of algebras
such as noncommutative spheres and spherical manifolds, and Grassmannians.



Chapter 3

Cyclic cohomology

Cyclic cohomology was discovered by Connes in 1981 and was announced in that
year, with full details, in a conference in Oberwolfach [36]. One of his main
motivations came from index theory on foliated spaces. The K-theoretic index
of a transversally elliptic operator on a foliated manifold is an element of the K-
theory group of a noncommutative algebra, called the foliation algebra of the given
foliated manifold. Connes realized that to identify this class it would be desirable
to have a noncommutative analogue of the Chern character with values in an, as
yet unknown, cohomology theory for noncommutative algebras. This theory would
then play the role of the de Rham homology of currents on smooth manifolds.

Now, to define a noncommutative de Rham theory for noncommutative alge-
bras is a highly non-trivial matter. This is in sharp contrast with the situation in
K-theory where extending the topological K-theory to noncommutative Banach
algebras is straightforward. Note that the usual algebraic formulation of de Rham
theory is based on the module of Kähler differentials and its exterior algebra, which
has no analogue for noncommutative algebras.

Instead, the noncommutative analogue of de Rham homology was found by
a careful analysis of the algebraic structures deeply hidden in (super)traces of
products of commutators. These expressions are directly defined in terms of an
elliptic operator and its parametrix and were shown, via an index formula, to give
the index of the operator when paired with a K-theory class. This connection
with elliptic theory, K-homology, and K-theory, is mainly explored in the next
chapter.

Let us read what Connes wrote in the Oberwolfach conference notebook after
his talk, summarizing his discovery and how he arrived at it [36]:

“The transverse elliptic theory for foliations requires as a preliminary step a
purely algebraic work, of computing for a noncommutative algebra A the cohomo-
logy of the following complex: n-cochains are multilinear functions ϕ(f0, . . . , fn)
of f0, . . . , fn ∈ A where

ϕ(f1, . . . , f0) = (−1)nϕ(f0, . . . , fn)

85
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and the boundary is

bϕ(f0, . . . , fn+1) = ϕ(f0f1, . . . , fn+1)− ϕ(f0, f1f2, . . . , fn+1) + · · ·

+ (−1)n+1ϕ(fn+1f0, . . . , fn).
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The basic class associated to a transversally elliptic operator, for A = the algebra
of the foliation, is given by:

ϕ(f0, . . . , fn) = Trace(εF [F, f0][F, f1] . . . [F, fn]), f i ∈ A,

where

F =

(
0 Q
P 0

)
, ε =

(
1 0
0 −1

)
,

and Q is a parametrix of P . An operation

S : Hn(A)→ Hn+2(A)

is constructed as well as a pairing

K(A)×H(A)→ C,

where K(A) is the algebraic K-theory of A. It gives the index of the operator
from its associated class ϕ. Moreover 〈e, ϕ〉 = 〈e, Sϕ〉 so that the important group
to determine is the inductive limit Hp = Lim

−→
Hn(A) for the map S. Using the

tools of homological algebra the groups Hn(A,A∗) of Hochschild cohomology with
coefficients in the bimodule A∗ are easier to determine and the solution of the
problem is obtained in two steps:

1. The construction of a map

B : Hn(A,A∗)→ Hn−1(A)

and the proof of a long exact sequence

· · · → Hn(A,A∗) B−−→ Hn−1(A)
S−−→ Hn+1(A)

I−−→ Hn+1(A,A∗)→ · · · ,

where I is the obvious map from the cohomology of the above complex to the
Hochschild cohomology.

2. The construction of a spectral sequence with E2 term given by the cohomology
of the degree −1 differential I ◦B on the Hochschild groups Hn(A,A∗) and
which converges strongly to a graded group associated to the inductive limit.

This purely algebraic theory is then used. For A = C∞(V ) one gets the de
Rham homology of currents, and for the pseudo-torus, i.e., the algebra of the Kro-
necker foliation, one finds that the Hochschild cohomology depends on the Diophan-
tine nature of the rotation number while the above theory gives H0

p of dimension
2 and H1

p of dimension 2, as expected, but from some remarkable cancelations.”

Cyclic cohomology has strong connections with group cohomology and Lie
algebra cohomology as well. For example a theorem of Burghelea [25], to be
recalled later in this chapter, computes the cyclic cohomology of the group algebra
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of a discrete group in terms of group cohomology; or a theorem of Loday–Quillen–
Tsygan [125], [171] states that cyclic cohomology of an algebra A is isomorphic to
the primitive part (in the sense of Hopf algebras) of the Lie algebra cohomology
of the Lie algebra gl(A) of stable matrices over A. We shall not pursue this
connection in this book (cf. [124] for a full account and extensions; see also [64],
[135] for alternative approaches to cyclic cohomology).

In Sections 3.1–3.5 we recall basic notions of Hochschild (co)homology theory
and give several computations. A theorem of Hochschild–Kostant–Rosenberg [100]
which identifies the Hochschild homology of the algebra of regular functions on a
smooth affine variety with differential forms on that variety is recalled. We also
recall a result of Connes [39] which identifies the continuous Hochschild cohomol-
ogy of the algebra of smooth functions on a smooth closed manifold with the space
of de Rham currents on that manifold. Relations between Hochschild cohomology
and deformation theory of algebras are also indicated.

In Sections 3.6–3.10 we study cyclic cohomology theory in some detail. First we
define cyclic cohomology via Connes’ cyclic complex, and establish Connes’ long
exact sequence, relating Hochschild and cyclic cohomology groups. This naturally
leads to a definition of the operator B and the periodicity operator S. A second,
and more powerful, definition of cyclic cohomology via Connes’ (b, B)-bicomplex is
our next topic. A key result here is the vanishing of the E2 term of the associated
spectral sequence of this bicomplex. This then gives us Connes’ Hochschild to
cyclic spectral sequence which is a very powerful tool for computations. Finally
we recall Connes’ computation of the cyclic cohomology of the algebra of smooth
functions on a manifold as well as the noncommutative torus, and Burghelea’s
result for the cyclic homology of group algebras. For this chapter we assume
that the reader is familiar with basic notions of homological algebra up to derived
functors and spectral sequences. This material is covered, e.g. in [19], [30], [124],
[179].

3.1 Hochschild cohomology

Hochschild cohomology of associative algebras was defined by Hochschild through
an explicit complex in [99]. This complex is a generalization of the standard
complex for group cohomology. Formulating a dual homology theory is straight-
forward. One of the original motivations was to give a cohomological criterion for
separability of algebras as well as a classification of (simple types) of algebra exten-
sions in terms of second Hochschild cohomology. Once it was realized, by Cartan
and Eilenberg [30], that Hochschild cohomology is an example of their newly dis-
covered theory of derived functors, tools of homological algebra like resolutions
became available. Hochschild cohomology plays an important role in the defor-
mation theory of associative algebras [83], [84] and the closely related theory of
∗-products in quantum mechanics [10]. More recent applications of the Hochschild
homology are to Khovanov homology and to invariants of knots and links like the
Jones invariant [110].
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The Hochschild–Kostant–Rosenberg theorem [100] and its smooth version by
Connes [39] identifies the Hochschild homology of the algebra of regular functions
on a smooth affine variety, or the algebra of smooth functions on a manifold, with
differential forms and is among the most important results of this theory. Because
of this result one usually thinks of Hochschild homology of an algebra A with
coefficients in A as a noncommutative analogue of differential forms on A.

As we shall see later in this chapter, Hochschild cohomology is related to cyclic
cohomology through Connes’ long exact sequence and, even better, through a
spectral sequence, also due to Connes. For this reason computing the Hochschild
cohomology is often the first step in computing the cyclic cohomology of a given
algebra. In the following all tensor products ⊗ and Hom’s are over C unless
specified otherwise.

Let A be an algebra over C and M be an A-bimodule. Thus M is a left and
a right A-module and the two actions are compatible in the sense that a(mb) =
(am)b for all a, b in A and m in M . The Hochschild cochain complex of A with
coefficients in M ,

C0(A, M)
δ−→ C1(A, M)

δ−→ C2(A, M)
δ−→ · · · (3.1)

denoted (C∗(A, M), δ), is defined by

C0(A, M) = M, Cn(A, M) = Hom(A⊗n, M), n ≥ 1,

where the differential δ : Cn(A, M)→ Cn+1(A, M) is given by

(δm)(a) = ma− am,
(δf)(a1, . . . , an+1) = a1f(a2, . . . , an+1)

+

n∑
i=1

(−1)i+1f(a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1f(a1, . . . , an)an+1.

Here m ∈M = C0(A, M), and f ∈ Cn(A, M), n ≥ 1.
One checks that

δ2 = 0.

The cohomology of the complex (C∗(A, M), δ) is by definition the Hochschild
cohomology of the algebra A with coefficients in the A-bimodule M and will be
denoted by Hn(A, M), n = 0, 1, 2, . . . .

Among all bimodules over an algebra A, the following two bimodules play an
important role.

1) M = A, with bimodule structure a(b)c = abc for all a, b, c in A. In this case
the Hochschild complex C∗(A, A) is also known as the deformation or Gersten-
haber complex of A. It plays an important role in deformation theory of associative
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algebras pioneered by Gerstenhaber [83], [84]. For example, it can be shown that
H2(A, A) is the space of equivalence classes of infinitesimal deformations of A and
H3(A, A) is the space of obstructions for deformations of A (cf. Section 3.3).

2) M = A∗ := Hom(A, C), the linear dual of A, with A-bimodule structure
defined by

(afb)(c) = f(bca)

for all a, b, c in A and f in A∗. This bimodule is relevant to cyclic cohomology.
Indeed, as we shall see later in this chapter, the Hochschild groups Hn(A, A∗) and
the cyclic cohomology groups HCn(A) enter into a long exact sequence. Using the
identification

Hom(A⊗n, A∗) ' Hom(A⊗(n+1), C), f 7→ ϕ,

ϕ(a0, a1, . . . , an) = f(a1, . . . , an)(a0),

the Hochschild differential δ is transformed into a differential, denoted b, given by

(bϕ)(a0, . . . , an+1) =

n∑
i=0

(−1)iϕ(a0, . . . , aiai+1, . . . , an+1)

+ (−1)n+1ϕ(an+1a0, a1, . . . , an).

Thus for n = 0, 1, 2 we have the following formulas for b:

(bϕ)(a0, a1) = ϕ(a0a1)− ϕ(a1a0),

(bϕ)(a0, a1, a2) = ϕ(a0a1, a2)− ϕ(a0, a1a2) + ϕ(a2a0, a1),

(bϕ)(a0, a1, a2, a3) = ϕ(a0a1, a2, a3)− ϕ(a0, a1a2, a3)

+ ϕ(a0, a1, a2a3)− ϕ(a3a0, a1, a2).

Due to its frequent occurrence in this text, from now on the Hochschild com-
plex C∗(A, A∗) will be simply denoted by C∗(A) and the Hochschild cohomology
H∗(A, A∗) by HH∗(A).

Example 3.1.1. We give a few examples of Hochschild cohomology, starting in
low dimensions.

1. n = 0. It is clear that

H0(A, M) = {m ∈M ; ma = am for all a ∈ A}.

In particular for M = A∗,

H0(A, A∗) = {f : A→ C; f(ab) = f(ba) for all a, b ∈ A}

is the space of traces on A.

2. n = 1. A Hochschild 1-cocycle f ∈ C1(A, M) is simply a derivation, i.e., a
C-linear map f : A→M such that

f(ab) = af(b) + f(a)b
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for all a, b in A. A 1-cocycle is a coboundary if and only if the corresponding
derivation is inner, that is there should exists an m in M such that f(a) = ma−am
for all a in A. Therefore

H1(A, M) =
derivations

inner derivations
.

Sometimes this is called the space of outer derivations of A with values in the A-
bimodule M . In view of Exercise 3.1.6, for an algebra A, commutative or not, we
can think of Der(A, A) as the Lie algebra of noncommutative vector fields on the
noncommutative space represented by A. Notice that, unless A is commutative,
Der(A, A) need not be an A-module.

3. n = 2. We show, following Hochschild [99], that H2(A,M) classifies abelian
extensions of A by M . Let A be a unital algebra and M be an A-bimodule. By
definition, an abelian extension of A by M is an exact sequence of algebras

0→M → B → A→ 0

such that B is unital, M has trivial multiplication (i.e., M2 = 0), and the induced
A-bimodule structure on M coincides with the original bimodule structure. Two
such extensions (M,B,A) and (M,B′, A) are called isomorphic if there is a unital
algebra map f : B → B′ which induces identity maps on M and A. (Notice that if
such an f exists then it is necessarily an isomorphism.) Let E(A,M) denote the
set of isomorphism classes of such extensions. We define a natural bijection

E(A,M) ' H2(A,M)

as follows. Given an extension as above, let s : A→ B be a linear splitting for the
projection B → A, and let f : A⊗A→M be its curvature, defined by

f(a, b) = s(ab)− s(a)s(b)

for all a, b in A. One can easily check that f is a Hochschild 2-cocycle and its
class is independent of the choice of the splitting s. In the other direction, given
a 2-cochain f : A⊗A→M , we try to define a multiplication on B = A⊕M via

(a,m)(a′,m′) = (aa′, am′ +ma′ + f(a, a′)).

It can be checked that this defines an associative multiplication if and only if f is
a 2-cocycle. The extension associated to a 2-cocycle f is the extension

0→M → A⊕M → A→ 0.

It can be checked that these two maps are bijective and inverse to each other.

4. A simple computation shows that when A = C is the ground field we have

HH0(C) = C and HHn(C) = 0 for n ≥ 1.
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Example 3.1.2. Let M be a closed (i.e., compact without boundary), smooth,
oriented, n-dimensional manifold and let A = C∞(M) denote the algebra of com-
plex valued smooth functions on M . For f0, . . . , fn ∈ C∞(M), let

ϕ(f0, . . . , fn) =

∫
M

f0 df1 . . . dfn.

The (n+ 1)-linear cochain ϕ : A⊗(n+1) → C has three properties: it is continuous
with respect to the natural Fréchet space topology of A (cf. Section 3.4 for more
on this point); it is a Hochschild cocycle; and it is a cyclic cochain (cf. Section 3.6
for more on this). The Hochschild cocycle property that concerns us here, bϕ = 0,
can be checked as follows:

(bϕ)(f0, . . . , fn+1) :=

n∑
i=0

(−1)iϕ(f0, . . . , f if i+1, . . . , fn+1)

+ (−1)n+1ϕ(fn+1f0, . . . , . . . , fn)

=

n∑
i=0

(−1)i
∫
M

f0 df1 . . . d(f if i+1) . . . dfn+1

+ (−1)n+1

∫
M

fn+1f0 df1 . . . dfn

= 0

for all f0, . . . , fn+1 ∈ A. Here we used the Leibniz rule for the de Rham differen-
tial d and the graded commutativity of the algebra (Ω∗M, d) of differential forms
on M .

We have thus associated a Hochschild cocycle to the orientation cycle of the
manifold. This construction admits a vast generalization, as we explain now. Let

ΩpM := Homcont(Ω
pM, C) (3.2)

denote the continuous linear dual of the space of p-forms on M . Here, the (locally
convex) topology of ΩpM is defined by the sequence of seminorms

‖ω‖n = sup |∂α ωi1,...,ip |, |α| ≤ n,

where the supremum is over a fixed, finite, coordinate cover for M , and over all
partial derivatives ∂α of total degree at most n of all components ωi1,...,ip of ω.
Elements of ΩpM are called de Rham p-currents on M . For p = 0 we recover the
notion of a distribution on M . Since the de Rham differential d : ΩkM → Ωk+1M ,
k = 0, 1, . . . , is continuous in the topology of differential forms, by dualizing it we
obtain differentials d∗ : ΩkM → Ωk−1M , k = 1, 2, . . . and the de Rham complex
of currents on M :

Ω0M
d∗←−− Ω1M

d∗←−− Ω2M
d∗←−− · · · .

The homology of this complex is called the de Rham homology of M and we shall
denote it by HdR

n (M), n = 0, 1, . . . .
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It is easy to check that for any m-current C, closed or not, the cochain ϕC
defined by

ϕC(f0, f1, . . . , fm) := 〈C, f0df1 . . . dfm〉

is a Hochschild cocycle on A. As we shall explain in Section 3.4, ϕC is continuous
in the natural topology of A⊗(m+1) and we obtain a canonical map

ΩmM → HHm
cont(C

∞(M))

from the space of m-currents on M to the continuous Hochschild cohomology of
C∞(M). By a theorem of Connes [39] this map is an isomorphism. We refer to
Section 3.5 for more details and a dual statement relating differential forms with
Hochschild homology. The corresponding statement for the algebra of regular
functions on a smooth affine variety, the Hochschild–Kostant–Rosenberg theorem,
will be discussed in that section as well.

Exercise 3.1.1. Let A1 = C[x, d
dx ] denote the Weyl algebra of differential opera-

tors with polynomial coefficients, where the product is defined as the composition
of operators. Equivalently, A1 is the unital universal algebra generated by ele-
ments x and d

dx with relation d
dxx − x

d
dx = 1. Show that HH0(A1) = 0; that is,

A1 carries no nonzero trace.

Exercise 3.1.2. Show that any derivation of the Weyl algebra A1 = C [x, ddx ] is
inner, i.e., H1(A1, A1) = 0.

Exercise 3.1.3. Show that any derivation of the algebra C(X) of continuous
functions on a compact Hausdorff space X is zero. (Hint: If f = g2 and g(x) = 0
for some x ∈ X then, for any derivation δ, (δf)(x) = 0.)

Exercise 3.1.4. Show that any derivation of the matrix algebra Mn(C) is inner.
(This was proved by Dirac in his first paper on quantum mechanics [67], where
derivations are called quantum differentials).

Exercise 3.1.5. Let Z(A) denote the center of the algebra A. Show that the
Hochschild groups Hn(A,M) are Z(A)-modules.

Exercise 3.1.6 (Derivations and vector fields). Let U ⊂ Rn be an open set and
let

X =

n∑
i=1

Xi
∂

∂xi

be a smooth vector field on U . Define a derivation δX : C∞(U)→ C∞(U) by

δX(f) =

n∑
i=1

Xi
∂f

∂xi
.
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Show that the map X 7→ δX defines a 1-1 correspondence between vector fields
on U and derivations of C∞(U) to itself. Under this isomorphism, the bracket of
vector fields corresponds to commutators of derivations:

δ[X,Y ] = [δX , δY ].

Fix a point m ∈ U and define an A-module structure on C by the map f ⊗ 1 7→
f(m). Show that the set Der(C∞(U), C) of C-valued derivations of C∞(U) is
canonically isomorphic to the (complexified) tangent space of U at m. Extend
these correspondences to arbitrary smooth manifolds. (These considerations form
the beginnings of a purely algebraic approach to some ‘soft’ aspects of differential
geometry including differential forms and tensor analysis, connection and curvature
formalism and Chern–Weil theory [115], [148], and is part of ‘differential geometry
over commutative algebras’. It can also be adapted to algebraic geometry.)

3.2 Hochschild cohomology as a derived functor

The original complex (3.1) that we used to define the Hochschild cohomology is
rarely useful for computations. Instead, it is the fact that Hochschild cohomology
is a derived functor that will allows us, in specific cases, to replace the standard
complex (3.1) by a much smaller complex and to compute the Hochschild coho-
mology. In this section we show that Hochschild cohomology is a derived functor;
more precisely it is an Ext functor. References for the general theory of derived
functors and homological algebra include [19], [30], [81], [124], [179].

Let Aop denote the opposite algebra of an algebra A. Thus, as a vector space
Aop = A and the new multiplication is defined by a ·b := ba. There is a one-to-one
correspondence between A-bimodules and left A⊗Aop-modules defined by

(a⊗ bop)m = amb.

Define a functor from the category of left A ⊗ Aop-modules to the category of
complex vector spaces by

M 7→ HomA⊗Aop(A, M) = {m ∈M ; ma = am for all a ∈ A} = H0(A, M).

We show that Hochschild cohomology is the left derived functor of the functor
M ; H0(A, M). We assume that A is unital. Since A is naturally a left A⊗Aop-
module, we can consider its bar resolution. It is defined by

0← A
b′←−− B1(A)

b′←−− B2(A)
b′←−− · · · , (3.3)

where Bn(A) = A⊗Aop⊗A⊗n is the free left A⊗Aop-module generated by A⊗n.
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The differential b′ is defined by

b′(a⊗ b⊗ a1 ⊗ · · · ⊗ an) = aa1 ⊗ b⊗ a2 ⊗ · · · ⊗ an

+

n−1∑
i=1

(−1)i(a⊗ b⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+ (−1)n(a⊗ anb⊗ a1 ⊗ · · · ⊗ an−1).

Define the operators s : Bn(A)→ Bn+1(A), n ≥ 0, by

s(a⊗ b⊗ a1 ⊗ · · · ⊗ an) = 1⊗ b⊗ a⊗ a1 ⊗ · · · ⊗ an.

One checks that
b′s+ sb′ = id,

which shows that (B(A), b′) is acyclic and hence is a free resolution of A as a left
A⊗Aop-module. Now, for any A-bimodule M we have an isomorphism of cochain
complexes

HomA⊗Aop(B(A), M) ' (C∗(A, M), δ),

which shows that Hochschild cohomology is the left derived functor of the Hom
functor:

Hn(A, M) ' ExtnA⊗Aop(A, M) for all n ≥ 0.

One can therefore use any projective resolution of A, or any injective resolution of
M , as a left A⊗Aop-module to compute the Hochschild cohomology groups.

Before proceeding further let us recall the definition of the Hochschild homology
of an algebra A with coefficients in a bimodule M . The Hochschild homology
complex of A with coefficients in M is the complex

C0(A, M)
δ←− C1(A, M)

δ←− C2(A, M)
δ←− · · · (3.4)

denoted by (C∗(A, M), δ), where

C0(A, M) = M and Cn(A, M) = M ⊗A⊗n, n = 1, 2, . . . ,

and the Hochschild boundary δ : Cn(A, M)→ Cn−1(A, M) is defined by

δ(m⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ a2 ⊗ · · · ⊗ an

+

n−1∑
i=1

(−1)im⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nanm⊗ a1 ⊗ · · · ⊗ an.

The Hochschild homology of A with coefficients in M is, by definition, the homol-
ogy of the complex (C∗(A, M), δ). We denote this homology by Hn(A, M), n =
0, 1, . . . . It is clear that

H0(A, M) = M/[A, M ],
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where [A, M ] is the C-linear subspace of M spanned by commutators am −ma
for a in A and m in M .

The following facts are easily established:

1) Hochschild homology, H∗(A, M), is the right derived functor of the functor
M ; A⊗A⊗Aop M = H0(A,M) from the category of left A⊗Aop-modules to the
category of complex vector spaces, i.e.,

Hn(A, M) ' TorA⊗A
op

n (A,M).

For the proof one can simply use the bar resolution (3.3) as we did for cohomology.

2) (Duality) Let M∗ = Hom(M,C). It is an A-bimodule via (afb)(m) =
f(bma). One checks that the natural isomorphism

Hom(A⊗n, M∗) ' Hom(M ⊗A⊗n,C), n = 0, 1, . . .

is compatible with differentials. Thus, since we are over a field of characteristic 0,
we have natural isomorphisms

Hn(A, M∗) ' (Hn(A, M))∗, n = 0, 1, . . .

From now on the Hochschild homology groupsH∗(A,A) will be denoted byHH∗(A).
In view of the above duality, we have the isomorphisms

HHn(A) ' HHn(A)∗, n ≥ 0,

where by our earlier convention HHn(A) stands for Hn(A,A∗).

Example 3.2.1. Let A = C[x] be the algebra of polynomials in one variable. It is
easy to check that the following complex is a resolution of A as a left A⊗A-module:

0←− C[x]
ε←− C[x]⊗ C[x]

d←− C[x]⊗ C[x]⊗ C←− 0, (3.5)

where the differentials are the unique A⊗A-linear extensions of the maps

ε(1⊗ 1) = 1, d(1⊗ 1⊗ 1) = x⊗ 1− 1⊗ x. (3.6)

To check its acyclicity, notice that it is isomorphic to the complex

0←− C[x]
ε←− C[x, y]

d←− C[x, y]←− 0,

where now
ε(f(x, y)) = f(x, x), d(f(x, y)) = (x− y)f(x, y).

By tensoring this resolution with the right A⊗A-module A, we obtain a com-
plex with zero differentials

0←− C[x]
0←− C[x]←− 0
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and hence

HHi(C[x]) '

{
C[x] if i = 0, 1,

0 if i ≥ 2.

The complex (3.5) is a simple example of a Koszul resolution. In the next example
we generalize it to polynomials in several variables. (cf. [19] for the general theory
in the commutative case.)

Example 3.2.2. Let A = C[x1, . . . , xn] be the algebra of polynomials in n vari-
ables. Let V be an n-dimensional complex vector space over. The Koszul resolu-
tion of A, as a left A⊗A-module, is defined by

0← A
ε←− A⊗A d←− A⊗A⊗Ω1 ← · · · ← A⊗A⊗Ωi ← · · · ← A⊗A⊗Ωn ← 0, (3.7)

where Ωi =
∧i

V is the i-th exterior power of V . The differentials ε and d are
defined in (3.6). d has a unique extension to a graded derivation of degree −1
on the graded commutative algebra A ⊗ A ⊗

∧
V . Notice that A ' S(V ), the

symmetric algebra of the vector space V .

Let K(S(V )) denote the Koszul resolution (3.7). To show that it is exact we
notice that

K(S(V ⊕W )) ' K(S(V )⊗K(S(W ))).

Since the tensor product of two exact complexes is again exact (notice that we
are over a field of characteristic zero), the exactness of K(S(V )) can be reduced
to the case where V is 1-dimensional, which was treated in the last example. See
Exercise 3.2.6 for an explicit description of the resolution (3.7).

As in the one dimensional case, the differentials in the complex A ⊗A⊗A
K(S(V )) are all zero and we obtain

HHi(S(V )) = Tor
S(V )⊗S(V )
i (S(V ), S(V )

= S(V )⊗
∧i

V.

The right-hand side is isomorphic to the module of algebraic differential forms on
S(V ). So we can write this result as

HHi(S(V )) = Ωi(S(V )),

which is a special case of the Hochschild–Kostant–Rosenberg theorem mentioned
before. More generally, if M is a symmetric A-bimodule, the differentials of
M ⊗A⊗A K(S(V )) vanish and we obtain

Hi(S(V ), M) 'M ⊗
∧i

V, i = 0, 1, . . . , n,

and 0 otherwise.
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Example 3.2.3. In Section 3.4 we shall define the continuous analogues of Hochschild
and cyclic (co)homology as well as Tor and Ext functors. Here is a simple exam-
ple. The continuous analogue of the resolution (3.5) for the topological algebra
A = C∞(S1) is the topological Koszul resolution

0←− C∞(S1)
ε←− C∞(S1) ⊗̂ C∞(S1)

d←− C∞(S1) ⊗̂ C∞(S1)⊗ C←− 0, (3.8)

with differentials given by (3.6). Here ⊗̂ denotes the projective tensor product of
locally convex spaces (cf. Section 3.4 for definitions). To verify the exactness, the
only non-trivial step is to check that ker ε ⊂ im d. To this end, notice that if we
identify

C∞(S1) ⊗̂ C∞(S1) ' C∞(S1 × S1),

the differentials are given by

(εf)(x) = f(x, x), (d1f)(x, y) = (x− y)f(x, y).

Now the homotopy formula

f(x, y) = f(x, x)− (x− y)

∫ 1

0

∂

∂y
f(x, y + t(x− y)) dt

shows that ker ε ⊂ im d. Alternatively, one can use Fourier series to establish the
exactness (cf. Exercise 3.2.5).

To compute the continuous Tor functor, we apply the functor − ⊗̂A⊗̂A to the
above complex. We obtain

0←− C∞(S1)
0←− C∞(S1)←− 0

and hence

HHcont
i (C∞(S1)) =

{
ΩiS1 if i = 0, 1,

0 if i ≥ 2,

where ΩiS1 ' C∞(S1)dxi is the space of differential forms of degree i on S1.
A similar computation, using a continuous version of Ext by applying the

functor Homcont
A⊗̂A(−, A) gives

HHi
cont (C∞(S1)) =

{
ΩiS

1 if i = 0, 1,

0 if i ≥ 2.

Here ΩiS
1 = (ΩiS1)∗, the continuous dual of i-forms, is the space of i-currents

on S1.
Notice how the identification C∞(S1) ⊗̂ C∞(S1) ' C∞(S1 × S1) played an

important role in the above proof. The algebraic tensor product C∞(S1)⊗C∞(S1),
on the other hand, is only dense in C∞(S1 × S1) and this makes it very difficult
to write a resolution to compute the algebraic Hochschild groups of C∞(S1). In
fact these groups are not known so far!
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Example 3.2.4 (Cup product). Let A and B be unital algebras. What is the
relation between the Hochschild homology groups of A ⊗ B and those of A and
B? One can construct (cf. [30], [124] for details) chain maps

C∗(A⊗B)→ C∗(A)⊗ C∗(B),

C∗(A)⊗ C∗(B)→ C∗(A⊗B)

inducing inverse isomorphisms. We obtain

HHn(A⊗B) '
⊕

p+q=n
HHp(A)⊗HHq(B) for all n ≥ 0.

Now, if A is commutative, the multiplication m : A ⊗ A → A is an algebra map
and, in combination with the above map, induces an associative and graded com-
mutative product on HH∗(A).

Exercise 3.2.1. Let A and B be unital algebras. Give a direct proof of the
isomorphism

HH0(A⊗B) ' HH0(A)⊗HH0(B).

Dually, show that there is a natural map

HH0(A)⊗HH0(B)→ HH0(A⊗B),

but it need not be surjective in general.

Exercise 3.2.2. Let

A = T (V ) = C⊕ V ⊕ V ⊗2 ⊕ · · · ,

be the tensor algebra of a vector space V . Show that the complex

0←− A ε←− A⊗Aop d←− A⊗Aop ⊗ V ←− 0,

with differentials induced by

ε(1⊗ 1) = 1, d(1⊗ 1⊗ v) = v ⊗ 1− 1⊗ v, v ∈ V,

is a free resolution of A as a left A⊗Aop-module. Conclude that A has Hochschild
homological dimension 1 in the sense that Hn(A, M) = 0 for all A-bimodules M
and all n ≥ 2. Compute H0(A, M) and H1(A, M).

Exercise 3.2.3 (Normalization). Let M be an A-bimodule. A cochain f : A⊗n →
M is called normalized if f(a1, . . . , an) = 0 whenever ai = 1 for some i. Show that
normalized cochains C∗norm(A,M) form a subcomplex of the Hochschild complex
C∗(A,M) and that the inclusion

C∗norm(A,M) ↪→ C∗(A,M)

is a quasi-isomorphism. (Hint: Introduce a normalized version of the bar resolu-
tion.)



100 3 Cyclic cohomology

Exercise 3.2.4. Let A = C[x]/(x2) denote the algebra of dual numbers. Use the
normalized Hochschild complex to compute HH∗(A).

Exercise 3.2.5. Use Fourier series to show that the sequence (3.8) is exact.

Exercise 3.2.6. Let V be an n-dimensional vector space. Show that the following
complex is a free resolution of S(V ), the symmetric algebra of V , as a left S(V )⊗
S(V )-module

S(V )
ε←− S(V 2)

iX←−−− S(V 2)⊗E1
iX←−−− S(V 2)⊗E2

iX←−−− · · · iX←−−− S(V 2)⊗En ← 0,

where Ek =
∧k

V , and iX is the interior multiplication (contraction) with respect
to the vector field

X =

n∑
i=1

(xi − yi)
∂

∂yi

on V 2 = V × V . (Hint: Use the Cartan homotopy formula diX + iXd = LX to
find a contracting homotopy for iX .)

Exercise 3.2.7 (A resolution for the algebraic noncommutative torus [39]). Let

A = C〈U1, U2〉/(U1U2 − λU2U1)

be the universal unital algebra generated by invertible elements U1 and U2 with
relation U1U2 = λU2U1. We assume that λ ∈ C is not a root of unity. Let
Ωi =

∧i
V , where V is a 2-dimensional vector space with basis e1 and e2. Consider

the complex of left A⊗Aop-modules

0←− A ε←− A⊗Aop d0←−− A⊗Aop ⊗ Ω1 d1←−− A⊗Aop ⊗ Ω2 ←− 0, (3.9)

where ε is the multiplication map and the other differentials are defined by

d0(1⊗ 1⊗ ej) = 1⊗ Uj − Uj ⊗ 1, j = 1, 2,

d1(1⊗ 1⊗ e1 ∧ e2) = (U2 ⊗ 1− λ⊗ U2)⊗ e1 − (λU1 ⊗ 1− 1⊗ U1)⊗ e2.

Show that (3.9) is a resolution of A as an A⊗Aop-module and use it to compute
HH∗(A).

Exercise 3.2.8. The Weyl algebra A1 is defined in Exercise 3.1.1. By giving a
‘small’ resolution of length two for A1 as a left A1 ⊗Aop

1 -module show that

HHi(A1) '

{
C if i = 2,

0 if i 6= 2.

Show that HH2(A1) is generated by the class of the 2-cycle

1⊗ p⊗ q − 1⊗ q ⊗ p+ 1⊗ 1⊗ 1,
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where q = x and p = d
dx . Extend this result to higher order Weyl algebras

An = A⊗n1 and show that

HHi(An) '

{
C if i = 2n,

0 if i 6= 2n.

Can you give an explicit formula for the generator of HH2n(An)?

3.3 Deformation theory

Let A be a unital complex algebra. An increasing filtration on A is an increasing
sequence of subspaces of A, F i(A) ⊂ F i+1(A), i = 0, 1, 2, . . . , with 1 ∈ F 0(A),⋃
i F

i(A) = A, and

F i(A)F j(A) ⊂ F i+j(A) for all i, j.

Let F−1(A) = 0. The associated graded algebra of a filtered algebra is the graded
algebra

Gr(A) =
⊕
i≥0

F i(A)
F i−1(A) .

Definition 3.3.1. An almost commutative algebra is a filtered algebra whose
associated graded algebra Gr(A) is commutative.

Being almost commutative is equivalent to the commutator condition

[F i(A), F j(A)] ⊂ F i+j−1(A) (3.10)

for all i, j. As we shall see, Weyl algebras and, more generally, algebras of dif-
ferential operators on a smooth manifold, and universal enveloping algebras are
examples of almost commutative algebras.

Let A be an almost commutative algebra. The original Lie algebra bracket
[x, y] = xy − yx on A induces a Lie algebra bracket { } on Gr(A) via the formula

{x+ F i, y + F j} := [x, y] + F i+j−2.

Notice that by the almost commutativity assumption (3.10), [x, y] is in F i+j−1(A)
and Gr(A), with its grading shifted by one, is indeed a graded Lie algebra. The
induced Lie bracket on Gr(A) is compatible with its multiplication in the sense
that for all a ∈ Gr(A), the map b 7→ {a, b} is a derivation. The algebra Gr(A)
is called the semiclassical limit of the almost commutative algebra A. It is an
example of a Poisson algebra as we recall later in this section.

Notice that as vector spaces, Gr(A) and A are linearly isomorphic, but their
algebra structures are different as Gr(A) is always commutative but A need not
be commutative. A linear isomorphism

q : Gr(A)→ A
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can be regarded as a ‘naive quantization map’. Of course, linear isomorphisms
always exist but they are hardly interesting. One usually demands more. For
example one wants q to be a Lie algebra map in the sense that

q{a, b} = [q(a), q(b)] (3.11)

for all a, b in Gr(A). This is one form of Dirac’s quantization rule, going back to
Dirac’s paper [67]. One normally thinks of A as the algebra of quantum observables
of a system acting as operators on a Hilbert space, and of Gr(A) as the algebra
of classical observables of functions on the phase space. No-go theorems, e.g. the
celebrated Groenewold–Van Hove Theorem (cf. [1], [87] for discussions and precise
statements; see also Exercise 3.3.2), states that, under reasonable irreducibility
conditions, this is almost never possible. The remedy is to have q defined only for
a special class of elements of Gr(A), or satisfy (3.11) only in an asymptotic sense as
Planck’s constant h goes to zero. As we shall discuss later in this section, this can
be done in different ways, for example in the context of formal deformation quan-
tization [10], [29], [120] or through strict C∗-algebraic deformation quantization
[158], [112].

The notion of a Poisson algebra captures the structure of semiclassical limits.

Definition 3.3.2. Let P be a commutative algebra. A Poisson structure on P
is a Lie algebra bracket (a, b) 7→ {a, b} on A such that for any a ∈ A, the map
b 7→ {a, b}: A→ A is a derivation of A. That is, for all b, c in A we have

{a, bc} = {a, b}c+ b{a, c}.

In geometric examples (see below) the vector field defined by the derivation
b 7→ {a, b} is called the Hamiltonian vector field of the Hamiltonian function a.

Definition 3.3.3. A Poisson algebra is a pair (P, { , }) where P is a commutative
algebra and { , } is a Poisson structure on P .

We saw that the semiclassical limit P = Gr(A) of any almost commutative
algebra A is a Poisson algebra. Conversely, given a Poisson algebra P one may
ask if it is the semiclassical limit of an almost commutative algebra. This is one
form of the problem of quantization of Poisson algebras, the answer to which for
general Poisson algebras is negative. We give a few concrete examples of Poisson
algebras (cf. also [29], [33]).

Example 3.3.1. A Poisson manifold is a manifold M whose algebra of smooth
functions A = C∞(M) is a Poisson algebra (we should also assume that the bracket
{ , } is continuous in the Fréchet topology of A, or, equivalently, is a bidifferential
operator). It is not difficult to see that all Poisson structures on A are of the form

{f, g} := 〈df ∧ dg, π〉,

where π ∈ C∞(
∧2

(TM)) is a smooth 2-vector field on M . This bracket clearly
satisfies the Leibniz rule in each variable and one checks that it satisfies the Jacobi
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identity if and only if [π, π] = 0, where the Schouten bracket [π, π] ∈ C∞(
∧3

(TM))
is defined in local coordinates by

[π, π]ijk =

n∑
l=1

(
πlj

∂πik
∂xl

+ πli
∂πkj
∂xl

+ πlk
∂πji
∂xl

)
.

The Poisson bracket in local coordinates is given by

{f, g} =
∑
ij

πij
∂f

∂xi

∂g

∂xj
.

Symplectic manifolds are the simplest examples of Poisson manifolds. They cor-
respond to non-degenerate Poisson structures. Recall that a symplectic form on a
manifold is a non-degenerate closed 2-form on the manifold. Given a symplectic
form ω, the associated Poisson bracket is given by

{f, g} = ω(Xf , Xg),

where the vector field Xf is the symplectic dual of df and is defined by requiring
that the equation df(Y ) = ω(Xf , Y ) holds for all smooth vector fields Y on M .

Let C∞poly(T ∗M) be the algebra of smooth functions on T ∗M which are polyno-
mial in the cotangent direction. It is a Poisson algebra under the natural symplectic
structure of T ∗M . This Poisson algebra is the semiclassical limit of the algebra of
differential operators on M , as we shall see in the next example.

Example 3.3.2 (Differential operators on commutative algebras). Let A be a
commutative unital algebra. We define an algebra D(A) ⊂ EndC(A) inductively
as follows. Let

D0(A) = A = EndA(A) ⊂ EndC(A)

denote the set of differential operators of order zero on A, i.e., A-linear maps from
A→ A. Assuming Dk(A) has been defined for 0 ≤ k < n, we let Dn(A) be the set
of all operators D in EndC(A) such that for any a ∈ A, [D, a] ∈ Dn−1(A). The
set

D(A) =
⋃
n≥0

Dn(A)

is a subalgebra of EndC(A), called the algebra of differential operators on A. It is an
almost commutative algebra under the filtration given by subspaces Dn(A), n ≥ 0.
Elements of Dn(A) are called differential operators of order n. For example, a
linear map D : A → A is a differential operator of order one if and only if it is of
the form D = δ + a, where δ is a derivation on A and a ∈ A.

For general A, the semiclassical limit Gr(D(A)) and its Poisson structure are
not easily identified except for coordinate rings of smooth affine varieties or alge-
bras of smooth functions on a manifold. In this case a differential operator D of
order k is locally given by

D =
∑
|I|≤k

aI(x)∂I ,



104 3 Cyclic cohomology

where I = (i1, . . . , in) is a multi-index, ∂I = ∂i1∂i2 . . . ∂in is a mixed partial
derivative, and n is the dimension of the manifold. This expression depends on
the local coordinates but its leading terms of total degree n have an invariant
meaning provided that we replace ∂i with ξi ∈ T ∗M . For ξ ∈ T ∗xM , let

σp(D)(x, ξ) :=
∑
|I|=k

aI(x)ξI .

Then the function σp(D) : T ∗M → C, called the principal symbol of D, is invari-
antly defined and belongs to C∞poly(T ∗M). The algebra C∞poly(T ∗M) inherits a

canonical Poisson structure as a subalgebra of the Poisson algebra C∞(T ∗M) and
we have the following

Proposition 3.3.1. The principal symbol map induces an isomorphism of Poisson
algebras

σp : GrD(C∞(M)) −−→∼ C∞poly(T ∗M).

See [33] for a proof of this or, even better, try to prove it yourself by proving
it for Weyl algebras first.

Example 3.3.3 (Weyl algebra). Let A1 := DC[X] be the Weyl algebra of dif-
ferential operators on the line. Alternatively, A1 can be described as the unital
complex algebra defined by generators x and p with

px− xp = 1.

The map x 7→ x, p 7→ d
dx defines the isomorphism. Physicists prefer to write the

defining relation as the canonical commutation relation pq− qp = h
2πi1, where h is

Planck’s constant and p and q represent momentum and position operators. This
is not without merit because we can then let h → 0 and obtain the commutative
algebra of polynomials in p and q as the semiclassical limit. Also, i is necessary
if we want to consider p and q as selfadjoint operators (why?). Then one can use

the representation q 7→ x, p 7→ h
2πi

d
dx .

Any element of A1 has a unique expression as a differential operator with

polynomial coefficients
∑
ai(x) di

dxi where the standard filtration is by degree of
the differential operator. The principal symbol map

σp

( n∑
i=0

ai(x)
di

dxi

)
= an(x)yn.

defines an algebra isomorphism Gr(A1) ' C[x, y]. The induced Poisson bracket
on C[x, y] is the classical Poisson bracket

{f, g} =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.
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In principle, the Weyl algebra An is the algebra of differential operators on
C[x1, . . . , xn]. Alternatively, it can be defined as the universal algebra defined by
2n generators x1, . . . , xn, p1, . . . , pn with

[pi, xi] = δij and [pi, pj ] = [xi, xj ] = 0

for all i, j. Notice that An ' A1 ⊗ · · · ⊗ A1 (n factors). A lot is known about
Weyl algebras and a lot remains to be known, including the Dixmier conjecture
about the automorphisms of An. The Hochschild and cyclic cohomology of An are
computed in [79] (cf. also [124]).

Example 3.3.4 (Universal enveloping algebras). Let U(g) denote the enveloping
algebra of a Lie algebra g. By definition, U(g) is the quotient of the tensor algebra
T (g) by the two-sided ideal generated by x⊗ y− y⊗ x− [x, y] for all x, y ∈ g. For
p ≥ 0, let F p(U(g)) be the subspace generated by tensors of degree at most p.
This turns U(g) into a filtered algebra and the Poincaré–Birkhoff–Witt theorem
asserts that its associated graded algebra is canonically isomorphic to the sym-
metric algebra S(g). The algebra isomorphism is induced by the symmetrization
map s : S(g)→ Gr(U(g)), defined by

s(X1X2 . . . Xp) =
1

p!

∑
σ∈Sp

Xσ(1) . . . Xσ(p).

Note that S(g) is the algebra of polynomial functions on the dual space g∗, which
is a Poisson manifold under the bracket

{f, g}(X) = [Df(X), Dg(X)]

for all f, g ∈ C∞(g∗) and X ∈ g∗. Here we have used the canonical isomorphism
g ' g∗∗, to regard the differential Df(X) ∈ g∗∗ as an element of g. The induced
Poisson structure on polynomial functions coincides with the Poisson structure in
Gr(U(g)).

Example 3.3.5 (Algebra of formal pseudodifferential operators on the circle).
This algebra is obtained by formally inverting the differentiation operator ∂ := d

dx
and then completing the resulting algebra. A formal pseudodifferential operator on
the circle is an expression of the form

∑n
−∞ ai(x)∂i, where each ai(x) is a Laurent

polynomial. The multiplication is uniquely defined by the rules ∂x− x∂ = 1 and
∂∂−1 = ∂−1∂ = 1. We denote the resulting algebra by Ψ1. The Adler–Manin
trace on Ψ1 [129], also called the noncommutative residue, is defined by

Tr
( n∑
−∞

ai(x)∂i
)

= Res(a−1(x); 0) =
1

2πi

∫
S1

a−1(x).

This is a trace on Ψ1. In fact one can show that Ψ1/[Ψ1, Ψ1] is 1-dimensional
which means that any trace on Ψ1 is a multiple of Tr. Notice that for the Weyl
algebra A1 we have [A1, A1] = A1.
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Another interesting difference between Ψ1 and A1 is that Ψ1 admits non-inner
derivations (see exercise below). The algebra Ψ1 has a nice generalization to
algebras of pseudodifferential operators in higher dimensions. The appropriate
extension of the above trace is the noncommutative residue of Wodzicki (cf. [177];
see also [41] for relations with the Dixmier trace and its role in noncommutative
Riemannian geometry).

So far in this section we saw at least one way to formalize the idea of quanti-
zation through the notion of an almost commutative algebra and its semiclassical
limit which is a Poisson algebra. A closely related notion is formal deformation
quantization, or star products, going back to [10], [13], [145]. It is also closely
related to the theory of deformations of associative algebras developed originally
by Gerstenhaber, as we recall now.

Let A be an algebra, which may be noncommutative, over C, and let A[[h]]
be the algebra of formal power series over A. A formal deformation of A is an
associative C[[h]]-linear multiplication

∗h : A[[h]]⊗A[[h]]→ A[[h]]

such that ∗0 is the original multiplication. Writing

a ∗h b = B0(a, b) + hB1(a, b) + h2B2(a, b) + · · · ,

where Bi : A ⊗ A → A are Hochschild 2-cochains on A with values in A, we see
that the initial value condition on ∗h is equivalent to B0(a, b) = ab for all a, b ∈ A.
Let us define a bracket { , } on A by

{a, b} = B1(a, b)−B1(b, a)

or, equivalently, but more suggestively, by

{a, b} := Lim
a ∗h b− b ∗h a

h
as h→ 0.

Using the associativity of the star product a ∗h (b ∗h c) = (a ∗h b) ∗h c, it is easy to
check that B1 is a Hochschild 2-cocycle for the Hochschild cohomology of A with
coefficients in A, i.e., it satisfies the relation

aB1(b, c)−B1(ab, c) +B1(a, bc)−B1(a, b)c = 0

for all a, b, c in A. Clearly the bracket { , } satisfies the Jacobi identity. In short,
(A, { , }) is an example of what is sometimes called a noncommutative Poisson
algebra. If A is a commutative algebra, then it is easy to see that it is indeed a
Poisson algebra in the sense of Definition 3.3.3.

The bracket { , } can be regarded as the infinitesimal direction of the deforma-
tion, and the deformation problem for a commutative Poisson algebra amounts to
finding higher order terms Bi, i ≥ 2, given B0 and B1.
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The associativity condition on ∗h is equivalent to an infinite system of equations
involving the cochains Bi that we derive now. They are given by

B0 ◦Bn +B1 ◦Bn−1 + · · ·+Bn ◦B0 = 0 for all n ≥ 0,

or, equivalently,
n−1∑
i=1

Bi ◦Bn−i = δBn. (3.12)

Here, the Gerstenhaber ◦-product of 2-cochains f, g : A⊗A→ A is defined as the
3-cochain

f ◦ g(a, b, c) = f(g(a, b), c)− f(a, g(b, c)).

Notice that a 2-cochain f defines an associative product if and only if f ◦ f = 0.
Also notice that the Hochschild coboundary δf can be written as

δf = −m ◦ f − f ◦m,

where m : A ⊗ A → A is the multiplication of A. These observations lead to the
associativity equations (3.12).

To solve these equations starting with B0 = m, by antisymmetrizing we can

always assume that B1 is antisymmetric and hence we can assume B1 = 1
2{ , }.

Assume B0, B1, . . . , Bn have been found so that (3.12) holds. Then one can show
that

∑n
i=1Bi ◦ Bn−i is a cocycle. Thus we can find a Bn+1 satisfying (3.12) if

and only if this cocycle is a coboundary, i.e., its class in H3(A,A) should vanish.
The upshot is that the third Hochschild cohomology H3(A,A) is the space of
obstructions for the deformation quantization problem. In particular if H3(A,A) =
0 then any Poisson bracket on A can be deformed. Notice, however, that this is
only a sufficient condition and is by no means necessary, as will be shown below.

In the most interesting examples, e.g. for A = C∞(M), H3(A,A) 6= 0. To see
this consider the differential graded Lie algebra (C∗(A, A), [ , ], δ) of continuous
Hochschild cochains on A, and the differential graded Lie algebra, with zero dif-
ferential, (

∧
(TM), [ , ], 0) of polyvector fields on M . The bracket in the first is

the Gerstenhaber bracket and in the second is the Schouten bracket of polyvector
fields. By a theorem of Connes (see the resolution in Lemma 44 in [39]), we know
that the antisymmetrization map

α :
(
C∞

(∧
TM), 0

)
→ (C∗(A, A), δ

)
sending a polyvector field X1 ∧ · · · ∧Xk to the functional ϕ defined by

ϕ(f1, . . . , fk) = df1(X1)df2(X2) . . . dfk(Xk)

is a quasi-isomorphism of differential graded algebras. In particular, it induces an
isomorphism of graded commutative algebras⊕

k

Hk(A,A) '
⊕
k

C∞
(∧k

TM
)
.
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The map α, however, is not a morphism of Lie algebras and that is where
the real difficulty of deforming a Poisson structure is hidden. The formality
theorem of M. Kontsevich [112] states that as a differential graded Lie algebra,
(C∗(A,A), δ, [ , ]) is formal in the sense that it is quasi-isomorphic to its cohomol-
ogy. Equivalently, it means that one can perturb the map α, by adding an infinite
number of terms, to a morphism of L∞-algebras. This shows that the original
deformation problem of Poisson structures can be transferred to (C∞(

∧
TM), 0)

where it is unobstructed since the differential in the latter DGL is zero. Later in
this section we shall give a couple of simple examples where deformations can be
explicitly constructed.

There is a much deeper structure hidden in the deformation complex of an
associative (C∗(A,A), δ) than first meets the eye and we can only barely scratch
the surface here. The first piece of structure is the cup product. Let C∗ =
C∗(A,A). The cup product ^ : Cp × Cq → Cp+q is defined by

(f ^ g)(a1, . . . , ap+q) = f(a1, . . . , ap)g(ap+1, . . . , ap+q).

Notice that ^ is associative and one checks that this product is compatible with
the differential δ and hence induces an associative graded product on H∗(A, A).
What is not so obvious however is that this product is graded commutative for
any algebra A [83].

The second piece of structure on (C∗(A,A), δ) is a graded Lie bracket. It is
based on the Gerstenhaber circle product ◦ : Cp × Cq → Cp+q−1 defined by

(f ◦ g)(a1, . . . , ap+q−1)

=

p−1∑
i=1

(−1)|g|(|f |+i−1)f(a1, . . . , g(ai, . . . , ai+p), . . . , ap+q−1).

Notice that ◦ is not an associative product. Nevertheless one can show that [83]
the corresponding graded bracket [ , ] : Cp × Cq → Cp+q−1

[f, g] = f ◦ g − (−1)(p−1)(q−1)g ◦ f

defines a graded Lie algebra structure on the deformation cohomology H∗(A, A).
Notice that the Lie algebra grading is now shifted by one.

What is most interesting is that the cup product and the Lie algebra structure
are compatible in the sense that [ , ] is a graded derivation for the cup product; or
in short, (H∗(A, A), ^, [ , ]) is a graded Poisson algebra.

The fine structure of the Hochschild cochain complex (C∗(A,A), δ), e.g. the
existence of higher order products and homotopies between them has been the sub-
ject of many studies in recent years. While it is relatively easy to write down these
higher order products in the form of a brace algebra structure on the Hochschild
complex, relating them to known geometric structures such as moduli spaces of
curves, as predicted by Deligne’s conjecture, is quite hard [114].
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Remark 5. A natural question arises from the graded Poisson algebra structure
on deformation cohomology H∗(A, A): is H∗(A, A) the semiclassical limit of a
‘quantum cohomology’ theory for algebras?

We give a couple of examples where deformations can be explicitly constructed.

Example 3.3.6. The simplest non-trivial Poisson manifold is the dual g∗ of a finite
dimensional Lie algebra g. Let Uh(g) = T (g)/I, where the ideal I is generated by

x⊗ y − y ⊗ x− h[x, y], x, y ∈ g.

This is simply the enveloping algebra of the rescaled bracket h[−,−]. By the Poin-
caré–Birkhoff–Witt theorem, the antisymmetrization map αh : S(g) → Uh(g) is a
linear isomorphism. We can define a ∗-product on S(g) by

f ∗h g = α−1
h (αh(f)αh(g)) =

∞∑
n=0

hnBn(f, g).

With some work one can show that the Bn are bidifferential operators and hence
the formula extends to a ∗-product on C∞(g∗).

Example 3.3.7 (Weyl–Moyal quantization). Consider the algebra generated by

x and y with relation xy− yx = h
i 1. Let f , g be polynomials in x and y. Iterated

application of the Leibniz rule gives the formula for the product

f ∗h g =

∞∑
n=0

1

n!

(
−ih

2

)n
Bn(f, g),

where B0(f, g) = fg, B1(f, g) = {f, g} is the standard Poisson bracket, and for
n ≥ 2,

Bn(f, g) = (−1)n
n∑
k=0

(−1)k
(
n
k

)
(∂kx∂

n−k
y f)(∂n−kx ∂ky g).

Notice that this formula makes sense for f, g ∈ C∞(R2) and defines a deformation
of this algebra with its standard Poisson structure. This can be extended to
arbitrary constant Poisson structures on R2,

{f, g} =
∑

πij∂if ∂jg.

The Weyl–Moyal ∗ product is then given by

f ∗h g = exp

(
− ih

2

∑
πij∂i ∧ ∂j

)
(f, g).

Finally let us briefly recall Rieffel’s strict deformation quantization [158]. Roughly
speaking, one demands that formal power series of formal deformation theory
should actually be convergent. More precisely, let (M, { , }) be a Poisson manifold.
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A strict deformation quantization of the Poisson algebra A = C∞(M) is a family of
pre-
C∗-algebra structures (∗h, ‖ · ‖h) on A for h ≥ 0 such that the family forms a con-
tinuous field of pre-C∗-algebras on [0, ∞) (in particular for any f ∈ A, h 7→ ‖f‖h
is continuous) and for all f, g ∈ A,∥∥∥∥f ∗h g − g ∗h fih

∥∥∥∥
h

→ {f, g}

as h → 0. We therefore have a family of C∗-algebras Ah obtained by completing
A with respect to the norm ‖ · ‖h.

Example 3.3.8 (Noncommutative tori). In [157] it is shown that the family of
noncommutative tori Aθ form a strict deformation quantization of the Poisson
algebra of smooth functions on the 2-torus. This in fact appears as a special case
of a more general result. Let α be a smooth action of Rn on A = C∞(M). Let
Xi denote the infinitesimal generators for this action. Each skew-symmetric n×n
matrix J defines a Poisson bracket on A by

{f, g} =
∑

JijXi(f)Xj(g).

For each h ∈ R, define a new product ∗h on A by

f ∗h g =

∫
Rn×Rn

αhJu(f)αv(g)e2πiu·v dudv.

The ∗-structure is defined by conjugation and is undeformed (see [157] for the

definition of ‖f‖h). For A = C∞(T2) with the natural R2 action one obtains Aθ.

Remark 6. Does any Poisson manifold admit a strict deformation quantization?
This question is still open (even for symplectic manifolds). In [157], Rieffel shows
that the canonical symplectic structure on the 2-sphere admits no SO(3)-invariant
strict deformation quantization. An intriguing idea proposed in [51] is that the
existence of a strict deformation quantization of a Poisson manifold should be
regarded as an integrability condition for formal deformation quantization. There
is a clear analogy with the case of formal and convergent power series solutions of
differential equations around singular points. The question is raised of a possible
‘theory of ambiguity’, i.e., a cohomology theory that could capture the difference
between the two cases.

This idea is fully realized by N. P. Landsman in his book [120] in the example
of strict deformation quantization of Poisson manifolds dual to Lie algebroids. He
shows that these are integrable precisely when they can be deformed, namely by
the C∗-algebra of the Lie groupoid integrating the given Lie algebroid (note that
the corresponding Poisson manifold is integrable if and only if the Lie algebroid
is). On the other hand, as far as we know, H3(A,A) and indeed all of Hochschild
cohomology seems to be irrelevant to strict C∗-deformation quantization.
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Exercise 3.3.1. Show that the Weyl algebra A1 is a simple algebra, i.e., it has
no non-trivial two-sided ideals; prove the same for An. In a previous exercise we
asked to show that any derivation of A1 is inner. Is it true that any automorphism
of A1 is inner?

Exercise 3.3.2. In Example 3.3.3 show that there is no linear map q : C[x, y]→
A1 such that q(1) = 1 and q{f, g} = [q(f), q(g)] for all f and g. This is an
important special case of the Groenewold–van Hove no-go theorem ([1], [87]).

Exercise 3.3.3. Let A = C[x]/(x2) be the algebra of dual numbers. It is a
non-smooth algebra. Describe its algebra of differential operators.

Exercise 3.3.4. Unlike the algebra of differential operators, the algebra of pseu-

dodifferential operators Ψ1 admits non-inner derivations. Clearly log ∂ := −
∑∞

1
(1−∂)n

n /∈
Ψ1, but show that for any a ∈ Ψ1, we have [ log ∂, a] ∈ Ψ1 and therefore the map

a 7→ δ(a) := [log ∂, a]

defines a non-inner derivation of Ψ1. The corresponding Lie algebra 2-cocycle

ϕ(a, b) = Tr(a[ log ∂, b])

is the Radul cocycle [116].

3.4 Topological algebras

For applications of Hochschild and cyclic cohomology to noncommutative geome-
try, it is crucial to consider topological algebras, topological bimodules, topological
resolutions, and continuous cochains and chains. For example, while the alge-
braic Hochschild groups of the algebra of smooth functions on a smooth manifold
are not known, and perhaps are hopeless to compute, its continuous Hochschild
(co)homology as a topological algebra can be computed as we recall in Exam-
ple 3.2.3 below. We shall give only a brief outline of the definitions and refer the
reader to [39], [41] for more details. A good reference for locally convex topological
vector spaces and topological tensor products is [170].

There is no difficulty in defining continuous analogues of Hochschild and cyclic
cohomology groups for Banach algebras. One simply replaces bimodules by Ba-
nach bimodules, that is a bimodule which is also a Banach space where the left and
right module actions are bounded operators, and cochains by continuous cochains.
Since the multiplication of a Banach algebra is a continuous operation, all oper-
ators including the Hochschild boundary and the cyclic operators extend to this
continuous setting. The resulting Hochschild and cyclic theory for C∗-algebras,
however, is hardly useful and tends to vanish in many interesting examples. This
is hardly surprising since the definition of any Hochschild or cyclic cocycle of di-
mension bigger than zero involves differentiating the elements of the algebra in
one way or another. (See Exercise 3.1.3 or, more generally, the Remark below.)
This is in sharp contrast with topological K-theory where the right setting, e.g.
for Bott periodicity to hold, is the setting of Banach or C∗-algebras.
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Remark 7. By combining results of Connes [34] and Haagerup [88], we know
that a C∗-algebra is amenable if and only if it is nuclear. Amenability refers to
the property that for all n ≥ 1,

Hn
cont(A,M

∗) = 0

for an arbitrary Banach dual bimodule M∗. In particular, for any nuclear C∗-
algebra
HHn

cont(A) = Hn
cont(A,A

∗) = 0 for all n ≥ 1. Using Connes’ long exact sequence
(see Section 3.7), we obtain, for any nuclear C∗-algebra A, the vanishing results

HC2n
cont(A) = A∗ and HC2n+1

cont (A) = 0

for all n ≥ 0. Nuclear C∗-algebras form a large class which includes commutative
algebras, the algebra of compact operators, and reduced group C∗-algebras of
amenable groups [15].

The right class of topological algebras for Hochschild and cyclic cohomology
turns out to be the class of locally convex algebras [39]. An algebra A which is
simultaneously a locally convex topological vector space is called a locally convex
algebra if its multiplication map A ⊗ A → A is (jointly) continuous. That is, for
any continuous seminorm p on A there is a continuous seminorm p′ on A such that
p(ab) ≤ p′(ab) for all a, b in A.

We should mention that there are topological algebras with a locally convex
topology for which the multiplication map is only separately continuous. But
we do not dwell on this more general class in this book as they appear rarely
in applications. This distinction between separate and joint continuity of the
multiplication map disappears for the class of Fréchet algebras. By definition, a
locally convex algebra is called a Fréchet algebra if its topology is metrizable and
complete. Many examples of ‘smooth noncommutative spaces’ that one encounters
in noncommutative geometry are in fact Fréchet algebras.

Example 3.4.1. Basic examples of Fréchet algebras include the algebra A =
C∞(M) of smooth functions on a closed smooth manifold and the smooth non-
commutative tori Aθ and their higher dimensional analogues. We start with a
simple down to earth example where A = C∞(S1). We consider the elements of
A as smooth periodic functions of period one on the line. Its topology is defined
by the sequence of norms

pn(f) = sup ‖f (k)‖∞, 0 ≤ k ≤ n,

where f (k) is the k-th derivative of f and ‖ ‖∞ is the sup norm. We can equivalently
use the sequence of norms

qn(f) =

n∑
i=0

1

k!
‖f (k)‖∞.
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Notice that qn’s are submultiplicative, that is qn(fg) ≤ qn(f)qn(g). Locally convex
algebras whose topology is induced by a family of submultiplicative seminorms are
known to be projective limits of Banach algebras. This is the case in all examples
in this section.

In general, the topology of C∞(M) is defined by the sequence of seminorms

‖f‖n = sup |∂αf |, |α| ≤ n,

where the supremum is over a fixed, finite, coordinate cover for M . The Leibniz
rule for derivatives of products shows that the multiplication map is indeed jointly
continuous. See the Exercise 3.4.1 for the topology of Aθ.

Given locally convex topological vector spaces V1 and V2, their projective ten-
sor product is a locally convex space V1 ⊗̂ V2 together with a universal jointly
continuous bilinear map V1 ⊗ V2 → V1 ⊗̂ V2 (cf. [86], [170]). That is, for any lo-
cally convex space W , we have a natural isomorphism between jointly continuous
bilinear maps V1×V2 →W and continuous linear maps V1 ⊗̂ V2 →W . Explicitly,
the topology of V1 ⊗̂ V2 is defined by the family of seminorms p ⊗̂ q, where p, q
are continuous seminoms on V1 and V2 respectively, and

p ⊗̂ q(t) := inf
{∑n

i p(ai)q(bi); t =
∑n
i ai ⊗ bi, ai ∈ V1, bi ∈ V2

}
.

Then V1 ⊗̂ V2 is defined as the completion of V1 ⊗ V2 under the above family of
seminorms.

One of the nice properties of the topology of C∞(M) is that it is nuclear (see
[86], [170]). In particular for any other smooth compact manifold N , the natural
map

C∞(M) ⊗̂ C∞(N)→ C∞(M ×N)

is an isomorphism of topological algebras. This plays an important role in com-
puting the continuous Hochschild cohomology of C∞(M).

Let A be a locally convex topological algebra. A topological left A-module is
a locally convex vector space M endowed with a continuous left A-module action
A ⊗̂M →M . A topological free left A-module is a module of the type M = A ⊗̂ V
where V is a locally convex space. A topological projective module is a topological
module which is a direct summand in a free topological module.

Given a locally convex algebra A, let

Cncont(A) = Homcont(A
⊗̂n, C)

be the space of continuous (n+ 1)-linear functionals on A. All the algebraic defi-
nitions and results of this chapter extend to this topological setting. In particular
one defines the continuous Hochschild and cyclic cohomology groups of a locally
convex algebra. One must be careful, however, in dealing with resolutions. The
right class of topological projective (in particular free) resolutions are those res-
olutions that admit a continuous linear splitting. This extra condition is needed
when one wants to prove comparison theorems for resolutions and, eventually, in-
dependence of cohomology from resolutions. We shall not go into details here since
this is very well explained in [39].
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Exercise 3.4.1. The sequence of norms

pk(a) = Sup
m,n
{(1 + |n|+ |m|)k|amn|}

defines a locally convex topology on the smooth noncommutative torus Aθ. Show
that the multiplication of Aθ is continuous in this topology.

3.5 Examples: Hochschild (co)homology

We give a few examples of Hochschild (co)homology computations. In particular
we shall see that group (co)homology and Lie algebra (co)homology are instances of
Hochschild (co)homology. We start by recalling the classical results of Hochschild–
Kostant–Rosenberg [100] and Connes [39] which identifies the Hochschild homol-
ogy of smooth commutative algebras with the algebra of differential forms. By a
smooth commutative algebra we mean either the topological algebra A = C∞(M)
of smooth complex-valued functions on a closed smooth manifold M , or the al-
gebra A = O[X] of regular function on a smooth affine algebraic variety X. We
start with the latter case.

Example 3.5.1 (Smooth commutative algebras). Algebras of regular functions on
a smooth affine variety can be characterized abstractly through various equivalent
conditions (cf. Proposition 3.4.2 in [124]). For example, one knows that a finitely
generated commutative algebra A is smooth if and only if it has the lifting property
with respect to nilpotent extensions. More precisely, A is smooth if and only if
for any pair (C, I), where C is a commutative algebra and I is an ideal such that
I2 = 0, the map

Homalg(A, C)→ Homalg(A, C/I)

is surjective. Examples of smooth algebras include polynomial algebras C[x1, . . . , xn],
algebras of Laurent polynomials C[x1, x

−1
1 , . . . , xn, x

−1
n ], and coordinate rings of

affine algebraic groups. The algebra C[x, y]/(xy) is not smooth.

We recall the definition of the algebraic de Rham complex of a commutative, not
necessarily smooth, algebra A. The module of 1-forms, or Kähler differentials, over
A, denoted by Ω1

A, is by definition a left A-module Ω1
A endowed with a universal

derivation

d : A→ Ω1
A.

This means that any other derivation δ : A→M into a left A-module M uniquely
factorizes through d. One usually defines Ω1

A := I/I2 where I is the kernel of the
multiplication map A ⊗ A → A. Note that since A is commutative this map is
an algebra homomorphism and I is an ideal. The left multiplication defines a left
A-module structure on Ω1

A. The derivation d is defined by

d(a) = a⊗ 1− 1⊗ a mod (I2).
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Checking its universal property is straightforward. One defines the space of n-
forms on A as the n-th exterior power of the A-module Ω1

A:

ΩnA :=
∧n
A Ω1

A,

where the exterior product is over A. There is a unique extension of d to a graded
derivation of degree one,

d : Ω∗A → Ω∗+1
A .

It satisfies d2 = 0. The algebraic de Rham cohomology of A is the cohomology of
the complex (Ω∗A, d). For some examples of this construction see exercises at the
end of this section.

Let us compare the complex of differential forms with trivial differential (Ω∗A, 0),
with the Hochschild complex of A with coefficients in A, (C∗(A), b). Consider the
antisymmetrization map

εn : ΩnA → A⊗(n+1), n = 0, 1, 2, . . . ,

εn(a0da1 ∧ · · · ∧ dan) =
∑
σ∈Sn

sgn(σ)a0 ⊗ aσ(1) ⊗ · · · ⊗ aσ(n),

where Sn denotes the symmetric group on n letters. We also have maps

µn : A⊗(n+1) → ΩnA, n = 0, 1, . . . ,

µn(a0 ⊗ a1 ⊗ · · · ⊗ an) = a0da1 ∧ · · · ∧ dan.

One checks that both maps are morphisms of complexes, i.e.,

b ◦ εn = 0 and µn ◦ b = 0.

Moreover, one has
µn ◦ εn = n! id.

Assuming the ground field has characteristic zero, it follows that the antisym-
metrization map induces an inclusion

ΩnA ↪→ HHn(A), n = 0, 1, 2, . . . . (3.13)

In particular, for any commutative algebra A over a field of characteristic zero, the
space of differential n-forms on A is always a direct summand of the Hochschild
homology group HHn(A).

This map, however, need not be surjective in general (cf. Exercises below).
This has to do with the singularity of the underlying geometric space represented
by A. The Hochschild–Kostant–Rosenberg theorem [100] states that if A is the
algebra of regular functions on a smooth affine variety, then the above map is an
isomorphism. Notice that we have verified this fact for polynomial algebras in
Example 3.2.2.
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Example 3.5.2 (Algebras of smooth functions). This is a continuation of Exam-
ple 3.1.2. Let M be a smooth closed manifold and A = C∞(M) the algebra of
smooth complex-valued functions on M . It is a locally convex (in fact, Fréchet)
topological algebra as we explained in Section 3.4. Let ΩnM (resp. ΩnM) denote
the space of n-forms (resp. n-currents) on M . Consider the map

ΩnM → Cncont(C
∞(M)), C 7→ ϕC ,

where
ϕC(f0, f1, . . . , fn) := 〈C, f0df1 . . . dfn〉.

It is easily checked that this map defines a morphism of complexes

(Ω∗M, 0)→ (C∗cont(C
∞(M)), b).

In [39], using an explicit resolution, Connes shows that the induced map on coho-
mologies is an isomorphism. Thus we have a natural isomorphism between space
of de Rham currents on M and (continuous) Hochschild cohomology of C∞(M):

ΩiM ' HHi
cont(C

∞(M)), i = 0, 1, . . . (3.14)

Without going into details, we shall briefly indicate the resolution introduced
in [39]. Let

∧k
T ∗CM denote the bundle of complexified k-forms on M and Ek be

its pullback under the projection pr2 : M ×M → M . Let X be a vector field on
M2 = M ×M such that in a neighborhood of the diagonal ∆(M) ⊂M ×M and
in a local geodesic coordinate system (x1, . . . , xn, y1, . . . , yn) it looks like

X =

n∑
i=1

(xi − yi)
∂

∂yi
.

We assume that away from the diagonal X is nowhere zero. Such an X can always
be found, provided that M admits a nowhere zero vector field. The latter condition
is clearly equivalent to vanishing of the Euler characteristic of M . By replacing
M by M × S1 the general case can be reduced to this special case.

The following is then shown to be a continuous projective resolution of C∞(M)
as a C∞(M ×M)-module [39]:

C∞(M)
ε←− C∞(M2)

iX←−−− C∞(M2, E1)

iX←−−− C∞(M2, E2)
iX←−−− · · · iX←−−− C∞(M2, En)←− 0,

where iX is interior multiplication byX. By applying the Hom functor HomA⊗A(−, A∗)
we obtain a complex with zero differentials

Ω0M
0−−→ Ω1M

0−−→ · · · 0−−→ ΩnM
0−−→ 0,

and hence the isomorphism (3.14).
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The analogous result for Hochschild homology uses the map

C∞(M) ⊗̂ · · · ⊗̂ C∞(M)→ ΩnM

defined by
f0 ⊗ · · · ⊗ fn 7→ f0df1 . . . dfn.

It is easy to check that this defines a morphism of complexes

Ccont
∗ (C∞(M), b)→ (Ω∗M, 0).

Using the above resolution and by essentially the same argument, one shows that
the induced map on homologies is an isomorphism between continuous Hochschild
homology of C∞(M) and differential forms on M :

HHcont
i (C∞(M)) ' ΩiM, i = 0, 1, . . .

Example 3.5.3 (Group algebras). It is clear from the original definitions that
group (co)homology is an example of Hochschild (co)homology. Let G be a group
and M be a left G-module. The standard complex for computing the cohomology
of G with coefficients in M is the complex (cf. [30], [81], [124])

M
δ−−→ C1(G,M)

δ−−→ C2(G,M)
δ−−→ · · · ,

where
Cn(G,M) = {f : Gn →M},

and the differential δ is defined by

(δm)(g) = gm−m,

δf(g1, . . . , gn+1) = g1f(g2, . . . , gn+1) +

n∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1f(g1, g2, . . . , gn).

Let A = CG denote the group algebra of G over the complex numbers. Then
M is a CG-bimodule via the actions

g ·m = g(m), m · g = m

for all g in G and m in M . It is clear that for all n,

Cn(CG, M) ' Cn(G, M),

and the isomorphism preserves the differentials. It follows that the group coho-
mology of G with coefficients in M coincides with the Hochschild cohomology of
CG with coefficients in M :

Hn(CG, M) ' Hn(G, M).
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Conversely, it is easy to see that the Hochschild cohomology of CG with coef-
ficients in a bimodule M reduces to group cohomology. Let Mad = M as a vector
space and define a left G-action on Mad by

g ·m = gmg−1.

Define a linear isomorphism i : Cn(G, Mad)→ Cn(CG, M) by

(if)(g1, . . . , gn) = f(g1, . . . , gn)g1g2 . . . gn.

It can be checked that i commutes with differentials and hence is an isomorphism
of complexes (MacLane isomorphism)

C∗(G, Mad) −−→∼ C∗(CG, M).

Of course, there is a similar result for homology.
Of particular importance is an understanding of HH∗(CG) = H∗(CG, CG) =

H∗(G, CG), i.e., when M = CG and G is acting by conjugation. By a theorem of
Burghelea [25], the Hochschild and cyclic homology groups of CG decompose over
the set of conjugacy classes of G where each summand is the group homology (with
trivial coefficients) of a group associated to the conjugacy class. We recall this
result for Hochschild homology here and later we shall discuss the corresponding
result for cyclic homology.

The whole idea can be traced back to the following simple observation. Let
τ : CG→ C be a trace on the group algebra. It is clear that τ is constant on each
conjugacy class of G and, conversely, the characteristic function of each conjugacy
class defines a trace on CG. Thus we have

HH0(CG) =
∏
〈G〉

C,

where 〈G〉 denotes the set of conjugacy classes of G. Dually, for homology we have

HH0(CG) =
⊕
〈G〉

C.

We focus on homology and shall extend the above observation to higher dimen-
sions. Dual cohomological versions are straightforward.

Clearly we have
(CG)⊗(n+1) = CGn+1.

For each conjugacy class c ∈ 〈G〉, let Bn(G, c) be the linear span of all (n + 1)-
tuples (g0, g1, . . . , gn) ∈ Gn+1 such that

g0g1 . . . gn ∈ c.

It is clear that B∗(G, c) is invariant under the Hochschild differential b. We there-
fore have a decomposition of the Hochschild complex of CG into subcomplexes
indexed by conjugacy classes:

C∗(CG, CG) =
⊕
c∈〈G〉

B∗(G, c).
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Identifying the homology of the component corresponding to the conjugacy
class of the identity is rather easy. For other components one must work harder.
Let c = {e} denote the conjugacy class of the identity element of G. The map
(g0, g1, . . . , gn) 7→ (g1, g2, . . . , gn) is easily seen to define an isomorphism of vector
spaces

Bn(G, {e}) ' CGn.

Moreover, under this map the Hochschild differential b goes over to the differential
for the group homology of G with trivial coefficients. It follows that

H∗(B(G, {e})) ' H∗(G, C).

Next we describe the Hochschild homology of other components. For an ele-
ment g ∈ G, let

Cg = {h ∈ G; hg = gh}

denote the centralizer of g in G. Notice that the isomorphism class of this
group depends only on the conjugacy class of g. One checks that the inclusion
i : Cn(Cg,C)→ Bn(G, c) defined by

i(g1, . . . , gn) = ((g1g2 . . . gn)−1g, g1, . . . , gn−1)

is a chain map. One can in fact show, by an explicit chain homotopy, that i is a
quasi-isomorphism. It therefore follows that, for each conjugacy class c and each
g ∈ c, we have

H∗(B(G, c)) = H∗(Cg, C).

Putting everything together this shows that the Hochschild homology of CG
decomposes as a direct sum of group homologies of centralizers of conjugacy classes
of G, a result due to Burghelea [25] (cf. also [132], [124], [73] for purely algebraic
proofs):

HH∗(CG) '
⊕
〈G〉

H∗(Cg) (3.15)

The corresponding dual statement for Hochschild cohomology reads as

HH∗(CG) '
∏
〈G〉

H∗(Cg).

Example 3.5.4 (Enveloping algebras). We show that Lie algebra (co)homology
is an example of Hochschild (co)homology, a result which goes back to Cartan–
Eilenberg [30]. Let g be a Lie algebra and M be a (left) g-module. This simply
means that we have a Lie algebra morphism

g→ EndC(M).
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The Lie algebra homology of g with coefficients in M is, by definition, the homology
of the Chevalley–Eilenberg complex

M
δ←−M ⊗

∧1
g

δ←−M ⊗
∧2

g
δ←−M ⊗

∧3
g

δ←− · · · ,

where the differential δ is defined by

δ(m⊗X) = X(m),

δ(m⊗X1 ∧X2 ∧ · · · ∧Xn) =∑
i<j

(−1)i+jm⊗ [Xi, Xj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn

+
∑
i

(−1)iXi(m)⊗X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn.

(One checks that δ2 = 0.)
Let U(g) denote the enveloping algebra of g. Given a U(g)-bimodule M , we

define a left g-module Mad, where Mad = M and

X ·m := Xm−mX

for all X ∈ g and m ∈M . Define a map

ε : Mad ⊗
∧n

g→M ⊗ U(g)⊗n

from the Lie algebra complex to the Hochschild complex by

ε(m⊗X1 ∧ · · · ∧Xn) =
∑
σ∈Sn

sgn(σ)m⊗Xσ(1) ⊗ · · · ⊗Xσ(n).

One checks that ε : CLie(g, Mad) → C(U(g), M) is a chain map (prove this!).
We claim that it is indeed a quasi-isomorphism, i.e., it induces an isomorphism
between the corresponding homology groups:

H∗(g, M
ad) ' H∗(U(g), M).

We refer to [30], [124] for its standard proof.

Example 3.5.5 (Morita invariance of Hochschild homology). Let A and B be
unital Morita equivalent algebras (cf. Section 2.3 for definitions). Let X be an
equivalence A–B-bimodule and Y be an inverse B–A-bimodule. Let M be an
A-bimodule and N = Y ⊗A M ⊗A X the corresponding B-bimodule. Morita
invariance of Hochschild homology states that there is a natural isomorphism

Hn(A, M) ' Hn(B, N)

for all n ≥ 0. A proof of this can be found in [127], [124]. There is a similar
result, with a similar proof, for cohomology. We sketch a proof of this result for
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the special case where B = Mk(A) is the algebra of k by k matrices over A. The
main idea is to introduce the generalized trace map.

Let M be an A-bimodule and Mk(M) be the space of k by k matrices with
coefficients in M . It is a bimodule over Mk(A) in an obvious way. The generalized
trace map is defined by

Tr: Cn(Mk(A), Mk(M))→ Cn(A, M),

Tr(α0 ⊗m0 ⊗ α1 ⊗ a1 ⊗ · · · ⊗ αn ⊗ an) = tr(α0α1 . . . αn)m0 ⊗ a1 ⊗ · · · ⊗ an,

where αi ∈Mk(C), ai ∈ A, m0 ∈M , and tr : Mk(C)→ C is the standard trace of
matrices.

As an exercise the reader should show that Tr is a chain map. Let i : A →
Mk(A) be the map that sends a in A to the matrix with only one nonzero com-
ponent in the upper left corner equal to a. There is a similar map M →Mk(M).
These induce a map

I : Cn(A, M)→ Cn(Mk(A), Mk(M)),

I(m⊗ a1 ⊗ · · · ⊗ an) = i(m)⊗ i(a1)⊗ · · · ⊗ i(an).

We have Tr ◦ I = id, which is easily checked. It is however not true that
I ◦ Tr = id. There is instead a homotopy between I ◦ Tr and id (cf. [124]). It
follows that Tr and I induce inverse isomorphisms between homologies.

As a special case of Morita invariance, by choosing M = A, we obtain an
isomorphism of Hochschild homology groups

HH n(A) ' HH n(Mk(A))

for all n and k.

Example 3.5.6 (Inner derivations and inner automorphisms). We need to know,
for example when defining the noncommutative Chern character later in this chap-
ter, that inner automorphisms act by the identity on Hochschild homology and
inner derivations act by zero. Let A be an algebra, u ∈ A be an invertible element
and let a ∈ A be any element. They induce the chain maps Θ: Cn(A) → Cn(A)
and La : Cn(A)→ Cn(A) defined by

Θ(a0 ⊗ · · · ⊗ an) = ua0u
−1 ⊗ · · · ⊗ uanu−1,

and

La(a0 ⊗ · · · ⊗ an) =

n∑
i=0

a0 ⊗ · · · ⊗ [a, ai]⊗ · · · ⊗ an.

Lemma 3.5.1. Θ induces the identity map on Hochschild homology and La in-
duces the zero map.
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Proof. The maps hi : A
⊗n+1 → A⊗n+2, i = 0, . . . , n,

hi(a0 ⊗ · · · ⊗ an) = (a0u
−1 ⊗ ua1u

−1 ⊗ · · · ⊗ u⊗ ai+1 ⊗ · · · ⊗ an)

define a homotopy

h =

n∑
i=0

(−1)ihi

between id and Θ.
For the second part one checks that the maps h′i : A

⊗n+1 → A⊗n+2, i =
0, . . . , n,

hi(a0 ⊗ · · · ⊗ an) = (a0 ⊗ · · · ⊗ ai ⊗ a⊗ · · · ⊗ an),

define a homotopy

h′ =

n∑
i=0

(−1)ih′i

between La and 0.

Exercise 3.5.1. Let A = S(V ) be the symmetric algebra of a vector space V .
Show that its module of Kähler differentials Ω1

S(V ) is isomorphic to S(V )⊗V , the
free left S(V )-module generated by V , where the universal differential is given by

d(v1v2 . . . vn) =

n∑
i=1

(v1 . . . v̂i . . . vn)⊗ vi.

Exercise 3.5.2 (Additivity of HH∗). Show that for unital algebras A and B,
there is a natural isomorphism

HHn(A⊕B) ' HHn(A)⊕HHn(B)

for all n ≥ 0.

Exercise 3.5.3. Show that non-inner automorphisms need not act by the identity
on HH∗.

Exercise 3.5.4. Use (3.15) to compute the Hochschild homology HH∗ of the
algebra A = C[z, z−1] of Laurent polynomials. Notice that A is a smooth algebra
and therefore one can use the Hochschild–Kostant–Rosenberg theorem (see (3.13))
as well. Compare the two computations. Extend to Laurent polynomials in several
variables.

Exercise 3.5.5. Use (3.15) to compute the Hochschild homologyHH∗ of the group
algebra of the infinite dihedral group D∞ = Z o Z2. Do the same for the integral
Heisenberg group of unipotent upper triangular matrices with integer coefficients.

Exercise 3.5.6. Compute the de Rham and Hochschild homologies of the algebra
of dual numbers C[x]/(x2) and show that the map (3.13) is not surjective (this is
the simplest example of a non-smooth algebra).
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3.6 Cyclic cohomology

Cyclic cohomology is defined in [36], [39] through a remarkable subcomplex of the
Hochschild complex. We recall this definition in this section. Later in this chapter
we give two other definitions. While these three definitions are equivalent to each
other, as we shall see each has its own merits and strengths.

Let A be an algebra over the complex numbers and (C∗(A), b) denote the
Hochschild complex of A with coefficients in the A-bimodule A∗. We have, from
Section 3.1,

Cn(A) = Hom(A⊗(n+1), C), n = 0, 1, . . . ,

and

(bf)(a0, . . . ,an+1) =

n∑
i=0

(−1)if(a0, . . . , aiai+1, . . . , an+1)

+ (−1)n+1f(an+1a0, . . . , an)

for all f ∈ Cn(A).
The following definition is fundamental and marks our departure from Hochschild

cohomology:

Definition 3.6.1. An n-cochain f ∈ Cn(A) is called cyclic if

f(an, a0, . . . , an−1) = (−1)nf(a0, a1, . . . , an)

for all a0, . . . , an in A. We denote the space of cyclic n-cochains on A by Cnλ (A).

Lemma 3.6.1. The space of cyclic cochains is invariant under the action of b,
i.e., for all n we have

bCnλ (A) ⊂ Cn+1
λ (A).

Proof. Define the operators λ : Cn(A)→ Cn(A) and b′ : Cn(A)→ Cn+1(A) by

(λf)(a0, . . . , an) = (−1)nf(an, a0, . . . , an−1),

(b′f)(a0, . . . , an+1) =

n∑
i=0

(−1)if(a0, . . . , aiai+1, . . . , an+1).

One checks that
(1− λ)b = b′(1− λ).

Since
Cnλ (A) = Ker(1− λ),

the lemma is proved.

We therefore have a subcomplex of the Hochschild complex, called the cyclic
complex of A:

C0
λ(A)

b−−→ C1
λ(A)

b−−→ C2
λ(A)

b−−→ · · · (3.16)



124 3 Cyclic cohomology

Definition 3.6.2. The cohomology of the cyclic complex is called the cyclic co-
homology of A and will be denoted by HCn(A), n = 0, 1, 2, . . . .

A cocycle for the cyclic cohomology group HCn(A) is called a cyclic n-cocycle
on A. It is an (n+ 1)-linear functional f on A which satisfies the two conditions

(1− λ)f = 0 and bf = 0.

The inclusion of complexes

(C∗λ(A), b) ↪→ (C∗(A), b)

induces a map I from the cyclic cohomology of A to the Hochschild cohomology
of A with coefficients in the A-bimodule A∗:

I : HCn(A)→ HHn(A), n = 0, 1, 2, . . . .

We shall see that this map is part of a long exact sequence relating Hochschild
and cyclic cohomology. For the moment we mention that I need not be injective
or surjective (see example below).

Example 3.6.1. Let A = C, the ground field. We have

C2n
λ (C) ' C, C2n+1

λ (C) = 0,

so the cyclic complex reduces to

0→ C→ 0→ C→ · · · .

It follows that for all n ≥ 0,

HC2n(C) = C, HC2n+1(C) = 0.

Since HHn(C) = 0 for n ≥ 1, we conclude that the map I need not be injective
and the cyclic complex is not a retraction of the Hochschild complex.

Example 3.6.2. It is clear that, for any algebra A, HC0(A) = HH0(A) is the
space of traces on A.

Example 3.6.3. Let A = C∞(M) be the algebra of smooth complex valued
functions on a closed smooth oriented manifold M of dimension n. We check that

ϕ(f0, f1, . . . , fn) :=

∫
M

f0 df1 . . . dfn,

is a cyclic n-cocycle on A. We have already checked the cocycle property of ϕ,
bϕ = 0, in Example 3.1.2. The cyclic property of ϕ

ϕ(fn, f0, . . . , fn−1) = (−1)nϕ(f0, . . . , fn)
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is more interesting and is related to Stokes’ formula. In fact since∫
M

(fndf0 . . . dfn−1 − (−1)nf0df1 . . . dfn) =

∫
M

d(fnf0df1 . . . dfn−1),

we see that the cyclic property of ϕ follows from a special case of Stokes’ formula:∫
M

dω = 0,

valid for any (n− 1)-form ω on a closed n-manifold M .

The last example can be generalized in several directions. For example, let V be
an m-dimensional closed singular chain (a cycle) on M , e.g. V can be a closed m-
dimensional submanifold of M . Then integration on V defines an m-dimensional
cyclic cocycle on A:

ϕ(f0, f1, . . . , fm) =

∫
V

f0 df1 . . . dfm.

We obtain a map

Hm(M,C)→ HCm(C∞(M)), m = 0, 1, . . . ,

from the singular homology of M (or its equivalents) to the cyclic cohomology of
C∞(M).

Let
ΩpM := Homcont(Ω

pM,C)

denote the continuous dual of the space of p-forms on M . Elements of ΩpM are
de Rham p-currents on M as defined in Section 3.1. A p-current is called closed if
for any (p− 1)-form ω we have 〈C, dω〉 = 0.

It is easy to check that for any m-current C, closed or not, the cochain

ϕC(f0, f1, . . . , fm) := 〈C, f0df1 . . . dfm〉,

is a Hochschild cocycle on C∞(M). Now if C is closed, then one can easily check
that ϕC is a cyclic m-cocycle on C∞(M). We thus obtain natural maps

ΩmM → HHm(C∞(M)) and ZmM → HCm(C∞(M)),

where Zm(M) ⊂ ΩmM is the space of closed m-currents on M .
A noncommutative generalization of this procedure involves the notion of a

cycle on an algebra due to Connes [39] that we recall now. It gives a geometric and
intuitively appealing presentation of cyclic cocycles. It also leads to a definition of
cup product in cyclic cohomology and the S operator, as we shall indicate later.

Let (Ω, d) be a differential graded algebra. Thus

Ω = Ω0 ⊕ Ω1 ⊕ Ω2 ⊕ · · ·
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is a graded algebra and d : Ω∗ → Ω∗+1 is a square zero graded derivation in the
sense that

d(ω1ω2) = d(ω1)ω2 + (−1)deg(ω1)ω1d(ω2) and d2 = 0

for all homogenous elements ω1 and ω2 of Ω.

Definition 3.6.3. A closed graded trace of dimension n on a differential graded
algebra (Ω, d) is a linear map ∫

: Ωn → C

such that ∫
dω = 0 and

∫
(ω1ω2 − (−1)deg(ω1)deg(ω2)ω2ω1) = 0

for all ω in Ωn−1, ω1 in Ωi, ω2 in Ωj and i+ j = n.

Definition 3.6.4. An n-cycle over an algebra A is a triple (Ω,
∫
, ρ) where

∫
is an n-dimensional closed graded trace on (Ω, d) and ρ : A → Ω0 is an algebra
homomorphism.

Given an n-cycle (Ω,
∫
, ρ) over A its character is a cyclic n-cocycle on A defined

by

ϕ(a0, a1, . . . , an) =

∫
ρ(a0)dρ(a1) . . . dρ(an). (3.17)

Checking the cyclic cocycle conditions bϕ = 0 and (1− λ)ϕ = 0 is straightforward
but instructive. To simplify the notation we drop the homomorphism ρ and write
ϕ as

ϕ(a0, a1, . . . , an) =

∫
a0da1 . . . dan.

We have, using the Leibniz rule for d and the graded trace property of
∫

,

(bϕ)(a0, . . . , an+1)

=

n∑
i=0

(−1)i
∫
a0da1 . . . d(aiai+1) . . . dan+1

+ (−1)n+1

∫
an+1a0da1 . . . dan

= (−1)n
∫
a0da1 . . . dan · an+1 + (−1)n+1

∫
an+1a0da1 . . . dan

= 0.
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Notice that we did not need to use the ‘closedness’ of
∫

so far. This will be needed
however to check the cyclic property of ϕ:

(1− λ)ϕ(a0, . . . , an) =

∫
a0da1 . . . dan − (−1)n

∫
anda0 . . . dan

= (−1)n−1

∫
d(ana0da1 . . . dan−1)

= 0.

Conversely, one can show that any cyclic cocycle on A is obtained from a cycle
over A via (3.17). To this end, we introduce the algebra (ΩA, d),

ΩA = Ω0A⊕ Ω1A⊕ Ω2A⊕ · · · ,

called the algebra of noncommutative differential forms on A as follows. ΩA is
the universal (non-unital) differential graded algebra generated by A as a subal-
gebra. We put Ω0A = A, and let ΩnA be linearly generated over C by expressions
a0da1 . . . dan and da1 . . . dan for ai ∈ A (cf. [39] for details). Notice that even if
A is unital, ΩA is not a unital algebra and in particular the unit of A is only an
idempotent in ΩA. The differential d is defined by

d(a0da1 . . . dan) = da0da1 . . . dan and d(da1 . . . dan) = 0.

The universal property of (ΩA, d) is the fact that for any (not necessarily unital)
differential graded algebra (Ω, d) and any algebra map ρ : A→ Ω0 there is a unique
extension of ρ to a morphism of differential graded algebras,

ρ̂ : ΩA→ Ω. (3.18)

Now given a cyclic n-cocycle ϕ on A, define a linear map
∫
ϕ

: ΩnA→ C by∫
ϕ

(a0 + λ1) da1 . . . dan = ϕ(a0, . . . , an).

It is easy to check that
∫
ϕ

is a closed graded trace on ΩA whose character is ϕ.
Summarizing, we have shown that the relation∫

ϕ

(a0 + λ1) da1 . . . dan = ϕ(a0, a1, . . . , an)

defines a one-to-one correspondence:

{cyclic n-cocycles on A} ' {closed graded traces on ΩnA} (3.19)

Notice that for n = 0 we recover the relation in Example 3.6.2 between cyclic
0-cocycles on A and traces on A.
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Example 3.6.4 (A 2-cycle on the noncommutative torus). Let δ1, δ2 : Aθ → Aθ
denote the canonical derivations of the noncommutative torus and τ : Aθ → C its
canonical trace (cf. Example 1.1.7). It can be shown by a direct computation that
the 2-cochain ϕ defined on Aθ by

ϕ(a0, a1, a2) = (2πi)−1τ (a0(δ1(a1)δ2(a2)− δ2(a1)δ1(a2)))

is a cyclic 2-cocycle. It can also be realized as the character of the following 2-cycle
(Ω, d,

∫
) on Aθ as follows. Let Ω = Aθ ⊗

∧∗C2 be the tensor product of Aθ with
the exterior algebra of the vector space C2 = Ce1 ⊕ Ce2. The differential d is
defined by

da = δ1(a)e1 + δ2(a)e2, d(a⊗ e1) = −δ2(a)e1 ∧ e2, d(a⊗ e2) = δ1(a)e1 ∧ e2.

The closed graded trace
∫

: Ω2 → C is defined by∫
a⊗ e1 ∧ e2 = (2πi)−1τ(a).

The graded trace property of
∫

is a consequence of the trace property of τ and its
closedness follows from the invariance of τ under the infinitesimal automorphisms
δ1 and δ2, that is, the property τ(δi(a)) = 0 for all a and i = 1, 2. Now it is clear
that the character of this cycle is the cyclic 2-cocycle ϕ defined above:∫

a0 da1da2 = ϕ(a0, a1, a2).

In the remainder of this section we indicate a variety of different sources of
cyclic cocycles, e.g. from group cocycles or Lie algebra cycles.

Example 3.6.5 (From group cocycles to cyclic cocycles). Let G be a discrete
group and A = CG be its group algebra. Let c(g1, . . . , gn) be a group n-cocycle
on G. Thus c : Gn → C satisfies the cocycle condition

g1c(g2, . . . , gn+1)− c(g1g2, . . . , gn+1) + · · ·+ (−1)n+1c(g1, . . . , gn) = 0

for all g1, . . . , gn+1 in G. Assume c is normalized in the sense that

c(g1, . . . , gn) = 0

if gi = e for some i, or if g1g2 . . . gn = e. (It can be shown that any cocycle is
cohomologous to a normalized one). One checks that

ϕc(g0, . . . , gn) =

{
c(g1, . . . , gn), if g0g1 . . . gn = e,

0 otherwise,

is a cyclic n-cocycle on the group algebra CG (cf. [38], [41], or exercises below).
In this way one obtains a map from the group cohomology of G to the cyclic
cohomology of CG,

Hn(G,C)→ HCn(CG), c 7→ ϕc.
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By a theorem of Burghelea [25], the cyclic cohomology group HCn(CG) de-
composes over the conjugacy classes of G and the component corresponding to
the conjugacy class of the identity contains the group cohomology Hn(G,C) as a
summand. (See Example 3.10.3 in this chapter.)

Example 3.6.6 (From Lie algebra homology to cyclic cohomology). We start
with a simple special case. Let A be an algebra, τ : A → C be a trace, and let
δ : A→ A be a derivation on A. We assume that the trace is invariant under the
action of the derivation in the sense that

τ(δ(a)) = 0

for all a ∈ A. Then one checks that

ϕ(a0, a1) := τ(a0δ(a1))

is a cyclic 1-cocycle on A. A simple commutative example of this is when A =

C∞(S1), τ corresponds to the Haar measure, and δ = d
dx . Then one obtains the

fundamental class of the circle

ϕ(f0, f1) =

∫
f0 df1.

See below for a noncommutative example, with A = Aθ, the smooth noncommu-
tative torus.

This construction can be generalized. Let δ1, . . . , δn be a commuting family of
derivations on A, and let τ be a trace on A which is invariant under the action of
the δi, i = 1, . . . , n. Then one can check that

ϕ(a0, . . . , an) :=
∑
σ∈Sn

sgn(σ)τ(a0δσ(1)(a1) . . . δσ(n)(an)) (3.20)

is a cyclic n-cocycle on A. Again we give a commutative example and postpone
a noncommutative example to below. Let A = C∞c (Rn) be the algebra of smooth
compactly supported functions on Rn. Let τ(f) =

∫
Rn f and δi = ∂

∂xi
. The

corresponding cyclic cocycle is given, using the wedge product, by the formula

ϕ(f0, . . . , fn) =

∫
Rn
f0 df1 ∧ df2 ∧ · · · ∧ dfn,

where df =
∑
i
∂f
∂xi

dxi.

Everything we did so far in this example lends itself to a grand generalization
as follows. Let g be a Lie algebra acting by derivations on an algebra A. This
means that we have a Lie algebra map

g→ Der(A,A)

from g to the Lie algebra of derivations of A. Let τ : A → C be a trace which is
invariant under the action of g, i.e.,

τ(X(a)) = 0 for all X ∈ g, a ∈ A.
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For each n ≥ 0, define a linear map∧n
g→ Cn(A), c 7→ ϕc,

where

ϕc(a0, a1, . . . , an) =
∑
σ∈Sn

sgn(σ)τ(a0Xσ(1)(a1) . . . Xσ(n)(an)) (3.21)

if c = X1 ∧ · · · ∧Xn and extended linearly.
It can be shown that ϕc is a Hochschild cocycle for any c, and that it is a cyclic

cocycle if c is a Lie algebra cycle. (See Exercise 3.6.5.)
We therefore obtain, for each n ≥ 0, a map

χτ : HLie
n (g,C)→ HCn(A), c 7→ ϕc,

from the Lie algebra homology of g with trivial coefficients to the cyclic cohomology
of A [38].

In particular if g is abelian then of course HLie
n (g) =

∧n
(g) and we recover our

previously defined map (3.20):∧n
(g)→ HCn(A), n = 0, 1, . . . .

Here is an example of this construction which first appeared in [35]. Let A =
Aθ denote the “algebra of smooth functions” on the noncommutative torus. Let
X1 = (1, 0), X2 = (0, 1). There is an action of the abelian Lie algebra R2 on Aθ
defined on generators of Aθ by

X1(U) = U, X1(V ) = 0,

X2(U) = 0, X2(V ) = V.

The induced derivations on Aθ are given by

X1

(∑
am,nU

mV n
)

=
∑

mam,nU
mV n,

X2

(∑
am,nU

mV n
)

=
∑

nam,nU
mV n.

It is easily checked that the trace τ on Aθ defined by

τ
(∑

am,nU
mV n

)
= a0,0

is invariant under the above action of R2. The generators of HLie
∗ (R2,C) are: 1,

X1, X2, X1 ∧X2.
We therefore obtain the following 0-dimensional, 1-dimensional and 2-dimensional

cyclic cocycles on Aθ:

ϕ0(a0) = τ(a0), ϕ1(a0, a1) = τ(a0X1(a1)), ϕ′1(a0, a1) = τ(a0X2(a1)),

ϕ2(a0, a1, a2) = τ(a0(X1(a1)X2(a2)−X2(a1)X1(a2))).

It is shown in [39] that these classes form a basis for the continuous periodic
cyclic cohomology of Aθ.
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Example 3.6.7 (Cup product in cyclic cohomology). As we indicated before, the
notion of cycle over an algebra can be used to give a natural definition of a cup
product for cyclic cohomology. By specializing one of the variables to the ground
field, we obtain the S-operation.

Let (Ω,
∫
, ρ) be an m-dimensional cycle on an algebra A and (Ω′,

∫ ′
, ρ′) an

n-dimensional cycle on an algebra B. Let Ω ⊗ Ω′ denote the (graded) tensor
product of the differential graded algebras Ω and Ω′. By definition, we have

(Ω⊗ Ω′)k =
⊕

i+j=k

Ωi ⊗ Ω′j ,

d(ω ⊗ ω′) = (dω)⊗ ω′ + (−1)deg(ω)ω ⊗ (dω′).

Let ∫ ′′
ω ⊗ ω′ =

∫
ω

∫ ′
ω′ if deg(ω) = m, deg(ω′) = n.

It is easily checked that
∫ ′′

is a closed graded trace of dimension m+n on Ω⊗Ω′.

Using the universal property (3.18) of noncommutative differential forms, ap-
plied to the map ρ⊗ ρ′ : A⊗B → Ω0⊗Ω′0, one obtains a morphism of differential
graded algebras

(Ω(A⊗B), d)→ (Ω⊗ Ω′, d).

We therefore obtain a closed graded trace of dimension m + n on (Ω(A⊗ B), d).
In [39] it is shown that the resulting cup product map in cyclic cohomology,

#: HCm(A)⊗HCn(B)→ HCm+n(A⊗B)

is well defined.

We give a couple of simple examples of cup product computations.

Example 3.6.8 (The generalized trace map). Let ψ be a trace on B. Then
ϕ 7→ ϕ # ψ defines a map

HCm(A)→ HCm(A⊗B).

Explicitly we have

(ϕ # ψ)(a0 ⊗ b0, . . . , am ⊗ bm) = ϕ(a0, . . . , am)ψ(b0b1 . . . bm).

A special case of this construction plays a very important role in cyclic cohomology
and noncommutative geometry. Let ψ = tr: Mn(C) → C be the standard trace.
Then ‘cupping with trace’ defines a map

HCm(A)→ HCm(Mk(A)).
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Example 3.6.9 (The periodicity operator S). Another important special case of
the cup product is when we choose B = C and ψ to be the fundamental cyclic
2-cocycle on C defined by

ψ(1, 1, 1) = 1.

This leads to an operation of degree 2 on cyclic cohomology:

S : HCn(A)→ HCn+2(A), ϕ 7→ ϕ # ψ.

The formula simplifies to

(Sϕ)(a0, . . . , an+2) =

∫
ϕ

a0a1a2 da3 . . . dan+2

+

∫
ϕ

a0da1(a2a3) da4 . . . dan+2 + · · ·

+

∫
ϕ

a0 da1 . . . dai−1(aiai+1)dai+2 . . . dan+2 + · · ·

+

∫
ϕ

a0 da1 . . . dan(an+1an+2).

In the next section we give a different approach to S via the cyclic bicomplex.

So far we have studied the cyclic cohomology of algebras. There is a ‘dual’
theory called cyclic homology which we introduce now. Let A be an algebra and
for n ≥ 0 let

Cn(A) = A⊗(n+1).

For each n ≥ 0, define the operators

b : Cn(A)→ Cn−1(A), b′ : Cn(A)→ Cn−1(A), λ : Cn(A)→ Cn(A)

by

b(a0 ⊗ · · · ⊗ an) =

n−1∑
i=0

(−1)i(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+ (−1)n(ana0 ⊗ a1 ⊗ · · · ⊗ an−1),

b′(a0 ⊗ · · · ⊗ an) =

n−1∑
i=0

(−1)i(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an),

λ(a0 ⊗ · · · ⊗ an) = (−1)n(an ⊗ a0 ⊗ · · · ⊗ an−1).

The relation
(1− λ)b′ = b(1− λ)

can be easily established. Clearly (C∗(A), b) is the Hochschild complex of A with
coefficients in the A-bimodule A. Let

Cλn(A) := Cn(A)/ Im(1− λ).
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The relation (1− λ)b′ = b(1− λ) shows that the operator b is well defined on the
quotient complex Cλ∗ (A). The complex

(Cλ∗ (A), b)

is called the cyclic complex of A and its homology, denoted by HCn(A), n =
0, 1, . . . , is called the cyclic homology of A.

Example 3.6.10. For n = 0,

HC0(A) ' HH0(A) ' A/[A,A]

is the commutator quotient of A. Here [A,A] denotes the subspace of A generated
by the commutators ab − ba, for a and b in A. In particular if A is commutative
then HC0(A) = A.

Exercise 3.6.1. Give a description of Hochschild cocycles on A in terms of linear
functionals on ΩA similar to (3.19).

Exercise 3.6.2. Let ϕ ∈ HC0(A) be a trace on A. Show that

(Sϕ)(a0, a1, a2) = ϕ(a0a1a2).

Find an explicit formula for Snϕ for all n. Let ϕ ∈ HC1(A). Express Sϕ in terms
of ϕ.

Exercise 3.6.3 (Area as a cyclic cocycle). Let f, g : S1 → R be smooth functions.
The map u 7→ (f(u), g(u)) defines a smooth closed curve in the plane. Its signed
area is given by

∫
f dg. Notice that ϕ(f, g) =

∫
f dg is a cyclic 1-cocycle on

C∞(S1).

Exercise 3.6.4. Let c : Z2 × Z2 → C be the map

c((a, b), (c, d)) = ad− bc.

Show that c is a normalized group 2-cocycle in the sense of Example 3.6.5. Show
that the associated cyclic 2-cocycle on the group algebra CZ2 extends to its smooth
completion and coincides, up to scale, with the volume form on the two torus.

Exercise 3.6.5. Check that 1) for any c, the cochain ϕc defined in (3.21) is a
Hochschild cocycle, i.e., bϕc = 0; 2) if c is a Lie algebra cycle, i.e., if δ(c) = 0, then
ϕc is a cyclic cocycle.

3.7 Connes’ long exact sequence

Our goal in this section is to establish the long exact sequence of Connes relating
Hochschild and cyclic cohomology groups. There is a similar sequence relating
Hochschild and cyclic homology. Connes’ sequence is the long exact sequence
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of a short exact sequence and the main difficulty in the proof is to identify the
cohomology of the quotient as cyclic cohomology, with a shift in dimension, and
to identify the maps.

Let A be an algebra and let Cλ and C denote its cyclic and Hochschild cochain
complexes, respectively. Consider the short exact sequence of complexes

0→ Cλ → C
π−→ C/Cλ → 0. (3.22)

Its associated long exact sequence is

· · · → HCn(A)→ HHn(A)→ Hn(C/Cλ)→ HCn+1(A)→ · · · . (3.23)

We need to identify the cohomology groups Hn(C/Cλ). To this end, consider the
short exact sequence

0→ C/Cλ
1−λ−−−→ (C, b′)

N−−→ Cλ → 0, (3.24)

where the operator N is defined by

N = 1 + λ+ λ2 + · · ·+ λn : Cn → Cn.

The relations
N(1− λ) = (1− λ)N = 0 and bN = Nb′

can be verified and they show that 1 − λ and N are morphisms of complexes in
(3.24). As for the exactness of (3.24), the only non-trivial part is to show that
ker(N) ⊂ im(1− λ). But this follows from the relation

(1− λ)(1 + 2λ+ 3λ2 + · · ·+ (n+ 1)λn) = N − (n+ 1) idCn .

Now, assuming A is unital, the middle complex (C, b′) in (3.24) can be shown
to be exact. In fact we have a contracting homotopy s : Cn → Cn−1 defined by

(sϕ)(a0, . . . , an−1) = (−1)n−1ϕ(a0, . . . , an−1, 1),

which satisfies
b′s+ sb′ = id .

The long exact sequence associated to (3.24) looks like

· · · → Hn(C/Cλ)→ Hn
b′(C)→ HCn(A)→ Hn+1(C/Cλ)→ Hn+1

b′ (C)→ · · · .
(3.25)

Since Hn
b′(C) = 0 for all n, it follows that the connecting homomorphism

δ : HCn−1(A) −−→∼ Hn(C/Cλ) (3.26)

is an isomorphism for all n ≥ 0. Using this in (3.23), we obtain Connes’ long exact
sequence relating Hochschild and cyclic cohomology:

· · · → HCn(A)
I−−→ HHn(A)

B−−→ HCn−1(A)
S−−→→HCn+1(A)→ · · · (3.27)
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The operators B and S can be made more explicit by finding the connecting ho-
momorphisms in the above long exact sequences. Notice that B is the composition
of maps from (3.23) and (3.26):

B : HHn(A)
π−−→ Hn(C/Cλ)

δ−1

−−→ HCn−1(A).

We have, on the level of cohomology, B = (1 − λ)−1b′N−1. Remarkably this can
be expressed, on the level of cochains, by Connes’ operator B:

B = Ns(1− λ).

In fact, we have

Ns(1− λ)(1− λ)−1b′N−1[ϕ] = Nsb′N−1[ϕ]

= N(1− b′s)N−1[ϕ]

= (1− bNsN−1)[ϕ]

= [ϕ].

We can also write B as

B = Ns(1− λ) = NB0,

where B0 : Cn → Cn−1 is defined by

B0ϕ(a0, . . . , an−1) = ϕ(1, a0, . . . , an−1)− (−1)nϕ(a0, . . . , an−1, 1).

Using the relations (1− λ)b = b′(1− λ), (1− λ)N = N(1− λ) = 0, bN = Nb′,
and sb′ + b′s = 1, it is easy to show that

bB +Bb = 0 and B2 = 0.

Let
S′ : HCn−1(A)→ HCn+1(A)

be the composition of connecting homomorphisms in (3.26) and (3.23) associated
to the short exact sequences (3.22) and (3.24):

S′ : HCn−1(A) −−→∼ Hn(C/Cλ)→ HCn+1(A)

Therefore we have
S′[ϕ] = [b(1− λ)−1b′N−1ϕ].

Any cochain ψ ∈ (1 − λ)−1b′N−1ϕ has the property that bψ is cyclic, as can be
easily checked, and B[ψ] = [ϕ]. For the latter notice that

B(1− λ)−1b′N−1ϕ = Ns(1− λ)(1− λ)−1b′N−1ϕ

= N(1− b′s)N−1ϕ

= ϕ− bNsϕ.
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This gives us the formula

S′[ϕ] = [bψ] = [bB−1ϕ].

So far we have a long exact sequence

· · · → HCn(A)
I−−→ HHn(A)

B−−→ HCn−1(A)
S′−−→ HCn+1(A)→ · · · . (3.28)

At this point an important remark is in order. The operator S′ as defined above,
coincides, up to scale, with the periodicity operator S defined in Example 3.6.9.
In fact, using the explicit formulae for both S and S′, one shows (cf. also [38],
Lemma 4.34) that for any cyclic (n− 1)-cocycle [ϕ] ∈ HCn−1(A),

S[ϕ] = n(n+ 1)S′[ϕ].

Thus in the exact sequence (3.28) we can replace S′ with its scalar multiple S and
this of course will give Connes’ exact sequence (3.27). For future use we record
the new formula for S : HCn−1(A)→ HCn+1(A),

S[ϕ] = n(n+ 1) bB−1[ϕ] = n(n+ 1)[b(1− λ)−1b′N−1ϕ]. (3.29)

Using the periodicity operator S, the periodic cyclic cohomology of an algebra
A is defined as the direct limit under the operator S of cyclic cohomology groups:

HP i(A) := Lim
−→

HC2n+i(A), i = 0, 1.

Notice that since S has degree 2 there are only two periodic groups.
Typical applications of Connes’ IBS long exact sequence are to extract infor-

mation on cyclic cohomology from Hochschild cohomology. We list some of them:

1) Let f : A→ B be an algebra homomorphism and suppose that the induced
maps on Hochschild groups

f∗ : HHn(B)→ HHn(A)

are isomorphisms for all n ≥ 0. Then

f∗ : HCn(B)→ HCn(A)

is an isomorphism for all n ≥ 0 as well. This simply follows by comparing the
IBS sequences for A and B and applying the Five Lemma. For example, using
Lemma 3.5.1, it follows that inner automorphisms act as identity on (periodic)
cyclic cohomology.

Maps between cohomology groups need not be induced by algebra maps. For
example if f : (C∗(B), b)→ (C∗(A), b) is a morphism of Hochschild complexes and
if f commutes with the cyclic operator λ, then it induces a map (C∗λ(B), b) →
(C∗λ(A), b) between cyclic complexes. Using the IBS sequence, we conclude that if
the induced maps between Hochschild cohomology groups are isomorphisms then
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the induced maps between cyclic groups are isomorphisms as well. For example
using Lemma 3.5.1 we conclude that derivations act trivially on (periodic) cyclic
cohomology groups.

2) (Morita invariance of cyclic cohomology) Let A and B be Morita equivalent
unital algebras. The Morita invariance property of cyclic cohomology states that
there is a natural isomorphism

HCn(A) ' HCn(B), n = 0, 1, . . . .

For a proof of this fact in general see [124]. In the special case where B = Mk(A)
a simple proof can be given as follows. Indeed, by Morita invariance of Hochschild
cohomology, we know that the inclusion i : A → Mk(A) induces isomorphisms on
Hochschild groups and therefore on cyclic groups by 1) above.

3) (Normalization) A cochain f : A⊗(n+1) → C is called normalized if

f(a0, a1, . . . , an) = 0

whenever ai = 1 for some i ≥ 1. It is clear that normalized cyclic cochains form
a subcomplex (C∗λ,norm(A), b) of the cyclic complex of A. Since the corresponding

inclusion for Hochschild complexes is a quasi-isomorphism (Exercise 3.2.3), using
the IBS sequence we conclude that the inclusion of cyclic complexes is a quasi-
isomorphism as well.

Exercise 3.7.1. Show that (3.24) is exact (the interesting part is to show that
KerN ⊂ Im(1− λ)).

Exercise 3.7.2. Prove the relations bB+Bb = 0 and B2 = 0. (They will be used
later, together with b2 = 0, to define the (b, B)-bicomplex).

Exercise 3.7.3. LetA = C be the ground field. Compute the operatorsB : Cn(C)→
Cn+1(C) and S : HCn(C) → HCn+2(C). Conclude that HP 2n(C) = C and
HP 2n+1(C) = 0.

Exercise 3.7.4. Let A = C[x]/(x2) be the algebra of dual numbers, or, equiva-
lently, the exterior algebra of a vector space of dimension 1. Compute the cyclic
and periodic cyclic groups of A. (Hint: Use the complex of normalized cochains.)

Exercise 3.7.5. Let A = Mn(C). Show that the cochains ϕ2n : A⊗(2n+1) → C
defined by

ϕ2n(a0, . . . , a2n) = Tr(a0a1 . . . a2n)

are cyclic cocycles on A. We have S[ϕ2n] = λ2n[ϕ2n+2]. Compute the constants
λ2n.

Exercise 3.7.6. Give examples of algebras whose Hochschild groups are isomor-
phic in all dimensions but whose cyclic groups are not isomorphic. In other words,
an ‘accidental’ isomorphism of Hochschild groups does not imply cyclic cohomolo-
gies are isomorphic (despite the long exact sequence).
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3.8 Connes’ spectral sequence

The cyclic complex (3.16) and the long exact sequence (3.27), useful as they
are, are not powerful enough for computations. A much deeper relation between
Hochschild and cyclic cohomology groups is encoded in Connes’ (b, B)-bicomplex
and the associated spectral sequence that we shall briefly recall now, following
closely the original paper [39].

Let A be a unital algebra. The (b, B)-bicomplex of A, denoted by B(A), is the
bicomplex

...
...

...

C2(A)
B // C1(A)

B // C0(A)

C1(A)
B //

b

OO

C0(A)

b

OO

C0(A).

b

OO

Of the three relations

b2 = 0, bB +Bb = 0, B2 = 0,

only the middle relation is not obvious. But this follows from the relations b′s +
sb′ = 1, (1− λ)b = b′(1− λ) and Nb′ = bN , already used in the previous section.

The total complex of a bicomplex (C∗,∗, d1, d2) is defined as the complex
(TotC, d), where (TotC)n =

⊕
p+q=n C

p,q and d = d1 + d2. The following result

is fundamental. It shows that the resulting Connes’ spectral sequence obtained by
filtration by rows which has Hochschild cohomology for its E1 terms, converges to
cyclic cohomology.

Theorem 3.8.1 ([39]). The map ϕ 7→ (0, . . . , 0, ϕ) is a quasi-isomorphism of
complexes

(C∗λ(A), b)→ (TotB(A), b+B).

This is a consequence of the vanishing of the E2 term of the second spectral
sequence (filtration by columns) of B(A). To prove this consider the short exact
sequence of b-complexes

0→ ImB → KerB → KerB/ ImB → 0

By a hard lemma of Connes ([39], Lemma 41), the induced map

Hb(ImB)→ Hb(KerB)

is an isomorphism. It follows that Hb(KerB/ ImB) vanishes. To take care of the
first column one appeals to the fact that

ImB ' Ker(1− λ)
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is the space of cyclic cochains.
We give an alternative proof of Theorem 3.8.1 above. To this end, consider the

cyclic bicomplex C(A) defined by
...

...
...

C2(A)
1−λ // C2(A)

N // C2(A)
1−λ // · · ·

C1(A)

b

OO

1−λ // C1(A)

−b′
OO

N // C1(A)(A)

b

OO

1−λ // · · ·

C0(A)

b

OO

1−λ // C0(A)

−b′
OO

N // C0(A)(A)
1−λ //

b

OO

· · · .

The total cohomology of C(A) is isomorphic to cyclic cohomology:

Hn(Tot C(A)) ' HCn(A), n ≥ 0.

This is a consequence of the fact that the rows of C(A) are exact except in degree
zero. To see this, define the homotopy operator

H =
1

n+ 1
(1 + 2λ+ 3λ2 + · · ·+ (n+ 1)λn) : Cn(A)→ Cn(A). (3.30)

We have (1− λ)H = 1
n+1N − id, which of course implies the exactness of rows in

positive degrees and for the first column we are left with the cyclic complex:
...

...
...

C2
λ(A) // 0 // 0 // · · ·

C1
λ(A) //

b

OO

0 //

OO

0 //

OO

· · ·

C0
λ(A) //

b

OO

0 //

OO

0 //

OO

· · · .

We are therefore done with the proof of Theorem 3.8.1 provided we can prove that
TotB(A) and Tot C(A) are quasi-isomorphic. The next proposition proves this by
an explicit formula:

Proposition 3.8.1. The complexes TotB(A) and Tot C(A) are homotopy equiva-
lent.

Proof. We define explicit chain maps between these complexes and show that they
are chain homotopic via explicit homotopies. Define

I : TotB(A)→ Tot C(A), I = id +Ns,

J : Tot C(A)→ TotB(A), J = id +sN.
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One checks that I and J are chain maps.
Now consider the operators

g : TotB(A)→ TotB(A), g = Ns2B0,

h : Tot C(A)→ Tot C(A), h = s,

where B0 = s(1− λ).
We have, by direct computation:

I ◦ J = id +hδ + δh,

J ◦ I = id +gδ′ + δ′g,

where δ (resp. δ′) denotes the differential of Tot C(A) (resp. TotB(A)).

There is a similar result for cyclic homology.

Exercise 3.8.1. Use the (b, B)-bicomplex definition of cyclic cohomology to ob-
tain an alternative proof of the IBS sequence (3.27). Find an expression for the
periodicity operator S in this picture of cyclic cohomology.

Exercise 3.8.2. Use Theorem 3.8.1 to show that periodic cyclic cohomology is
isomorphic to the cohomology of the 2-periodic complex⊕

n
C2n(A)�

⊕
n
C2n+1(A).

with differential b+B. Show that the cohomology of the complex∏
n

C2n(A)�
∏
n

C2n+1(A)

is trivial.

3.9 Cyclic modules

In the previous sections we gave three alternative definitions for the cyclic coho-
mology of an algebra. Here we present yet another approach to cyclic cohomology
due to Connes [38], which defines it as a kind of derived functor. In fact this
comprises an extension of cyclic cohomology beyond the category of algebras by
introducing the notion of a cyclic object in an abelian category and its cyclic
cohomology [38]. Later developments proved that this extension was of great sig-
nificance. Apart from earlier applications, we should mention the recent work
[43] where the abelian category of cyclic modules plays the role of the category
of motives in noncommutative geometry. Another recent example is the cyclic
cohomology of Hopf algebras [55], [56], [89], [90], which cannot be defined as the
cyclic cohomology of an algebra or a coalgebra but only as the cyclic cohomology
of a cyclic module naturally attached to the given Hopf algebra.
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The original motivation of [38] was to define cyclic cohomology of algebras as
a derived functor. Since the category of algebras and algebra homomorphisms is
not even an additive category (for the simple reason that the sum of two alge-
bra homomorphisms is not an algebra homomorphism in general), the standard
(abelian) homological algebra is not applicable. Let k be a unital commutative
ring. In [38], the category Λk of cyclic k-modules appears as an ‘abelianization’
of the category of k-algebras. Cyclic cohomology is then shown to be the derived
functor of the functor of traces, as we explain in this section.

Recall that the simplicial category ∆ is a small category whose objects are the
totally ordered sets (cf. e.g. [81], [124], [179])

[n] = {0 < 1 < · · · < n}, n = 0, 1, 2, . . . .

A morphism f : [n] → [m] of ∆ is an order preserving, i.e., monotone non-
decreasing, map f : {0, 1, . . . , n} → {0, 1, . . . ,m}. Of particular interest among
the morphisms of ∆ are faces δi and degeneracies σj ,

δi : [n− 1]→ [n], i = 0, 1, . . . , n,

σj : [n+ 1]→ [n], j = 0, 1, . . . , n.

By definition δi is the unique injective morphism missing i and σj is the unique
surjective morphism identifying j with j + 1. It can be checked that they satisfy
the following simplicial identities:

δjδi = δiδj−1 if i < j,

σjσi = σiσj+1 if i ≤ j,

σjδi =


δiσj−1 if i < j,

id[n] if i = j or i = j + 1,

δi−1σj if i > j + 1.

Every morphism of ∆ can be uniquely decomposed as a product of faces followed
by a product of degeneracies.

The cyclic category Λ has the same set of objects as ∆ and in fact contains
∆ as a subcategory. Morphisms of Λ are generated by simplicial morphisms and
new morphisms τn : [n] → [n], n ≥ 0, defined by τn(i) = i + 1 for 0 ≤ i < n and
τn(n) = 0. We have the following extra relations:

τnδi = δi−1τn−1, 1 ≤ i ≤ n,
τnδ0 = δn,

τnσi = σi−1τn+1, 1 ≤ i ≤ n,
τnσ0 = σnτ

2
n+1,

τn+1
n = id .
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It can be shown that the classifying space BΛ of the small category Λ is homotopy
equivalent to the classifying space BS1 = CP∞ [38].

A cyclic object in a category C is a functor Λop → C. A cocyclic object in C is a
functor Λ→ C. For any commutative unital ring k, we denote the category of cyclic
k-modules by Λk. A morphism of cyclic k-modules is a natural transformation
between the corresponding functors. Equivalently, a morphism f : X → Y consists
of a sequence of k-linear maps fn : Xn → Yn compatible with the face, degeneracy,
and cyclic operators. It is clear that Λk is an abelian category. The kernel and
cokernel of a morphism f are defined pointwise: (Ker f)n = Ker fn : Xn → Yn and
(Coker f)n = Coker fn : Xn → Yn. More generally, if A is any abelian category
then the category ΛA of cyclic objects in A is itself an abelian category.

Let Algk denote the category of unital k-algebras and unital algebra homomor-
phisms. There is a functor

\ : Algk → Λk

defined as follows. To an algebra A we associate the cyclic module A\ defined by

A\n = A⊗(n+1), n ≥ 0,

with face, degeneracy and cyclic operators given by

δi(a0 ⊗ a1 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an,
δn(a0 ⊗ a1 ⊗ · · · ⊗ an) = ana0 ⊗ a1 ⊗ · · · ⊗ an−1,

σi(a0 ⊗ a1 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ · · · ⊗ an,
τn(a0 ⊗ a1 ⊗ · · · ⊗ an) = an ⊗ a0 ⊗ · · · ⊗ an−1.

A unital algebra map f : A→ B induces a morphism of cyclic modules f \ : A\ →
B\ by f \(a0 ⊗ · · · ⊗ an) = f(a0)⊗ · · · ⊗ f(an), and this defines the functor \.

Example 3.9.1. We have

HomΛk(A\, k\) ' T (A),

where T (A) is the space of traces from A→ k. To a trace τ we associate the cyclic
map (fn)n≥0, where

fn(a0 ⊗ a1 ⊗ · · · ⊗ an) = τ(a0a1 . . . an), n ≥ 0.

It can be easily shown that this defines a one-to-one correspondence.

Now we can state the following fundamental theorem of Connes [38] which
greatly extends the above example:

Theorem 3.9.1. Let k be a field of characteristic zero. For any unital k-algebra
A there is a canonical isomorphism

HCn(A) ' ExtnΛk(A\, k\) for all n ≥ 0.
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Before sketching its proof, we mention that combined with the above example
the theorem implies that cyclic cohomology is, in some sense, the non-abelian
derived functor of the functor of traces

A; T (A)

from the category of k-algebras to the category of k-modules.

Sketch of proof. The main step in the proof of Theorem 3.9.1 is to find an injective
resolution of k\ in Λk. The required injective cyclic modules will be the dual of
some projective cyclic modules that we define first. For each integer m ≥ 0, let us
define a cyclic module Cm where

(Cm)n = kHomΛ([m], [n])

is the free k-module generated by the set of all cyclic maps from [m] → [n].
Composition in Λ defines a natural cyclic module structure on each Ck. For any
cyclic module M we clearly have HomΛk(Cm,M) = Mm. This of course implies
that each Cm is a projective cyclic module. (Recall that an object P of an abelian
category is called projective if the functor M 7→ Hom(P,M) is exact in the sense
that it sends any short exact sequence in the category into a short exact sequence
of abelian groups.) The corresponding projective resolution of k\ is defined as the
total complex of the following double complex:

...
...

...

C2
1−λ // C2 N // C2

1−λ // · · ·

C1
1−λ //

b

OO

C1 N //

b′

OO

C1
1−λ //

b

OO

· · ·

C0
1−λ //

b

OO

C0 N //

b′

OO

C0
1−λ //

b

OO

· · · ,

(3.31)

where the cyclic module maps b, b′,λ and N are defined by

b(f) =

k∑
i=0

(−1)if ◦ δi, b′(f) =

k−1∑
i=0

(−1)if ◦ δi,

λ(f) = (−1)kf ◦ τk, and N = 1 + λ+ · · ·+ λk

Now by a direct argument one shows that the row homologies of the above bicom-
plex (3.31) are trivial in positive dimensions. Thus to compute its total homology
it remains to compute the homology of the complex of complexes:

C0/(1− λ)
b←−− C1/(1− λ)

b←−− · · · .
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It can be shown that for each fixed m, the complex of vector spaces

C0
m/(1− λ)

b←−− C1
m/(1− λ)

b←−− · · ·

coincides with the complex that computes the simplicial homology of the simplicial
set ∆m. The simplicial set ∆m is defined by ∆m

n = Hom∆([m], [n]) for all n ≥ 0.
The geometric realization of ∆m is the closed unit ball in Rm which is of course
contractible. It follows that the total homology of the above bicomplex is the
cyclic module k\. We note that for this argument K need not be a field. Now
if k is a field of characteristic zero the cyclic modules Cm, m ≥ 0, defined by
(Cm)n = Homk((Cm)n, k) are injective cyclic modules. Dualizing the bicomplex
(3.31), finally we obtain an injective resolution of k\ as a cyclic module. To
compute the Ext∗Λk(A\, k\) groups, we apply the functor HomΛk(A\, −) to this
resolution. We obtain the bicomplex

...
...

...

C2(A)
1−λ // C2(A)

N // C2(A)
1−λ // · · ·

C1(A)

b

OO

1−λ // C1(A)

−b′
OO

N // C1

b

OO

1−λ // · · ·

C0(A)

b

OO

1−λ // C0(A)

−b′
OO

N // C0(A)

b

OO

1−λ // · · · .

(3.32)

We are done with the proof of Theorem 3.9.1, provided we can show that the
cohomology of (3.32) is isomorphic to the cyclic cohomology of A. But this we
have already shown in the last section. This finishes the proof of the theorem.

A remarkable property of the cyclic category Λ, not shared by the simplicial
category, is its self-duality in the sense that there is a natural isomorphism of
categories Λ ' Λop [38]. Roughly speaking, the duality functor Λop → Λ acts as
identity on objects of Λ and exchanges face and degeneracy operators while sending
the cyclic operator to its inverse. Thus to a cyclic (resp. cocyclic) module one can
associate a cocyclic (resp. cyclic) module by applying the duality isomorphism.

Example 3.9.2 (Hopf cyclic cohomology). We give a very non-trivial example
of a cocyclic module. Let H be a Hopf algebra. A character of H is a unital
algebra map δ : H → C. A group-like element is a nonzero element σ ∈ H such
that ∆σ = σ ⊗ σ. Following [55], [56], we say (δ, σ) is a modular pair if δ(σ) = 1,
and a modular pair in involution if

S̃2
δ (h) = σhσ−1

for all h in H. Here the δ-twisted antipode S̃δ : H → H is defined by

S̃δ(h) =
∑

δ(h(1))S(h(2)).
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Now let (H, δ, σ) be a Hopf algebra endowed with a modular pair in involution.

In [55] Connes and Moscovici attach a cocyclic module H\
(δ,σ) to this data as

follows. Let

H\,0
(δ,σ) = C and H\,n

(δ,σ) = H⊗n for n ≥ 1.

Its face, degeneracy and cyclic operators δi, σi, and τn are defined by

δ0(h1 ⊗ · · · ⊗ hn) = 1⊗ h1 ⊗ · · · ⊗ hn,
δi(h1 ⊗ · · · ⊗ hn) = h1 ⊗ · · · ⊗∆(hi)⊗ · · · ⊗ hn for 1 ≤ i ≤ n,
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δn+1(h1 ⊗ · · · ⊗ hn) = h1 ⊗ · · · ⊗ hn ⊗ σ,
σi(h1 ⊗ · · · ⊗ hn) = h1 ⊗ · · · ⊗ hiε(hi+1)⊗ · · · ⊗ hn for 0 ≤ i < n,

τn(h1 ⊗ · · · ⊗ hn) = ∆n−1S̃δ(h1) · (h2 ⊗ · · · ⊗ hn ⊗ σ).

Checking the cyclic property of τn, i.e., τn+1
n = 1 is a highly non-trivial task. The

cyclic cohomology of the cocyclic module H\
(δ,σ) is the Hopf cyclic cohomology of

the triple (H, δ, σ). (cf. also [2], [89], [90] for more examples of cyclic modules
arising from actions and coactions of Hopf algebras on algebras and coalgebras.)

3.10 Examples: cyclic cohomology

Cyclic cohomology has been computed for many algebras, most notably algebras of
smooth functions, group algebras and crossed product algebras, groupoid algebras,
noncommutative tori, universal enveloping algebras, and almost commutative al-
gebras. Equipped with these core examples, one can then use general results like
additivity, Morita invariance, homotopy invariance, Künneth formulae, and exci-
sion [62], to compute the (periodic) cyclic cohomology of even larger classes of
algebras. The main technique to deal with core examples is to find a suitable
resolution for the Hochschild complex to compute the Hochschild cohomology first
and then find the action of the operator B on the Hochschild complex. In good
cases, the E2-term of the spectral sequence associated with the (b, B)-bicomplex
vanishes and one ends up with a computation of cyclic cohomology. To illustrate
this idea, we recall some of these computations in this section.

Example 3.10.1 (Algebras of smooth functions). Let A = C∞(M) denote the
algebra of smooth complex-valued functions on a closed smooth manifold M with
its natural Fréchet algebra topology, and let (ΩM, d) denote the de Rham complex

of M . Let Cn(A) = A⊗̂(n+1) denote the space of continuous n-chains on A. We
saw in Example 3.5.2 that the map µ : Cn(A)→ ΩnM defined by

µ(f0 ⊗ · · · ⊗ fn) =
1

n!
f0df1 ∧ · · · ∧ dfn,

induces an isomorphism between the continuous Hochschild homology of A and
differential forms on M :

HHcont
n (A) ' ΩnM.

To compute the continuous cyclic homology of A, we first show that under the
map µ the operator B corresponds to the de Rham differential d. More precisely,
for each integer n ≥ 0 we have a commutative diagram:

Cn(A)

B

��

µ // ΩnM

d

��
Cn+1(A)

µ // Ωn+1M .
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We have

µB(f0 ⊗ · · · ⊗ fn)

= µ

n∑
i=0

(−1)ni(1⊗ fi ⊗ · · · ⊗ fi−1 − (−1)nfi ⊗ · · · ⊗ fi−1 ⊗ 1)

=
1

(n+ 1)!

n∑
i=0

(−1)nidfi . . . dfi−1

=
1

(n+ 1)!
(n+ 1)df0 . . . dfn = dµ(f0 ⊗ · · · ⊗ fn).

It follows that µ defines a morphism of bicomplexes

B(A)→ Ω(A),

where Ω(A) is the bicomplex

...
...

...

Ω2M

0

��

Ω1M
d

oo

0

��

Ω0M
d

oo

Ω1M

0

��

Ω0M
d

oo

Ω0M .

Since µ induces isomorphisms on row homologies, it induces isomorphisms on total
homologies as well. Thus we have [39]:

HCcont
n (C∞(M)) ' ΩnM/ im d⊕Hn−2

dR (M)⊕ · · · ⊕Hk
dR(M),

where k = 0 if n is even and k = 1 if n is odd. Notice that the top part, for
n ≤ dim(M), consists of the so called co-closed differential n-forms on M .

Using the corresponding periodic complexes, one concludes that the continuous
periodic cyclic homology of C∞(M) is given by

HP cont
k (C∞(M)) '

⊕
i

H2i+k
dR (M), k = 0, 1.

There are of course dual results relating continuous cyclic cohomology of C∞(M)
and de Rham homology of M . Let (Ω∗M, d) denote the complex of de Rham cur-
rents on M . Recall from Example 3.5.2 that the map ΩnM → Cncont(A) defined
by sending a current C ∈ ΩnM to the cochain ϕC , where

ϕC(f0, f1, . . . , fn) = 〈C, f0df1 ∧ · · · ∧ dfn〉
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is a quasi-isomorphism. By basically following the same route as above we obtain
the following theorem of Connes [39]:

HCncont(C
∞(M)) ' Zn(M)⊕HdR

n−2(M)⊕ · · · ⊕HdR
k (M) (3.33)

where Zn(M) is the space of closed de Rham n-currents on M and k = 0 if n is
even and k = 1 if n is odd. Finally, for the continuous periodic cyclic cohomology
we obtain:

HP kcont(C
∞(M)) '

⊕
i

HdR
2i+k(M), k = 0, 1 (3.34)

Now (3.33) shows that cyclic cohomology is not homotopy invariant. In fact
while the de Rham cohomology components are homotopy invariant the top com-
ponent Zn(M) cannot be homotopy invariant. Formula (3.34) on the other hand
shows that the periodic cyclic cohomology of C∞(M) is homotopy invariant. This
is a special case of the homotopy invariance of periodic cyclic cohomology [39],
[124]. More precisely, for any algebras A and B and smoothly homotopic algebra
maps f0, f1 : A → B, we have f∗0 = f∗1 : HP ∗(B) → HP ∗(A). In particular the
algebras A and A[x] have isomorphic periodic cyclic cohomologies.

Example 3.10.2 (Smooth commutative algebras). Let A = O(X) be the coordi-
nate ring of an affine smooth variety over C and let (Ω∗A, d) denote the de Rham
complex of A. As we saw in Example 3.5.1, by Hochschild–Kostant–Rosenberg’s
theorem, the map

µ : Cn(A)→ ΩnA

induces an isomorphism between Hochschild homology of A and the differential
forms on X. By the same method as in the previous example one then arrives at
the isomorphisms

HCn(O(X)) ' ΩnA/ im d⊕Hn−2
dR (X)⊕ · · · ⊕Hk

dR(X),

HPk(O(X)) '
⊕
i

HdR
2i+k(X), k = 0, 1.

Notice that the de Rham cohomology Hn
dR(X) appearing on the right side is

isomorphic to the singular cohomology Hn(Xtop,C) of the underlying topological
space of X.

When X is singular the relations between the cyclic homology of O(X) and
the topology of Xtop can be quite complicated. The situation for periodic cyclic
homology however is quite straightforward, as the following theorem of Feigin and
Tsygan [79] indicates:

HPk(O(X)) '
⊕
i

H2i+k(Xtop,C). (3.35)

Notice that X need not be smooth and the cohomology on the right-hand side is
the singular cohomology.
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Example 3.10.3 (Group algebras). Let CG denote the group algebra of a discrete
group G. Here, to be concrete, we work over C, but results hold over any field
of characteristic zero. As we saw in Example 3.5.3, the Hochschild complex of
CG decomposes over the set 〈G〉 of conjugacy classes of G and the homology of
each summand is isomorphic to the group homology of a group associated to the
conjugacy class:

HHn(CG) '
⊕
〈G〉

Hn(Cg),

where Cg is the centralizer of a representative g of a conjugacy class of G [25],
[41], [124]. Recall the decomposition

C∗(CG, b) =
⊕
c∈〈G〉

B(G, c)

of the Hochschild complex of CG from Example 3.5.3, where for each conjugacy
class c ∈ 〈G〉, Bn(G, c) is the linear span of all (n+1)-tuples (g0, g1, . . . , gn) ∈ Gn+1

such that
g0g1 . . . gn ∈ c.

It is clear thatBn(G, c), n = 0, 1, 2, . . . , are invariant not only under the Hochschild
differential b, but also under the cyclic operator λ. Let

Bλn(G, c) = Bn(G, c)/ im(1− λ).

We then have a decomposition of the cyclic complex of CG into subcomplexes
indexed by conjugacy classes:

Cλ∗ (CG, b) =
⊕
c∈Ĝ

Bλ∗ (G, c).

The homology of Bλ∗ (G, {e}) was first computed by Karoubi [104], [124] in
terms of the group homology of G. The result is

Hn(Bλ∗ (G, {e}) =
⊕
i

Hn−2i(G).

Burghelea’s computation of the cyclic homology of CG [25] (cf. also [132],
[73] for a purely algebraic proof) can be described as follows. Let 〈G〉fin and
〈G〉∞ denote the set of conjugacy classes of elements of finite, and infinite orders,
respectively. For an element g ∈ G, let Ng = Cg/〈g〉, where 〈g〉 is the group
generated by g and Cg is the centralizer of g. Notice that the isomorphism type
of Ng only depends on the conjugacy class of g. In each conjugacy class c we pick
a representative g ∈ c once and for all. Now if g is an element of finite order we
have

Hn(Bλ∗ (G, c)) =
⊕
i≥0

Hn−2i(Cg).

On the other hand, if g is of infinite order we have

Hn(Bλ∗ (G, c)) = Hn(Ng).
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Putting these results together we obtain:

HCn(CG) '
⊕
〈G〉fin

( ⊕
i≥0

Hn−2i(Cg)
) ⊕
〈G〉∞

Hn(Ng) (3.36)

In particular, the Hochschild group has Hn(G) as a direct summand, while the
cyclic homology group has

⊕
iHn−2i(G) as a direct summand (corresponding to

the conjugacy class of the identity of G).

Example 3.10.4 (Noncommutative torus). We shall briefly recall Connes’ com-
putation of the Hochschild and cyclic cohomology groups of smooth noncommu-
tative tori [39]. In Example 1.1.7 we showed that when θ is rational the smooth
noncommutative torus Aθ is Morita equivalent to C∞(T 2), the algebra of smooth
functions on the torus. One can then use the Morita invariance of Hochschild and
cyclic cohomology to reduce the computation of these groups to those for the al-
gebra C∞(T 2). This takes care of the computation for rational θ. So, through the
rest of this example we assume that θ is irrational and we denote the generators
of Aθ by U1 and U2 with the relation U2U1 = λU1U2, where λ = e2πiθ.

Let B = Aθ ⊗̂ Aop
θ . There is a topological free resolution of Aθ as a left

B-module
Aθ

ε←− B ⊗ Ω0
b1←−− B ⊗ Ω1

b2←−− B ⊗ Ω2 ←− 0,

where Ωi =
∧iC2, i = 0, 1, 2 is the i-th exterior power of C2. The differentials are

given by

b1(1⊗ ej) = 1⊗ Uj − Uj ⊗ 1, j = 1, 2,

b2(1⊗ (e1 ∧ e2)) = (U2 ⊗ 1− λ⊗ U2)⊗ e1 − (λU1 ⊗ 1− 1⊗ U1)⊗ e2,

ε(a⊗ b) = ab.

The following result completely settles the question of continuous Hochschild
cohomology of Aθ when θ is irrational. Recall that an irrational number θ is said
to satisfy a Diophantine condition if |1− λn|−1 = O(nk) for some positive integer
k.

Proposition 3.10.1 ([39]). Let θ /∈ Q. Then the following holds.

a) One has HH0(Aθ) = C.

b) If θ satisfies a Diophantine condition then HHi(Aθ) is 2-dimensional for
i = 1 and is 1-dimensional for i = 2.

c) If θ does not satisfy a Diophantine condition, then HHi(Aθ) are infinite
dimensional non-Hausdorff spaces for i = 1, 2.

Remarkably, for all values of θ, the periodic cyclic cohomology is finite dimen-
sional and is given by

HP 0(Aθ) = C2, HP 1(Aθ) = C2.
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An explicit basis for these groups is given by cyclic 1-cocycles

ϕ1(a0, a1) = τ(a0δ1(a1)) and ϕ1(a0, a1) = τ(a0δ2(a1)),

and by cyclic 2-cocycles

ϕ(a0, a1, a2) = τ(a0(δ1(a1)δ2(a2)− δ2(a1)δ1(a2))) and Sτ,

where δ1, δ2 : Aθ → Aθ are the canonical derivations defined by

δ1

(∑
amnU

m
1 U

n
2

)
=
∑

mamnU
m
1 U

n
2 and δ2(Um1 U

n
2 ) =

∑
namnU

m
1 U

n
2 ,

and τ : Aθ → C is the canonical trace (cf. Example 1.1.7). Note that Sτ(a0, a1, a2) =
τ(a0a1a2).

Let O(T 2
θ ) denote the (dense) subalgebra of Aθ generated by U1 and U2. In

Exercise 3.2.7 we ask the reader to show that the (algebraic) Hochschild groups of
O(T 2

θ ) are finite dimensional for all values of θ.

Exercise 3.10.1. Since CZ = C[z, z−1] is both a group algebra and a smooth al-
gebra, we have two descriptions of its Hochschild and cyclic homologies. Compare
the two descriptions and show that they are the same.

Exercise 3.10.2. Let G be a finite group. Use Burghelea’s theorem in Exam-
ple 3.10.3 to compute the Hochschild and cyclic homology of CG. Alternatively,
one knows that CG is a direct sum of matrix algebras and one can use the Morita
invariance of Hochschild and cyclic theory. Compare the two approaches.

Exercise 3.10.3. Let D∞ = ZoZ2 be the infinite dihedral group. Use (3.36) to
compute the cyclic homology of the group algebra CD∞.

Exercise 3.10.4. Let X = {(x, y) ∈ C2; xy = 0}, and let A = O(X) be the
coordinate ring of X. Verify (3.35) for A.

Exercise 3.10.5. Prove directly, without using Proposition 3.10.1, that when θ is
irrational Aθ has a unique trace and therefore HH0(Aθ) = C. Describe the traces
on Aθ for rational θ.
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Chapter 4

Connes–Chern character

The classical commutative Chern character relates the K-theory of a space to its
ordinary cohomology. In noncommutative geometry, in addition to K-theory there
is also a very important dual K-homology theory built out of abstract elliptic oper-
ators on the noncommutative space. In this chapter we study the noncommutative
analogues of Chern character maps for both K-theory and K-homology, with val-
ues in cyclic homology and cyclic cohomology, respectively. As was indicated in
the introduction to Chapter 3, it was the search for a noncommutative analogue
of the Chern character that eventually led to the discovery of cyclic cohomology.
K-theory, K-homology, cyclic homology and cohomology, via their allied Connes–
Chern character maps, enter into a beautiful index formula of Connes which plays
an important role in applications of noncommutative geometry.

4.1 Connes–Chern character in K-theory

The classical Chern character is a natural transformation from K-theory to ordi-
nary cohomology theory with rational coefficients [138]. More precisely, for each
compact Hausdorff space X we have a natural homomorphism

Ch: K0(X)→
⊕
i≥0

H2i(X,Q),

where K0 (resp. H) denotes the K-theory (resp. Čech cohomology with rational
coefficients). It satisfies certain axioms and these axioms completely characterize
Ch. We shall not recall these axioms here, however, since they are not very useful
for finding the noncommutative analogue of Ch. What turned out to be most
useful in this regard was the Chern–Weil definition of the Chern character for
smooth manifolds,

Ch: K0(X)→
⊕
i≥0

H2i
dR (X),

153
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using differential geometric notions of connection and curvature on vector bundles
over smooth manifolds. (cf. [138], and Example 4.1.4 in this section). Now let us
describe the situation in the noncommutative case.

In [35], [39], [41], Connes shows that Chern–Weil theory admits a vast general-
ization to a noncommutative setting. For example, for a not necessarily commuta-
tive algebra A and each integer n ≥ 0 there are natural maps, called Connes–Chern
character maps,

Ch2n
0 : K0(A)→ HC2n(A),

Ch2n+1
1 : K1(A)→ HC2n+1(A)

from the K-theory of A to its cyclic homology.
Alternatively, these maps can be defined as a pairing between cyclic cohomology

and K-theory:

HC2n(A)⊗K0(A)→ C, HC2n+1(A)⊗K1(A)→ C. (4.1)

These pairings are compatible with the periodicity operator S in cyclic cohomology
in the sense that

〈[ϕ], [e]〉 = 〈S[ϕ], [e]〉

for all cyclic cocycles ϕ and K-theory classes [e], and thus induce a pairing

HP i(A)⊗Ki(A)→ C, i = 0, 1,

between periodic cyclic cohomology and K-theory.
We start by briefly recalling the definitions of the functors K0 and K1. Let A

be a unital algebra and let P(A) denote the set of isomorphism classes of finitely
generated projective right A-modules. Under the operation of direct sum, P(A)
is an abelian monoid. The group K0(A) is, by definition, the Grothendieck group
of the monoid P(A) in the sense that there is a universal additive map P(A) →
K0(A). Thus elements of K0(A) can be written as [P ]−[Q] for P, Q ∈ P(A), with
[P ]− [Q] = [P ′]− [Q′] if and only if there is an R ∈ P(A) such that P ⊕Q′⊕R '
P ′ ⊕Q⊕R.

There is an alternative description of K0(A) in terms of idempotents in matrix
algebras over A that is often convenient. An idempotent e ∈ Mn(A) defines a
right A-module map

e : An → An

by left multiplication by e. Let Pe = eAn be the image of e. The relation

An = eAn ⊕ (1− e)An

shows that Pe is a finite projective right A-module. Different idempotents may
define isomorphic modules. This happens, for example, if e and f are equivalent
idempotents (sometimes called similar) in the sense that

e = ufu−1
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for some invertible u ∈ GL(n,A). Let M(A) =
⋃
Mn(A) be the direct limit of

the matrix algebras Mn(A) under the embeddings Mn(A)→Mn+1(A) defined by
a 7→ ( a 0

0 0 ). Similarly let GL(A) be the direct limit of the groups GL(n,A). It acts
on M(A) by conjugation.

Definition 4.1.1. Two idempotents e ∈ Mk(A) and f ∈ Ml(A) are called stably
equivalent if their images in M(A) are equivalent under the action of GL(A).

The following is easy to prove and answers our original question.

Lemma 4.1.1. The projective modules Pe and Pf are isomorphic if and only if
the idempotents e and f are stably equivalent.

Let Idem(M(A))/GL(A) denote the set of stable equivalence classes of idem-
potents over A. This is an abelian monoid under the operation

(e, f) 7→ e⊕ f :=

(
e 0
0 f

)
.

It is clear that any finite projective module is of the type Pe for some idempo-
tent e. In fact writing P ⊕Q ' An, one can let e be the idempotent corresponding
to the projection map (p, q) 7→ (p, 0). These observations prove the following
lemma.

Lemma 4.1.2. For any unital ring A, the map e 7→ Pe defines an isomorphism
of monoids

Idem(M(A))/GL(A) ' P(A).

Given an idempotent e = (eij) ∈ Mn(A), its image under a homomorphism
f : A→ B is the idempotent f∗(e) = (f(eij)). This is our formula for f∗ : K0(A)→
K0(B) in the idempotent picture of K-theory. It turns A→ K0(A) into a functor
from unital algebras to abelian groups.

For a unital Banach algebra A, K0(A) can be described in terms of connected
components of the space of idempotents of M(A) under its inductive limit topology
(a subset V ⊂M(A) is open in the inductive limit topology if and only if V ∩Mn(A)
is open for all n). It is based on the following important observation: Let e and f
be idempotents in a unital Banach algebra A and assume ‖e − f‖ < 1/‖2e − 1‖.
Then e ∼ f . In fact with

v = (2e− 1)(2f − 1) + 1 (4.2)

and u = 1
2v, we have ueu−1 = f . To see that u is invertible note that ‖u− 1‖ < 1.

One consequence of this fact is that if e and f are in the same path component of
the space of idempotents in A, then they are equivalent. As a result we have, for
any Banach algebra A, an isomorphism of monoids

P(A) ' π0(Idem(M(A))),

where π0 is the functor of path components.
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For C∗-algebras, instead of idempotents it suffices to consider only the pro-
jections. A projection is a self-adjoint idempotent (p2 = p = p∗). The reason is
that every idempotent in a C∗-algebra is similar to a projection [14]: let e be an
idempotent and set z = 1 + (e − e∗)(e∗ − e). Then z is invertible and positive
and one shows that p = ee∗z−1 is a projection and is similar to e. In fact, it can
be shown that the set of projections of a C∗-algebra is a retraction of its set of
idempotents. Let Proj(M(A)) denote the space of projections in M(A). We have
established isomorphisms of monoids

P(A) ' π0(Idem(M(A))) ' π0(Proj(M(A)))

which reflects the coincidence of stable equivalence, Murray–von Neumann equiv-
alence, and homotopy equivalence in Proj (M(A)).

Starting with K1, algebraic and topological K-theory begin to differ from each
other. We shall briefly indicate the definition of algebraic K1, and the necessary
modification needed for topological K1. Let A be a unital algebra. The algebraic
K1 of A is defined as the abelianization of the group GL(A):

Kalg
1 (A) := GL(A)/[GL(A), GL(A)],

where [ · , · ] denotes the commutator subgroup. Applied to A = C(X), this defini-
tion does not reproduce the topological K1(X). For example for A = C = C(pt)

we have Kalg
1 (C) ' C× where the isomorphism is induced by the determinant map

det : GL(C)→ C×,

while K1(pt) = 0. It turns out that, to obtain the right result, one should divide
GL(A) by a bigger subgroup, i.e., by the closure of its commutator subgroup. This
works for all Banach algebras and will give the right definition of topological K1.
A better approach however is to define the higher K groups in terms of K0 and
the suspension functor [14].

After this quick and brief introduction to K-theory, we come now to the main
topic of this section. We start by defining the pairings (4.1). Let ϕ be a cyclic
2n-cocycle on an algebra A. For each integer k ≥ 1, the formula

ϕ̃(m0 ⊗ a0, . . . ,m2n ⊗ a2n) = tr(m0 . . .m2n)ϕ(a0, . . . , a2n) (4.3)

defines a cyclic 2n-cocycle ϕ̃ ∈ Z2n
λ (Mk(A)). Let e ∈ Mk(A) be an idempotent

representing a class in K0(A). Define a bilinear map

HC2n(A)⊗K0(A)→ C (4.4)

by the following formula:

〈[ϕ], [e]〉 = (n!)−1 ϕ̃(e, . . . , e) (4.5)
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Let us first check that the value of the pairing depends only on the cyclic co-
homology class of ϕ in HC2n(A). It suffices to assume k = 1 (why?). Let ϕ = bψ
with ψ ∈ C2n−1

λ (A), be a coboundary. Then we have

ϕ(e, . . . , e) = bψ(e, . . . , e)

= ψ(ee, e, . . . , e)− ψ(e, ee, . . . , e) + · · ·+ (−1)2nψ(ee, e, . . . , e)

= ψ(e, . . . , e)

= 0,

where the last relation follows from the cyclic property of ψ.
To verify that the value of 〈[ϕ], [e]〉, for fixed ϕ, only depends on the class

of [e] ∈ K0(A) we have to check that for u ∈ GLk(A) an invertible matrix, we
have 〈[ϕ], [e]〉 = 〈[ϕ], [ueu−1]〉. It again suffices to show this for k = 1. But this
is exactly the fact, proved in Section 3.7, that inner automorphisms act by the
identity on cyclic cohomology. Formula (4.5) can be easily seen to be additive in
[e] under the direct sum e ⊕ f of idempotents. This shows that the pairing (4.4)
is well defined.

Proposition 4.1.1. For any cyclic cocycle ϕ ∈ Z2n
λ (A) and idempotent e ∈Mk(A)

we have
〈[ϕ], [e]〉 = 〈S[ϕ], [e]〉.

Proof. Without loss of generality we can assume that k = 1. Using our explicit
formula (3.29) for the S-operator, we have

S[ϕ] = (2n+ 1)(2n+ 2)[b(1− λ)−1b′N−1ϕ],

where N−1ϕ = 1
2n+1ϕ (since ϕ is cyclic), and

(1− λ)−1b′ϕ =
−1

2n+ 2
(1 + 2λ+ 3λ2 + · · ·+ (2n+ 2)λ2n+1)b′ϕ.

Thus we have

Sϕ(e, . . . , e) = −b(1 + 2λ+ 3λ2 + · · ·+ (2n+ 2)λ2n+1)b′ϕ(e, . . . , e)

= (n+ 1)b′ϕ(e, . . . , e)

= (n+ 1)ϕ(e, . . . , e).

Now we have

〈S[ϕ], [e]〉 =
1

(n+ 1)!
(Sϕ)(e, . . . , e) =

1

n!
ϕ(e, . . . , e) = 〈[ϕ], [e]〉.

Example 4.1.1 (n = 0). HC0(A) is the space of traces on A. Therefore the
Connes–Chern pairing for n = 0 reduces to a map

{traces on A} ×K0(A)→ C,
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〈τ, [e]〉 =

k∑
i=1

τ(eii),

where e = [eij ] ∈ Mk(A) is an idempotent. The induced function on K0(A)
is called the dimension function and denoted by dimτ . This terminology is sug-
gested by the commutative case. In fact if X is a compact connected topological
space, then τ(f) = f(x0), x0 ∈ X, defines a trace on C(X), and for a vector
bundle E on X, dimτ (E) is the rank of the vector bundle E and is an integer.
One of the striking features of noncommutative geometry is the existence of non-
commutative vector bundles with non-integral dimensions. A beautiful example of
this phenomenon is shown is Example 1.2.3 through the Powers–Rieffel projection
e ∈ Aθ with τ(e) = θ, where τ is the canonical trace on the noncommutative torus
(cf. also [41]).

Here is a slightly different approach to this dimension function. Let E be a finite
projective right A-module. A trace τ on A induces a trace on the endomorphism
algebra of E,

Tr : EndA(E)→ C
as follows. First assume that E = An is a free module. Then EndA(E) 'Mn(A)
and our trace map is defined by

Tr(ai,j) =
∑
i

aii.

It is easy to check that the above map is a trace. In general, there is an A-module
F such that E⊕F ' An is a free module and EndA(E) embeds in Mn(A). One can
check that the induced trace on EndA(E) is independent of the choice of splitting.
Now, from our description of Tr in terms of τ , it is clear that

〈τ, [E]〉 = dimτ (E) = Tr(idE)

for any finite projective A-module E.
The topological information hidden in an idempotent is much more subtle than

just its ‘rank’, as two idempotents, say vector bundles, can have the same rank
but still be non-isomorphic. In fact traces can only capture the 0-dimensional
information. To know more about idempotents and K-theory we need the higher
dimensional analogues of traces, which are cyclic cocycles, and the pairing (4.5).

As we saw in Section 3.8 cyclic cocycles can also be realized in the (b, B)-
bicomplex picture of cyclic cohomology. Given an even cocycle

ϕ = (ϕ0, ϕ2, . . . , ϕ2n)

in the (b, B)-bicomplex, its pairing with an idempotent e ∈ Mk(A) can be shown
to be given by

〈[ϕ], [e]〉 =

n∑
k=1

(−1)k
k!

(2k)!
ϕ2k

(
e− 1

2
, e, . . . , e

)
(4.6)
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(cf. Exercise 4.1.2).

When A is a Banach (or at least a suitable topological) algebra, to verify that
the pairing (4.5) is well defined, it suffices to check that for a smooth family of
idempotents et, 0 ≤ t ≤ 1, ϕ(et, . . . , et) is constant in t. There is an alternative
“infinitesimal proof” of this fact which is worth recording [41]:

Lemma 4.1.3. Let et, 0 ≤ t ≤ 1, be a smooth family of idempotents in a Banach
algebra A. There exists a smooth family xt, 0 ≤ t ≤ 1, of elements of A such that

.
et :=

d

dt
(et) = [xt, et] for 0 ≤ t ≤ 1.

Proof. Let

xt = [
.
et, et] =

.
etet − et

.
et.

Differentiating the idempotent condition e2
t = et with respect to t we obtain

d

dt
(e2
t ) =

.
etet + et

.
et =

.
et.

Multiplying this last relation on the left by et yields

et
.
etet = 0.

Now we have

[xt, et] = [
.
etet − et

.
et, et] =

.
etet + et

.
et =

.
et.

It follows that if τ : A→ C is a trace (= a cyclic zero cocycle), then

d

dt
〈τ, et〉 =

d

dt
τ(et) = τ(

.
et) = τ([xt, et]) = 0.

Hence the value of the pairing, for a fixed τ , depends only on the homotopy class
of the idempotent. This shows that the pairing

{traces on A} ×K0(A)→ C

is well defined.

This is generalized in

Lemma 4.1.4. Let ϕ(a0, . . . , a2n) be a cyclic 2n-cocycle on A and let et be a
smooth family of idempotents in A. Then the number

〈[ϕ], [et]〉 = ϕ(et, . . . , et)

is constant in t.
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Proof. Differentiating with respect to t and using the above lemma, we obtain

d

dt
ϕ(et, . . . , et) = ϕ(

.
et, . . . , et) + ϕ(et,

.
et, . . . , et) + · · ·

· · ·+ ϕ(et, . . . , et,
.
et)

=

2n∑
i=0

ϕ(et, . . . , [xt, et], . . . , et)

= Lxtϕ(et, . . . , et).

We saw in Section 3.7 that inner derivations act trivially on Hochschild and cyclic
cohomology. This means that for each t there is a cyclic (2n− 1)-cochain ψt such
that the Lie derivative Lxtϕ = bψt. We then have

d

dt
ϕ(et, . . . , et) = (bψt)(et, . . . , et) = 0.

The formulas in the odd case are as follows. Given an invertible matrix u ∈
Mk(A), representing a class in Kalg

1 (A), and an odd cyclic (2n − 1)-cocycle ϕ on
A, we define

〈[ϕ], [u]〉 :=
2−(2n+1)

(n− 1
2 ) . . . 1

2

ϕ̃(u−1 − 1, u− 1, . . . , u−1 − 1, u− 1), (4.7)

where the cyclic cocycle ϕ̃ is defined in (4.3). As we saw in Section 3.7, any cyclic
cocycle can be represented by a normalized cocycle for which ϕ(a0, . . . , a1) = 0 if
ai = 1 for some i. When ϕ is normalized, formula (4.7) reduces to

〈[ϕ], [u]〉 =
2−(2n+1)

(n− 1
2 ) . . . 1

2

ϕ̃(u−1, u, . . . , u−1, u) (4.8)

As in the even case, the induced pairing HC2n+1(A) ⊗Kalg
1 (A) → C is com-

patible with the periodicity operator: for any odd cyclic cocycle ϕ ∈ Z2n+1
λ (A)

and an invertible u ∈ GLk(A), we have

〈[ϕ], [u]〉 = 〈S[ϕ], [u]〉.

These pairings are just manifestations of perhaps more fundamental maps that
define the even and odd Connes–Chern characters

Ch2n
0 : K0(A)→ HC2n(A),

Ch2n+1
1 : K1(A)→ HC2n+1(A),
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as we describe them now. In the even case, given an idempotent e = (eij) ∈Mk(A),
we define for each n ≥ 0,

Ch2n
0 (e) = (n!)−1 Tr(e⊗ e⊗ · · · ⊗ e︸ ︷︷ ︸

2n+1

)

=
∑

i0,i1,...,i2n

ei0i1 ⊗ ei1i2 ⊗ · · · ⊗ ei2ni0 ,
(4.9)

where on the right-hand side the class of the tensor in A⊗(2n+1)/ Im(1 − λ) is
understood. In low dimensions we have

Ch0
0(e) =

k∑
i=1

eii,

Ch2
0(e) =

k∑
i0=1

k∑
i1=1

k∑
i2=1

ei0i1 ⊗ ei1i2 ⊗ ei2i0 ,

etc. To check that Ch2n
0 (e) is actually a cycle, notice that

b(Ch2n
0 (e)) =

1

2
(1− λ) Tr(e⊗ · · · ⊗ e︸ ︷︷ ︸

2n

),

which shows its class is zero in the quotient.
In the odd case, given an invertible matrix u ∈Mk(A), we define

Ch2n+1
1 ([u]) = Tr((u−1 − 1)⊗ (u− 1)⊗ · · · ⊗ (u−1 − 1)⊗ (u− 1)︸ ︷︷ ︸

2n+2

).

Example 4.1.2. Let A = C∞(S1) denote the algebra of smooth complex-valued
functions on the circle. One knows that K1(A) ' K1(S1) ' Z and u(z) = z is a
generator of this group. Let

ϕ(f0, f1) =

∫
S1

f0 df1

denote the cyclic cocycle on A representing the fundamental class of S1 in de Rham
homology. Notice that this is a normalized cocycle since ϕ(1, f) = ϕ(f, 1) = 0 for
all f ∈ A. We have

〈[ϕ], [u]〉 = ϕ(u, u−1) =

∫
S1

u du−1 = −2πi.

Alternatively, the Connes–Chern character

Ch1
1([u]) = u⊗ u−1 ∈ HC1(A) ' H1

dR(S1)

is the class of the differential form ω = z−1dz, representing the fundamental class
of S1 in de Rham cohomology.
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Example 4.1.3. Let A = C∞(S2) and let e ∈ M2(A) denote the idempotent
representing the Hopf line bundle on S2:

e =
1

2

(
1 + x3 x1 + ix2

x1 − ix2 1− x3

)
.

Let us check that under the map

HC2(A)→ Ω2S2, a0 ⊗ a1 ⊗ a2 7→ a0da1da2,

the Connes–Chern character of e corresponds to the fundamental class of S2. We
have

Ch2
0(e) = Tr(e⊗ e⊗ e) 7→ Tr(edede)

=
1

8
Tr

(
1 + x3 x1 + ix2

x1 − ix2 1− x3

)(
dx3 dx1 + idx2

dx1 − idx2 −dx3

)
·
(

dx3 dx1 + idx2

dx1 − idx2 −dx3

)
.

Performing the computation one obtains

Ch2
0(e) 7→ −i

2
(x1dx2dx3 − x2dx1dx3 + x3dx1dx2).

One can then integrate this 2-form on the two-sphere S2. The result is −2πi.
Notice that for the unit of the algebra 1 ∈ A, representing the trivial rank one line
bundle on S2, we have Ch0

0(1) = 1 and Ch2n
0 (1) = 0 for all n > 0. Thus e and

1 represent different K-theory classes in K0(A). A fact which cannot be proved
using just Ch0

0(e) = Tr(e) = 1.

Example 4.1.4. For smooth commutative algebras, the noncommutative Chern
character reduces to the classical Chern character. We verify this only in the
even case. The verification hinges on two things: the Chern–Weil approach to
characteristic classes via connections and curvatures, and the general fact, valid
even in the noncommutative case, that an idempotent e ∈ Mn(A) is more than
just a (noncommutative) vector bundle as it carries with it a god-given connection:

idempotent = noncommutative vector bundle + connection

Let X be a smooth closed manifold, A = C∞(X), and let Ω•X denote the de Rham
complex of X. The alternative definition of the classical Chern character Ch, called
the Chern–Weil theory, uses the differential geometric notions of connection and
curvature on vector bundles as we briefly recall now [138]. Let E be a complex
vector bundle on X and let ∇ be a connection on E. Thus by definition,

∇ : C∞(E)→ C∞(E)⊗A Ω1X
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is a C-linear map satisfying the Leibniz rule

∇(fξ) = f∇(ξ) + ξ ⊗ df

for all smooth sections ξ of E and smooth functions f on X. Let

∇̂ : C∞(E)⊗A Ω•X → C∞(E)⊗A Ω•+1X

denote the natural extension of ∇ to E-valued differential forms. It is uniquely
defined by virtue of the graded Leibniz rule

∇̂(ξω) = ∇̂(ξ)ω + (−1)deg ξξdω

for all ξ ∈ C∞(E)⊗A Ω•X and ω ∈ Ω•X. The curvature of ∇ is the operator

∇̂2 ∈ EndΩ•X(C∞(E)⊗A Ω•X) = C∞(End(E))⊗ Ω•X,

which can be easily checked to be ΩX-linear. Thus it is completely determined by
its restriction to C∞(E). This gives us the curvature form of ∇ as a ‘matrix-valued
2-form’

R ∈ C∞(End(E))⊗ Ω2X.

Let
Tr: C∞(End(E))⊗A ΩevX → ΩevX

denote the canonical trace. The Chern character of E is then defined to be the
class of the non-homogeneous even form

Ch(E) = Tr(eR).

(We have omitted the normalization factor of 1
2πi to be multiplied by R.) One

shows that Ch(E) is a closed form and that its cohomology class is independent
of the choice of connection.

Now let e ∈ Mn(C∞(X)) be an idempotent representing the smooth vector
bundle E on X. Smooth sections of E are in one-to-one correspondence with
smooth map ξ : X → Cn such that eξ = ξ. One can check that the following
formula defines a connection on E, called the Levi-Civita or Grassmannian con-
nection:

∇(ξ) = edξ ∈ C∞(E)⊗A Ω1X.

Computing the curvature form, we obtain

R(ξ) = ∇̂2(ξ) = ed(edξ) = ededξ.

Differentiating the relation ξ = eξ, we obtain dξ = (de)ξ + edξ. Also, by differen-
tiating the relation e2 = e, we obtain ede · e = 0. If we use these two relations in
the above formula for R, we obtain

R(ξ) = ededeξ,
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and hence the following formula for the matrix valued curvature 2-form R:

R = edede.

Using ede · e = 0, we can easily compute powers of R. They are given by

Rn = (edede)n = e dede . . . dede︸ ︷︷ ︸
2n

.

The classical Chern–Weil formula for the Chern character Ch(E) is

Ch(E) = Tr(eR) = Tr
(∑
n≥0

Rn

n!

)
∈ Ωeven(X),

so that its n-th component is given by

Tr
Rn

n!
=

1

n!
Tr((edede)n) =

1

n!
Tr(ede . . . de) ∈ Ω2nX.

The Connes–Chern character of e defined in (4.9) is

Ch2n
0 (e) := (n!)−1 Tr(e⊗ · · · ⊗ e).

We see that under the canonical map

HC2n(A)→ H2n
dR(M), a0 ⊗ · · · ⊗ a2n 7→ a0da1 . . . da2n,

Ch2n
0 (e) is mapped to the component of Ch(E) of degree 2n.

Example 4.1.5 (Noncommutative Chern–Weil theory). It may happen that an
element of K0(A) is represented by a finite projective module, rather than by an
explicit idempotent. It is then important to have a formalism that would give the
value of its pairing with cyclic cocycles. This is in fact possible and is based on a
noncommutative version of Chern–Weil theory developed by Connes in [35], [39]
that we sketch next.

Let A be an algebra. By a noncommutative differential calculus on A we mean
a triple (Ω, d, ρ) such that (Ω, d) is a differential graded algebra and ρ : A → Ω0

is an algebra homomorphism. Thus

Ω = Ω0 ⊕ Ω1 ⊕ Ω1 ⊕ Ω2 ⊕ · · ·

is a graded algebra, and we assume that the differential d : Ωi → Ωi+1 increases
the degree, and d is a graded derivation in the sense that

d(ω1ω2) = d(ω1)ω2 + (−1)deg(ω1)ω1d(ω2) and d2 = 0.

Given a differential calculus on A and a right A-module E , a connection on E
is a C-linear map

∇ : E → E ⊗A Ω1
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satisfying the Leibniz rule

∇(ξa) = ∇(ξ)a+ ξ ⊗ da

for all ξ ∈ E and a ∈ A.
Let

∇̂ : E ⊗A Ω• → E ⊗A Ω•+1

be the (necessarily unique) extension of ∇ which satisfies the graded Leibniz rule

∇̂(ξω) = ∇̂(ξ)ω + (−1)deg ξξdω

with respect to the right Ω-module structure on E ⊗A Ω. It is defined by

∇̂(ξ ⊗ ω) = ∇(ξ)ω + (−1)degωξ ⊗ dω.

The curvature of ∇ is the operator ∇̂2 : E ⊗A Ω• → E ⊗A Ω•, which can be
easily checked to be Ω-linear:

∇̂2 ∈ EndΩ(E ⊗A Ω) = EndA(E)⊗ Ω.

Let
∫

: Ω2n → C be a closed graded trace representing a cyclic 2n-cocycle ϕ
on A (cf. Definition 3.6.4). Now since E is finite projective over A it follows that
E ⊗A Ω is finite projective over Ω and therefore the trace

∫
: Ω → C extends to

a trace, denoted again by
∫

, on EndA(E) ⊗ Ω. The following result of Connes
relates the value of the pairing as defined above to its value computed through the
Chern–Weil formalism:

〈[ϕ], [E ]〉 =
1

n!

∫
∇̂2n

The next example is a concrete illustration of this method.

Example 4.1.6. Let E = S(R) denote the Schwartz space of rapidly decreasing
functions on the real line. The operators

(ξ · U)(x) = ξ(x+ θ), (ξ · V )(x) = e2πixξ(x)

turn S(R) into a right Aθ-module for all ξ ∈ S(R). It is the simplest of a series
of modules Ep,q on the noncommutative torus, defined by Connes in [35]. It turns
out that E is finite projective, and for the canonical trace τ on Aθ we have

〈τ, E〉 = −θ.

In Example 3.6.4 we defined a differential calculus, in fact a 2-cycle, on Aθ. It is
easy to see that a connection on ∇ : E → E ⊗A Ω1 with respect to this calculus
is simply given by a pair of operators ∇1,∇2 : E → E (‘covariant derivatives’ with
respect to noncommutative vector fields δ1 and δ2) satisfying

∇j(ξa) = (∇jξ)a+ ξδj(a), j = 0, 1,
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for all ξ ∈ E and a ∈ Aθ.
One can now check that the following formulae define a connection on E [35],

[41]:

∇1(ξ)(s) = −s
θ
ξ(s), ∇2(ξ)(s) =

dξ

ds
(s).

The curvature of this connection is constant and is given by

∇2 = [∇1, ∇2] =
1

θ
id ∈ EndAθ (E).

Exercise 4.1.1. Let E be a finite projective rightA-module. Show that EndA(E) '
E ⊗A E∗ where A∗ = HomA(E,A). The canonical pairing E ⊗A E∗ → A defined
by ξ ⊗ f 7→ f(ξ) induces a map EndA(E)→ A/[A,A] = HC0(A). In particular if
τ : A → C is a trace on A, the induced trace on EndA(E) is simply obtained by
composing τ with the canonical pairing between E and E∗.

Exercise 4.1.2. Verify that under the natural quasi-isomorphism between (b, B)
and cyclic complexes, formula (4.6) corresponds to (4.5).

Exercise 4.1.3. Show that a right A-module E admits a connection with respect
to the universal differential calculus (ΩA, d), if and only if E is projective.

4.2 Connes–Chern character in K-homology

By K-homology for spaces we mean the theory which is dual to topological K-
theory. While such a theory can be constructed using general techniques of al-
gebraic topology, a beautiful and novel idea of Atiyah [6] (in the even case), and
Brown–Douglas–Fillmore [22] (in the odd case) was to use techniques of index
theory, functional analysis and operator algebras to define a K-homology theory
(cf. also [9]). What is even more interesting is that the resulting theory can be
extended to noncommutative algebras and pairs with K-theory. This extension,
in full generality, then paved the way for Kasparov’s bivariant KK-theory which
unifies both K-theory and K-homology into a single bivariant theory (cf. [106]
and [14]). Unfortunately the name K-homology is used even when one is dealing
with algebras, despite the fact that the resulting functor is in fact contravariant
for algebras, while K-theory for algebras is covariant. We hope this will cause no
confusion for the reader.

To motivate the discussions, we start this section by recalling the notion of an
abstract elliptic operator over a compact space [6]. This will then be extended to
the noncommutative setting by introducing the notion of an, even or odd, Fredholm
module over an algebra [39]. The Connes–Chern character of a Fredholm module is
introduced next. We shall then define the index pairing between K-theory and K-
homology, which indicates the sense in which these theories are dual to each other.
The final result of this section is an index formula of Connes which computes the
index pairing in terms of Connes–Chern characters for K-theory and K-homology.
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Let X be a compact Hausdorff space. The even cycles for Atiyah’s theory in [6]
are abstract elliptic operators (H, F ) over C(X). This means that H = H+⊕H−
is a Z2-graded Hilbert space, π : C(X)→ L(H) with

π(a) =

(
π+(a) 0

0 π−(a)

)
is an even representation of C(X) in the algebra of bounded operators on H, and
F : H → H with

F =

(
0 Q
P 0

)
(4.10)

is an odd bounded operator with F 2 − I ∈ K(H) being compact. This data must
satisfy the crucial condition

[F, π(a)] ∈ K(H)

for all a ∈ C(X). We shall make no attempt at turning these cycles into a homology
theory. Suffice it to say that the homology theory is defined as the quotient of the
set of these cycles by a homotopy equivalence relation (cf. [96], [63] for a recent
account).

When X is a smooth closed manifold, the main examples of abstract elliptic
operators in the above sense are given by elliptic pseudodifferential operators of
order 0, D : C∞(E+) → C∞(E−) acting between sections of vector bundles E+

and E− on X. Let P : H+ → H− denote the natural extension of D to a bounded
operator where H+ = L2(E+) and H− = L2(E−), and let Q : H− → H+ denote
a parametrix of P . Define F by (4.10). Then with C(X) acting as multiplication
operators on H+ and H−, basic elliptic theory shows that (H, F ) is an elliptic
operator in the above sense on C(X).

If e ∈ Mn(C(X)) is an idempotent representing a vector bundle on X, then
the formula

〈(H, F ) , [e]〉 := indexF+
e

with the Fredholm operator F+
e := eFe : eH+ → eH− can be shown to define a

pairing between the K-theory of X and abstract elliptic operators on X. This is
the duality between K-homology and K-theory.

A modification of the above notion of abstract elliptic operator, which makes
sense over noncommutative algebras, both in the even and odd case, is the following
notion of Fredholm module in [39] which is an important variation of a related
notion from [6], [22], [107] (cf. the remark below).

Definition 4.2.1. An odd Fredholm module over an algebra A is a pair (H, F )
where

1) H is a Hilbert space endowed with a representation

π : A→ L(H);

2) F ∈ L(H) is a bounded selfadjoint operator with F 2 = I;
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3) for all a ∈ A we have

[F, π(a)] = Fπ(a)− π(a)F ∈ K(H). (4.11)

For 1 ≤ p <∞, let Lp(H) denote the Schatten ideal of p-summable operators.
A Fredholm module (H, F ) is called p-summable if, instead of (4.11), we have the
stronger condition:

[F, π(a)] ∈ Lp(H) (4.12)

for all a ∈ A. Since Lp(H) ⊂ Lq(H) for p ≤ q, a p-summable Fredholm module is
clearly q-summable for all q ≥ p.

Definition 4.2.2. An even Fredholm module over an algebraA is a triple (H, F, γ)
such that (H, F ) is a Fredholm module over A in the sense of the above definition
and γ : H → H is a bounded selfadjoint operator with γ2 = I and such that

Fγ = −γF, π(a)γ = γπ(a) (4.13)

for all a ∈ A.

Let H+ and H− denote the +1 and −1 eigenspaces of γ. They define an
orthogonal decomposition H = H+ ⊕ H−. With respect to this decomposition,
equations (4.13) are equivalent to saying that π is an even representation and F
is an odd operator, so that we can write

π(a) =

(
π+(a) 0

0 π−(a)

)
and F =

(
0 Q
P 0

)
,

where π+ and π− are representations of A onH+ andH−, respectively. The notion
of a p-summable even Fredholm module is defined as in the odd case above.

Remark 8. Notice that in the preceding example with F defined by (4.10), and in
general in [6], [22], [107], the condition F 2 = I for a Fredholm module only holds
modulo compact operators. Similarly for the two equalities in equation (4.13). It
is shown in [41] that with simple modifications one can replace such (H,F ) by an
equivalent Fredholm module in which these equations, except (4.11), hold exactly.
The point is that as far as pairing with K-theory is concerned the set up in [6],
[22], [107] is enough. It is for the definition of the Chern character and pairing
with cyclic cohomology that one needs the exact equalities F 2 = I and (4.13), as
well as the finite summability assumption (4.12).

Example 4.2.1. Let A = C(S1) (S1 = R/Z) act on H = L2(S1) as multiplication
operators. Let F (en) = en if n ≥ 0 and F (en) = −en for n < 0, where en(x) =
e2πinx, n ∈ Z, denotes the standard basis of H. Clearly F is selfadjoint and
F 2 = I. To show that [F, π(f)] is a compact operator for all f ∈ C(S1), notice
that if f =

∑
|n|≤N anen is a finite trigonometric sum then [F, π(f)] is a finite

rank operator and hence is compact. In general we can uniformly approximate
a continuous function by a trigonometric sum and show that the commutator is
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compact for any continuous f . This shows that (H, F ) is an odd Fredholm module
over C(S1).

This Fredholm module is not p-summable for any 1 ≤ p <∞. If we restrict it
to the subalgebra C∞(S1) of smooth functions, then it can be checked that (H, F )
is in fact p-summable for all p > 1, but is not 1-summable even in this case.

Let (H, F ) be an odd p-summable Fredholm module over an algebra A and let
n be an integer such that 2n ≥ p. To simplify the notation, from now on in our
formulae the operator π(a) will be denoted by a. Thus an expression like a0[F, a1]
stands for the operator π(a0)[F, π(a1)], etc. We define a (2n− 1)-cochain on A by

ϕ2n−1(a0, a1, . . . , a2n−1) = Tr(F [F, a0][F, a1] . . . [F, a2n−1]) (4.14)

where Tr denotes the operator trace. Notice that by our p-summability assump-
tion, each commutator is in Lp(H) and hence, by Hölder inequality for Schatten
class operators (cf. Appendix B), their product is in fact a trace class operator as
soon as 2n ≥ p.

Proposition 4.2.1. ϕ2n−1 is a cyclic (2n− 1)-cocycle on A.

Proof. For a ∈ A, let da := [F, a]. The following relations are easily established:
for all a, b ∈ A we have

d(ab) = ad(b) + da · b and Fda = −da · F (4.15)

Notice that for the second relation the assumption F 2 = 1 is essential. Now ϕ2n−1

can be written as

ϕ2n−1(a0, a1, . . . , a2n−1) = Tr(Fda0da1 . . . da2n−1),

and therefore

(bϕ2n−1)(a0, . . . , a2n) = Tr
( 2n∑
i=0

(−1)iFda0 . . . d(aidai+1) . . . da2n

)
+ (−1)2n+1 Tr(Fd(a2na0)da1 . . . da2n−1).

Using the derivation property of d, we see that most of the terms cancel and we
are left with just four terms

= Tr(Fa0da1 . . . da2n)− Tr(Fda0 . . . da2n−1a2n)

+ Tr(Fa2nda0 . . . da2n−1) + Tr(Fda2na0da1 . . . da2n−1).

Using the relation Fda = −da · F and the trace property of Tr we see that the
second and third terms cancel. By the same argument the first and last terms
cancel as well. This shows that ϕ2n−1 is a Hochschild cocycle.
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To check the cyclic property of ϕ2n−1, again using the relation Fda = −da ·F ,
and the trace property of Tr, we have

ϕ2n−1(a2n−1, a0, . . . , a2n−2) = Tr(Fda2n−1da0 . . . da2n−2)

= −Tr(da2n−1Fda0 . . . da2n−2)

= −Tr(Fda0 . . . da2n−2da2n−1)

= −ϕ2n−1(a0, . . . , a2n−2, a2n−1). 2

Notice that if 2n ≥ p− 1, then the cyclic cocycle (4.14) can be written as

ϕ2n−1(a0, a1, . . . , a2n−1) = 2 Tr(a0[F, a1] . . . [F, a2n−1])

= 2 Tr(a0da1 . . . da2n−1)

which looks remarkably like a noncommutative analogue of the integral∫
M

f0 df1 . . . df2n−1.

Now the products [F, a0][F, a1] . . . [F, a2m−1] are trace class for all m ≥ n.
Therefore we obtain a sequence of odd cyclic cocycles

ϕ2m−1(a0, a1, . . . , a2m−1) = Tr(F [F, a0][F, a1] . . . [F, a2m−1]), m ≥ n.

The next proposition shows that these cyclic cocycles are related to each other via
the periodicity S-operator of cyclic cohomology:

Proposition 4.2.2. For all m ≥ n we have

Sϕ2m−1 = −
(
m+

1

2

)
ϕ2m+1.

Proof. Let us define a 2m-cochain ψ2m on A by the formula

ψ2m(a0, a1, . . . , a2m) = Tr(Fa0da1 . . . da2m).

We claim that

Bψ2m = (2m)ϕ2m−1 and bψ2m = −1

2
ϕ2m+1.

In fact, we have Bψ2m = NB0ψ2m, where

B0ψ2m(a0, . . . , a2m−1) = ψ2m(1, a0, . . . , a2m−1)

− (−1)2m−1ψ2m(a0, . . . , a2m−1, 1)

= Tr(Fda0 . . . da2m−1),
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and hence

(NB0)ψ2m(a0, . . . , a2m−1) = Tr(Fda0 . . . da2m−1)− Tr(Fda2m−1da0 . . . da2m−2)

+ · · · − Tr(Fda1 . . . da0)

= (2m) Tr(Fda0 . . . da2m−1)

= (2m)ϕ2m−1(a0, . . . , a2m−1)

and

(bψ2m)(a0, . . . , a2m+1) = Tr(Fa0a1da2 . . . da2m+1)−Tr(Fa0d(a1a2) . . . da2m+1)

+ · · ·+ Tr(Fa0da1 . . . d(a2ma2m+1))

− Tr(Fa2m+1a0da1 . . . da2m).

After cancelations, only two terms remain which can be collected into a single
term:

= Tr(Fa0da1 . . . da2m · a2m+1)− Tr(Fa2m+1a0da1 . . . da2m)

= −1

2
Tr(Fda0da1 . . . da2m+1)

= −1

2
ϕ2m+1(a0, . . . , a2m+1).

The above computation shows that

bB−1ϕ2m−1 = − 1

2(2m)
ϕ2m+1.

Now using formula (3.29) for the operator S, we have

Sϕ2m−1 = (2m)(2m+ 1)bB−1ϕ2m−1 = −
(
m+

1

2

)
ϕ2m+1.

The odd Connes–Chern characters Ch2m−1 = Ch2m−1(H, F ), are defined by
rescaling the cocycles ϕ2m−1 appropriately. Let

Ch2m−1(a0, . . . , a2m−1)

:= (−1)m2

(
m− 1

2

)
. . .

1

2
Tr(F [F, a0][F, a1] . . . [F, a2m−1]).

The following is an immediate corollary of the above proposition:

Corollary 4.2.1. We have

S(Ch2m−1) = Ch2m+1 for all m ≥ n.

Definition 4.2.3. The Connes–Chern character of an odd p-summable Fredholm
module (H,F ) over an algebra A is the class of the cyclic cocycle Ch2m−1 in the
odd periodic cyclic cohomology group HP odd(A).
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By the above corollary, the class of Ch2m−1 in HP odd(A) is independent of the
choice of m.

Example 4.2.2. Let us compute the character of the Fredholm module of Ex-
ample 4.2.1 with A = C∞(S1). By the above definition, Ch1(H, F ) = [ϕ1] is the
class of the following cyclic 1-cocycle in HP odd(A):

ϕ1(f0, f1) = Tr(F [F, f0][F, f1]),

and the question is if we can identify this cocycle with some local formula. We
claim that

Tr(F [F, f0][F, f1]) =
4

2πi

∫
f0 df1 for all f0, f1 ∈ A.

To verify the claim, it suffices to check it for the basis elements f0 = em, f1 = en
for all m,n ∈ Z. The right-hand side is easily computed:

4

2πi

∫
em den =

{
0 if m+ n 6= 0,

4n if m+ n = 0.

To compute the left-hand side, notice that

[F, en](ek) =


0 if k ≥ 0, n+ k ≥ 0,

−2en+k if k ≥ 0, n+ k < 0,

2en+k if k < 0, n+ k ≥ 0,

0 if k < 0, n+ k < 0.

From this we conclude that Fem[F, en] = 0 if m+n 6= 0. To compute the operator
trace for m+ n = 0, we use the formula Tr(T ) =

∑
k〈T (ek), ek〉 for the trace of a

trace class operator T . Using the above information we have

F [F, e−n][F, en](ek) =


0 if k ≥ 0, n+ k ≥ 0,

4ek if k ≥ 0, n+ k < 0,

4ek if k < 0, n+ k ≥ 0,

0 if k < 0, n+ k < 0,

from which we readily obtain

Tr(F [F, e−n][F, en]) = 4n for all n ∈ Z.

This finishes the proof.

Next we turn to the even case. Let (H, F, γ) be an even p-summable Fredholm
module over an algebra A and let n be an integer such that 2n+ 1 ≥ p. Define a
2n-cochain on A by the formula

ϕ2n(a0, a1, . . . , a2n) = Tr(γF [F, a0][F, a1] . . . [F, a2n]). (4.16)
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Proposition 4.2.3. ϕ2n is a cyclic 2n-cocycle on A.

Proof. The proof is similar to the odd case and is left to the reader. Apart from
relations (4.15), one needs the auxiliary relation γ da = −da γ for the proof as
well.

Notice that if we have the stronger condition 2n ≥ p, then the cyclic cocycle
(4.16) can be written as

ϕ2n(a0, a1, . . . , a2n) = Tr(γa0[F, a1] . . . [F, a2n])

= Tr(γa0da1 . . . da2n).

As in the odd case, we obtain a sequence of even cyclic cocycles ϕ2m, defined
by

ϕ2m(a0, a1, . . . , a2m) = Tr(γF [F, a0][F, a1] . . . [F, a2m]), m ≥ n.

Proposition 4.2.4. For all m ≥ n we have

Sϕ2m = −(m+ 1)ϕ2m+2.

Proof. Define a (2m+ 1)-cochain ψ2m+1 on A by the formula

ψ2m+1(a0, a1, . . . , a2m+1) = Tr(γ Fa0da1 . . . da2m+1).

The following relations can be proved as in the odd case:

Bψ2m+1 = (2m+ 1)ϕ2m and bψ2m+1 = −1

2
ϕ2m+2.

It shows that

bB−1ϕ2m = − 1

2(2m+ 1)
ϕ2m+2,

so that using formula (3.29) for the operator S we obtain

Sϕ2m = (2m+ 1)(2m+ 2)bB−1ϕ2m = −(m+ 1)ϕ2m+2.

The even Connes–Chern characters Ch2m = Ch2m(H, F, γ) are now defined
by rescaling the even cyclic cocycles ϕ2m:

Ch2m(a0, a1, . . . , a2m) := (−1)mm!
2 Tr(γF [F, a0][F, a1] . . . [F, a2m]) (4.17)

The following is an immediate corollary of the above proposition:

Corollary 4.2.2. We have

S(Ch2m) = Ch2m+2 for all m ≥ n.
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Definition 4.2.4. The Connes–Chern character of an even p-summable Fredholm
module (H, F, γ) over an algebra A is the class of the cyclic cocycle Ch2m(H, F, γ)
in the even periodic cyclic cohomology group HP even(A).

By the above corollary, the class of Ch2m in HP even(A) is independent of m.

Example 4.2.3 (A noncommutative example). Following [39], we construct an
even Fredholm module over A = C∗r (F2), the reduced group C∗-algebra of the free
group on two generators. This Fredholm module is not p-summable for any p, but
by restricting it to a properly defined dense subalgebra of A (which plays the role
of ‘smooth functions’ on the underlying noncommutative space), we shall obtain
a 1-summable Fredholm. We shall also identify the character of this 1-summable
module. It is known that a group is free if and only if it has a free action on a
tree. Let then T be a tree with a free action of F2, and let T 0 and T 1 denote the
set of vertices and 1-simplices of T , respectively. Let

H+ = `2(T 0) and H− = `2(T 1)⊕ C,

and let the canonical basis of `2(T 0) (resp. `2(T 1)) be denoted by εq, q ∈ T 0 (resp.
q ∈ T 1). Fixing a vertex p ∈ T 0, we can define a one-to-one correspondence

ϕ : T 0 − {p} → T 1

by sending q ∈ T 0 − {p} to the unique 1-simplex containing q and lying between
p and q. This defines a unitary operator P : H+ → H− by

P (εq) = εϕ(q) if q 6= p, and P (εp) = (0, 1).

The action of F2 on T 0 and T 1 induces representations of C∗r (F2) on `2(T 0) and
`2(T 1) and on H− = `2(T 1) ⊕ C by the formula a(ξ, λ) = (aξ, 0). Let H =
H+ ⊕H− and

F =

(
0 P−1

P 0

)
, γ =

(
1 0
0 −1

)
.

To check that (H, F, γ) is a Fredholm module over A we need to verify that
[F, a] ∈ K(H) for all a ∈ C∗r (F2). Since the group algebra CF2 is dense in C∗r (F2),
it suffices to check that for all a = g ∈ F2, the commutator [F, g] is a finite rank
operator. This in turn is a consequence of the easily established fact that for all
g ∈ F2,

ϕ(gq) = gϕ(q) for all q 6= g−1p.

In fact, for q ∈ T 0 we have

[F, g](εq) = F (εgq)− gF (εq) = εϕ(gq) − εgϕ(q) = 0

if q 6= g−1p, and [F, g](εg−1p) = (0, 1) − gεϕ(g−1p). A similar argument works for
the basis elements εq, q ∈ T 1. This shows that [F, g] is a rank one operator.

Let
A = {a ∈ A; [F, a] ∈ L1(H)}.
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Using the relation [F, ab] = a[F, b]+ [F, a]b, it is clear that A is a subalgebra of A.
It is also dense in A as it contains the group algebra CF2. Though we do not need
it now, it can also be shown that A is stable under holomorphic functional calculus
and in particular the inclusion A ⊂ A induces an isomorphism K0(A) → K0(A)
in K-theory (cf. Section 4.3 for more on this). By its very definition, we now have
an even 1-summable Fredholm module (H,F, γ) over A and it remains to compute
its character. Let τ : A→ C denote the canonical trace on A. We claim that

1

2
Tr(γF [F, a]) = τ(a) for all a ∈ A, (4.18)

so that
Ch(H,F, γ)(a) = τ(a).

To verify the claim, notice that

γF [F, a] =

[
a− P−1aP 0

0 −a+ PaP−1

]
,

so that
1

2
Tr(γF [F, a]) = Tr(a− P−1aP ).

Now for the operator a− P−1aP : H+ → H+ we have

〈aεq, εq〉 = τ(a) for all q ∈ T 0,

and
〈(P−1aP )(εp), εp〉 = 0 and 〈(P−1aP )(εq), εq〉 = τ(a)

for all q 6= p, from which (4.18) follows.

Our next goal is to define the index pairing between Fredholm modules over A
and the K-theory of A. Notice that for this we do not need to assume that the
Fredholm module is finitely summable. We start with the even case. Let (H, F, γ)
be an even Fredholm module over an algebra A and let e ∈ A be an idempotent.
Let

F+
e : eH0 → eH1

denote the restriction of the operator eFe to the subspace eH0. It is a Fredholm
operator. To see this, let F−e : eH1 → eH0 denote the restriction of eFe to the
subspace eH1. We claim that the operators F+

e F
−
e −1 and F−e F

+
e −1 are compact.

Atkinson’s theorem then shows that F+
e is Fredholm. The claim follows from the

following computation:

eFeeFe = e(Fe− eF + eF )Fe = e[F, e]Fe+ e,

and the fact that [F, e] is a compact operator.
For an idempotent e ∈ A let us define a pairing:

〈(H, F, γ), [e]〉 := indexF+
e
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More generally, if e ∈ Mn(A) is an idempotent in the algebra of n by n matrices
over A, we define

〈(H, F, γ), [e]〉 := 〈(Hn, Fn, γ), [e]〉,

where (Hn, Fn) is the n-fold inflation of (H,F ) defined by Hn = H ⊗ Cn, Fn =
F ⊗ ICn . It is easily seen that (Hn, Fn) is a Fredholm module over Mn(A) and if
(H,F ) is p-summable then so is (Hn, Fn). It is easily checked that the resulting
map is additive with respect to direct sum of idempotents and is conjugation
invariant. This shows that each even Fredholm module, which need not be finitely
summable, induces an additive map on K-theory:

〈(H, F, γ), −〉 : K0(A)→ C.

There is a similar index pairing between odd Fredholm modules over A and

the algebraic K-theory group Kalg
1 (A). Let (H, F ) be an odd Fredholm module

over A and let U ∈ A× be an invertible element in A. Let P = F+1
2 : H → H be

the projection operator defined by F . Let us check that the operator

PUP : PH → PH

is a Fredholm operator. Again the proof hinges on Atkinson’s theorem and noticing
that PU−1P is an inverse for PUP modulo compact operators. We have

PUPPU−1P − IPH = PUPU−1P − IPH = P (UP − PU + PU)U−1P − IPH

= P [U, P ]U−1P + P − IPH =
1

2
P [U, F ]U−1P.

But [F,U ] is a compact operator by our definition of Fredholm modules and hence
the last term is compact too. Similarly one checks that PU−1PPUP − IPH is a
compact operator as well. We can thus define the index pairing:

〈(H, F ), [U ]〉 := index (PUP )

If the invertible U happens to be in Mn(A) we can apply the above definition to
the n-fold iteration of (H, F ), as in the even case above, to define the pairing.
The resulting map can be shown to induce a well-defined additive map

〈(H, F ), −〉 : Kalg
1 (A)→ C.

Example 4.2.4. Let (H, F ) be the Fredholm module of Example 4.2.1 and let
f ∈ C(S1) be a nowhere zero continuous function on S1 representing an ele-

ment of Kalg
1 (C(S1)). We want to compute the index pairing 〈[(H, F )], [f ]〉 =

index(PfP ). The operator PfP : H+ → H+ is called a Toeplitz operator. The
following standard result, known as the Gohberg–Krein index theorem, computes
the index of a Toeplitz operator in terms of the winding number of f :

〈[(H, F )], [f ]〉 = index(PfP ) = −W (f, 0).
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To prove this formula notice that both sides are homotopy invariant. For the left-
hand side this is a consequence of the homotopy invariance of the Fredholm index
while for the right-hand side it is a standard fact about the winding number. Also,
both sides are additive. Therefore it suffices to show that the two sides coincide
on the generator of π1(S1), i.e., for f(z) = z. Then PzP is easily seen to be the
forward shift operator given by PzP (en) = en+1 in the given basis. Clearly then
index(PzP ) = −1 = −W (z, 0).

When f is smooth we have the following well-known formula for the winding
number:

W (f, 0) =
1

2πi

∫
f−1 df =

1

2πi
ϕ(f−1, f),

where ϕ is the cyclic 1-cocycle on C∞(S1) defined by ϕ(f, g) =
∫
f dg. Since this

cyclic cocycle is the Connes–Chern character of the Fredholm module (H,F ), the
above equation can be written as

〈[(H, F )], [f ]〉 =
1

2πi
〈Chodd(H,F ), Chodd(f)〉,

where the pairing on the right-hand side is between cyclic cohomology and homol-
ogy. As we shall prove next, this is a special case of a very general index formula
of Connes.

Now what makes the Connes–Chern character in K-homology useful is the fact
that it can capture the analytic index by giving a topological formula for the index.
More precisely we have the following index formula due to Connes [39]:

Theorem 4.2.1. Let (H, F, γ) be an even p-summable Fredholm module over A
and n be an integer such that 2n+ 1 ≥ p. If e is an idempotent in A then

index(F+
e ) =

(−1)n

2
ϕ2n(e, e, . . . , e),

where the cyclic 2n-cocycle ϕ2n is defined by

ϕ2n(a0, a1, . . . , a2n) = Tr(γF [F, a0][F, a1] . . . [F, a2n]).

Proof. We use the following fact from the theory of Fredholm operators (cf. Propo-
sition B.2 for a proof): let P ′ : H ′ → H ′′ be a Fredholm operator and let Q′ : H ′′ →
H ′ be such that for an integer n ≥ 0, 1 − P ′Q′ ∈ Ln+1(H ′′) and 1 − Q′P ′ ∈
Ln+1(H ′). Then

index (P ′) = Tr(1−Q′P ′)n+1 − Tr(1− P ′Q′)n+1.

We can also write the above formula as a supertrace

index(P ′) = Tr(γ′(1− F ′2)n+1), (4.19)

where the operators F ′ and γ′ acting on H ′ ⊕H ′ are defined by

F ′ =

(
0 Q′

P ′ 0

)
and γ′ =

(
1 0
0 −1

)
.
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We apply this result to P ′ = F+
e , Q′ = F−e , H ′ = e0H0 and H ′′ = e1H1. By

our summability assumption, both operators 1 − P ′Q′ and 1 − Q′P ′ are in Ln+1

and we can apply (4.19). We have

index(F+
e ) = Tr(γ′ (1− F ′2)n+1) = Tr(γ (e− (eFe)2)n+1).

As in the proof of Proposition 4.2.1 let de := [F, e]. Using the relations e2 = e,
ede · e = 0, and edede = de · de · e, we have

e− (eFe)2 = eF (Fe− eF )e = (eF − Fe+ Fe)(Fe− eF )e = −edede

and hence (e − (eFe)2)n+1 = (−1)n+1(edede)n+1 = (−1)n+1e(de)2n+2. Thus the
index can be written as

index(F+
e ) = (−1)n+1 Tr(γe(de)2n+2).

On the other hand, using de = ede+ de · e, we have

ϕ2n (e, e, . . . , e) = Tr(γF (de)2n+1)

= Tr(γ(Fe)e(de)2n+1 + γFde · ee(de)2n

= Tr(Fe− eF + eF )e(de)2n+1) + γ(eF − Fe+ Fe)de · e(de)2n

= Tr(γde · e(de)2n+1 − Tr(γdede · e(de)2n)

=−Tr(γdede · e(de)2n)− Tr(γdede · e(de)2n)

=−2 Tr(γe(de)2n+2)

which of course proves the theorem. In the above computation we used the fact
that Tr(γeFe(de)2n+1) = Tr(γFede · e(de)2n) = 0.

Using the pairing HC2n(A) ⊗ K0(A) → C between cyclic cohomology and
K-theory defined in (4.5), and the definition of the Connes–Chern character of
(H,F, γ) in (4.17), the above index formula can be written as

index(F+
e ) = 〈Ch2n(H, F, γ), [e]〉,

or in its stable form

index(F+
e ) = 〈Cheven(H, F, γ), [e]〉.

There is yet another way to interpret the index formula as

〈(H, F, γ), [e]〉 = 〈Ch2n(H, F, γ), Ch2n[e]〉,

where on the left-hand side we have the pairing betweenK-homology andK-theory
and on the right-hand side the pairing between cyclic cohomology and homology.

The corresponding index formula in the odd case is as follows:
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Proposition 4.2.5. Let (H, F ) be an odd p-summable Fredholm module over A
and let n be an integer such that 2n ≥ p. If u is an invertible element in A, then

index(PuP ) =
(−1)n

22n
ϕ2n−1(u−1, u, . . . , u−1, u),

where the cyclic cocycle ϕ2n−1 is defined by

ϕ2n−1(a0, a1, . . . , a2n−1) = Tr(F [F, a0][F, a1] . . . [F, a2n−1]).

Proof. Let P = 1+F
2 , H ′ = PH, P ′ = PuP : H ′ → H ′, Q′ = Pu−1P : H ′ → H ′,

and du = [F, u]. We have

1−Q′P ′ = 1− Pu−1PPuP

= 1− pu−1(Pu− uP + uP )P

= 1− Pu−1[P, u]P − P

= −1

2
Pu−1du · P

=
1

2
Pdu−1 · uP =

1

2
Pdu−1(uP − Pu+ Pu)

= −1

4
Pdu−1du+ Pdu−1Pu

= −1

4
Pdu−1du,

where in the last step the relation Pdu−1P = 0 was used. This relation follows
from

[P, u−1] = [P 2, u−1] = P [P, u−1] + [P, u−1]P.

Since, by our summability assumption, du = [F, u] ∈ L2n(H) and similarly du−1 ∈
L2n(H), we have 1−Q′P ′ ∈ Ln(H ′).

A similar computation shows that

1− P ′Q′ = −1

4
Pdudu−1,

and hence 1− P ′Q′ ∈ Ln(H ′).
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Using formula (4.19) for the index, we obtain

index(PuP ) = Tr((1−Q′P ′)n)− Tr((1− P ′Q′)n)

=
(−1)n

22n
Tr((Pdu−1du)n)− (−1)n

22n
Tr((Pdudu−1)n)

=
(−1)n

22n
Tr(P (du−1du)n)− (−1)n

22n
Tr(P (dudu−1)n)

=
(−1)n

22n
Tr

(
1 + F

2
(du−1du)n

)
− (−1)n

22n
Tr

(
1 + F

2
(dudu−1)n

)
=

(−1)n

22n
Tr(F (du−1du)n)

=
(−1)n

22n
ϕ2n−1(u−1, u, . . . , u−1, u),

where in the last step we used the relations

Tr((du−1du)n) = Tr((dudu−1)n) and Tr(F (du−1du)n) =−Tr(F (dudu−1)n).

Using the pairingHC2n−1(A)⊗Kalg
1 (A)→C and the definition of Ch2n−1 (H, F ),

the above index formula can be written as

index(PuP ) = 〈Ch2n−1(H, F ), [u]〉,

or in its stable form

index(PuP ) = 〈Chodd (H, F ), [u]〉.

There is yet another way to interpret the index formula as

〈(H, F ), [u]〉 = 〈Ch2n−1(H, F ), Ch2n−1[u]〉,

where on the left-hand side we have the pairing betweenK-homology andK-theory
and on the right-hand side the pairing between cyclic cohomology and homology.

Example 4.2.5 (A noncommutative connected space). A projection in a ∗-algebra
is an element e satisfying e2 = e = e∗. It is called a trivial projection if e = 0
or e = 1. It is clear that a compact space X is connected if and only if the
algebra C(X) has no non-trivial projections. Let us agree to call a noncommutative
space represented by a C∗-algebra A connected if A has no non-trivial projections.
The Kadison conjecture states that the reduced group C∗-algebra of a torsion-free
discrete group is connected. This conjecture, in its full generality, is still open
although it has now been verified for various classes of groups [172]. Methods of
noncommutative geometry play an important role in these proofs. The validity of
the conjecture for free groups was first established by Pimsner and Voiculescu [149]
using techniques of K-theory. Here we reproduce Connes’ proof of this conjecture
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for free groups. Note that the conjecture is obviously true for the finitely generated
free abelian groups Zn, since by Fourier theory, or the Gelfand–Naimark theorem,
C∗(Zn) ' C(Tn), and the n-torus Tn is of course connected.

Let τ : C∗r (F2) → C be the canonical normalized trace. It is positive and
faithful in the sense that for all a ∈ A, τ(aa∗) ≥ 0 and τ(aa∗) = 0 if and only if
a = 0. Thus if we can show that for a projection e, τ(e) is an integer then we can
deduce that e = 0 or e = 1. In fact since e is a projection we have 0 ≤ e ≤ 1 and
therefore 0 ≤ τ(e) ≤ 1, and by integrality we have τ(e) = 1 or τ(e) = 0. Since τ
is faithful from 0 = τ(e) = τ(ee∗) we have e = 0. A similar argument works for
τ(e) = 1.

Now the proof of the integrality of τ(e) is based on Connes’ index formula in
Theorem 4.2.1 and is remarkably similar to proofs of classical integrality theorems
for characteristic numbers in topology using an index theorem: to show that a
number τ(e) is an integer it suffices to shows that it is the index of a Fredholm
operator. Let (H,F, γ) be the even 1-summable Fredholm module over the dense
subalgebra A ⊂ C∗r (F2) defined in Example 4.2.3. The index formula combined
with (4.18), shows that if e ∈ A is a projection then

τ(e) =
1

2
Tr(γFe[F, e]) = index(F+

e ) ∈ Z

is an integer and we are done. To prove the integrality result for idempotents in
A which are not necessarily in A, we make use of the fact that A is stable under
holomorphic functional calculus. Let e ∈ A be an idempotent. For any ε > 0
there is an idempotent e′ ∈ A such that ‖e − e′‖ < ε. In fact, since A is dense in
A we can first approximate it by an element g ∈ A. Since sp(e) ⊂ {0, 1}, sp(g)
is concentrated around 0 and 1. Let f be a holomorphic function defined on an
open neighborhood of sp(g) which is identically equal to 0 around 0 and identically
equal to 1 around 1. Then

e′ = f(g) =
1

2πi

∫
γ

f(z)(z1− e)−1 dz,

is an idempotent in A which is close to e. As we showed before (cf. formula (4.2)),
close idempotents are equivalent in the sense that e = ue′u−1 for an appropriate
u ∈ A. In particular we conclude that τ(e) = τ(ue′u−1) = τ(e′) is an integer.

In connection with Exercise 4.2.6 it is appropriate to mention that there is a
refinement of the notion of Fredholm module to that of a spectral triple that plays a
very important role in further developments of noncommutative geometry. Broadly
speaking, going from Fredholm modules to spectral triples is like passing from
the conformal class of a metric to the Riemannian metric itself. Spectral triples
simultaneously provide a notion of Dirac operator in noncommutative geometry,
as well as a Riemannian type distance function for noncommutative spaces.

To motivate the definition of a spectral triple, we recall that the Dirac operator
D/ on a compact Riemannian spinc manifold acts as an unbounded selfadjoint
operator on the Hilbert space L2(M,S) of L2-spinors on the manifold M . If we let
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C∞(M) act on L2(M,S) by multiplication operators, then one can check that for
any smooth function f , the commutator [D, f ] = Df − fD extends to a bounded
operator in L2(M,S). Now the geodesic distance d on M can be recovered from
the following distance formula of Connes [41]:

d(p, q) = sup{|f(p)− f(q)|; ‖ [D, f ] ‖≤ 1} for all p, q ∈M. (4.20)

The triple (C∞(M), L2(M,S), D/ ) is a commutative example of a spectral triple.
In general, in the odd case, a spectral triple is a triple (A,H, D), where A is a

∗-algebra represented by bounded operators on a Hilbert spaceH, and D, encoding
the Dirac operator and metric, is an unbounded selfadjoint operator on H. It is
required that D interacts with the algebra in a bounded fashion, i.e., that for all
a ∈ A the commutators [D, a] = Da−aD are well defined on the domain of D and
extend to bounded operators on H. It is further postulated that the operator D
should have compact resolvent in the sense that (D + λ)−1 ∈ K(H) for all λ /∈ R.
This last condition implies that the spectrum of D consists of a discrete set of
eigenvalues with finite multiplicity. A spectral triple is called finitely summable if
(D2 + 1)−1 ∈ Lp(H) for some 1 ≤ p <∞.

Given a spectral triple as above and assuming that D is invertible, one checks
that with F := D|D|−1, the phase of D, (A,H, F ) is a Fredholm module. By
passing from the spectral triple to the corresponding Fredholm module, we lose
the metric structure, but still retain the topological information, in particular the
index pairing, encoded by the triple. For examples of spectral triples arising in
physics and number theory the reader should consult [52].

Exercise 4.2.1. The Fredholm module of Example 4.2.3 can be defined over any
free group. For Γ = Z one obtains an even Fredholm module over C∗(Z) ' C(S1).
Identify this Fredholm module and its character.

Exercise 4.2.2. Give an example of a discrete group Γ and a projection e ∈ CΓ
such that τ(e) is not an integer (τ is the canonical trace).

Exercise 4.2.3. Let (H, F ) be an odd p-summable Fredholm module over an
algebra A. What happens if in the cochain (4.14) we replace (2n− 1) by an even
integer. Similarly for even Fredholm modules.

Exercise 4.2.4. Show that the Fredholm module in Example 4.2.2 is p-summable
for any p > 1 but is not 1-summable. If we consider it as a Fredholm module over
the algebra Ck(S1) of k-times continuously differentiable functions then (H,F ) is
p-summable for some p > 1. Find a relation between k and p.

Exercise 4.2.5. Show that the Fredholm module over C∗r (F2) in Example 4.2.3
is not 1-summable.

Exercise 4.2.6. Let D = −i ddx : C∞(S1) → C∞(S1). It has an extension to a
selfadjoint unbounded operator D : Dom(D) ⊂ L2(S1) → L2(S1). Show that the
arc distance on S1 can be recovered from D via the formula

dist(p, q) = sup{|f(p)− f(q)|; ‖[D,π(f)‖ ≤ 1}, (4.21)
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where π(f) is the multiplication by f operator. The triple (C∞(S1), L2(S1), D) is
an example of a spectral triple and (4.21) is a prototype of a very general distance
formula of Connes that recovers the distance on a Riemannian spinc manifold from
its Dirac operator (cf. formula (4.20) in this section and the last chapter of [41]).

4.3 Algebras stable under holomorphic functional
calculus

The pairing HC∗(A)⊗K∗(A)→ C between cyclic cohomology and K-theory poses
a challenge. As we saw in Section 3.4 cyclic cohomology is non-trivial and useful
on ‘smooth algebras’ which are typically a dense subalgebra of some C∗-algebra.
Topological K-theory on the other hand is most naturally defined for Banach and
C∗-algebras. Thus the natural domains of the two functors HC∗ and K∗ are
different. How can we reconcile the two categories of algebras here? One approach
is to identify those dense subalgebras A ⊂ A of Banach algebras whose K-theory
is isomorphic to the K-theory of A and work with A instead of A. A classical,
commutative, example is the algebra of smooth functions as a subalgebra of the
algebra of continuous functions. It is well known that the inclusion C∞(M) ↪→
C(M) induces an isomorphism between K0 groups [103].

We are going to describe a situation where many features of the embedding
C∞(M) ⊂ C(M) are captured and extended to the noncommutative world. In
particular we shall identify a class of dense subalgebras of Banach algebras A ⊂ A
where the induced map on K-theory is an isomorphism. These subalgebras are
called stable under holomorphic functional calculus.

Let A be a unital Banach algebra and let f be a holomorphic function defined
on a neighborhood of sp(a), the spectrum of a ∈ A. Let

f(a) :=
1

2πi

∫
γ

f(z)(z1− a)−1 dz, (4.22)

where the contour γ goes around the spectrum of a only once (counter clockwise).
Thanks to the holomorphicity of f , the integral is independent of the choice of the
contour and it can be shown that for a fixed a, the map

f 7→ f(a)

is a unital algebra map from the algebra of holomorphic functions on a neighbor-
hood of sp(a) to A. It is called the holomorphic functional calculus. (Cf. e.g. [122]
for more details.)

If f happens to be holomorphic in a disc containing sp(a) with power series
expansion f(z) =

∑
ciz

i, then one shows, using the Cauchy integral formula, that
f(a) =

∑
cia

i, so that the two definitions of f(a) coincide. If A is a C∗-algebra
and a is a normal element then, thanks to the Gelfand–Naimark theorem, applied
to the commutative C∗-algebra generated by a, we have the much more powerful
continuous functional calculus from C(sp(a)) → A. It extends the holomorphic
functional calculus.
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Definition 4.3.1. Let B ⊂ A be a unital subalgebra of a unital Banach algebra
A. We say B is stable under holomorphic functional calculus if for all a ∈ B and
all holomorphic functions on sp(a), we have f(a) ∈ B.

Example 4.3.1. 1. The algebra C∞(M) of smooth functions on a closed smooth
manifold M is stable under holomorphic functional calculus in C(M). This is clear
because the spectrum of a function a ∈ C(M) is simply its range and formula
(4.22) simplifies to f(a) = f ◦ a (composition of functions). The same can be
said about the algebra Ck(M) of k-times differentiable functions. The algebra
C[X] of polynomial functions is not stable under holomorphic functional calculus
in C[0, 1].

2. The smooth noncommutative torus Aθ ⊂ Aθ is stable under holomorphic
functional calculus. (cf. Example 4.3.2 below.)

Let spB(a) denote the spectrum of a ∈ B with respect to the subalgebra B.
Clearly spA(a) ⊂ spB(a) but the reverse inclusion holds if and only if invertibility
in A implies invertibility in B. A good example to keep in mind is C[x] ⊂ C[0, 1].
It is easy to see that if B is stable under holomorphic functional calculus, then we
have the spectral permanence property

spA(a) = spB(a).

The converse need not be true (cf. Exercises below), but under some extra condi-
tions on the subalgebra B the above spectral permanence property can be shown
to imply that B is stable under holomorphic functional calculus. In fact, in this
case for all z ∈ spA(a), (z1 − a)−1 ∈ B and if there is a suitable topology in B,
stronger than the topology induced from A, in which B is complete, one can then
show that the integral (4.22) converges in B and hence f(a) ∈ B. We give two
instances where this technique works.

Let (H, F ) be a Fredholm module over a Banach algebra A and assume that
the action of A on H is continuous.

Proposition 4.3.1 ([41]). For each p ∈ [1,∞), the subalgebra

A = {a ∈ A; [F, a] ∈ Lp(H)}

is stable under holomorphic functional calculus.

Another source of examples is smooth vectors for actions of Lie groups. Let G
be a Lie group acting continuously on a Banach algebra A. Continuity here means
that for any a ∈ A, the map g 7→ g(a) from G → A is continuous. An element
a ∈ A is called smooth if the map g 7→ g(a) is smooth. It can be shown that
smooth vectors form a dense subalgebra of A which is stable under holomorphic
functional calculus (cf. Proposition 3.4.5 in [85]).

Example 4.3.2. The formulas

U 7→ λ1U, V 7→ λ2V,
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where (λ1, λ2) ∈ T2, define an action of the two-torus T2 on the noncommutative
torus Aθ. Its set of smooth vectors can be shown to coincide with the smooth
noncommutative torus Aθ [37]. It follows that Aθ is stable under holomorphic
functional calculus in Aθ.

For applications to K-theory, the following result is crucial [162].

Proposition 4.3.2. If B is a dense subalgebra of a Banach algebra A which is
stable under holomorphic functional calculus then so is Mn(B) in Mn(A) for all
n ≥ 1.

Now let e ∈ A be an idempotent in A. For any ε > 0 there is an idempotent
e′ ∈ B such that ‖e−e′‖ < ε. In fact, since B is dense in A we can first approximate
it by an element g ∈ B. Since sp(e) ⊂ {0, 1}, sp(g) is concentrated around 0 and
1. Let f be a holomorphic function which is locally constant on sp(g), and is equal
to 0 at 0 and equal to 1 at 1. Then

e′ = f(g) =
1

2πi

∫
γ

f(z)(z1− e)−1 dz

is an idempotent in B which is close to e. In particular [e] = [f(g)] in K0(A)
(see Section 5.1). Thanks to the above proposition, we can repeat this argument
for Mn(B) ⊂ Mn(A) for all n. It follows that if B is dense is A and is stable
under holomorphic functional calculus, the natural embedding B → A induces an
isomorphism K0(B) ' K0(A) in K-theory (cf. also the article of J.-B. Bost [17]
where a more general density theorem along these lines is proved).

Example 4.3.3 (Toeplitz algebras). The original Toeplitz algebra T is defined as
the universal unital C∗-algebra generated by an isometry, i.e., an element S with

S∗S = I.

It can be concretely realized as the C∗-subalgebra of L(`2(N)) generated by the
unilateral forward shift operator S(ei) = ei+1, i = 0, 1, . . . . Since the algebra
C(S1) of continuous functions on the circle is the universal algebra defined by a
unitary u, the map S 7→ u defines a C∗-algebra surjection

σ : T → C(S1),

called the symbol map. It is an example of the symbol map for pseudodifferential
operators of order zero over a closed manifold (see below).

The rank one projection I − SS∗ is in the kernel of σ. Since the closed ideal
generated by I − SS∗ is the ideal K of compact operators, we have K ⊂ Kerσ.
With some more work one shows that in fact K = Kerσ and therefore we have a
short exact sequence of C∗-algebras, called the Toeplitz extension (due to Coburn,
cf. [70], [80])

0→ K → T σ−→ C(S1)→ 0. (4.23)
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There is an alternative description of the Toeplitz algebra and extension (4.23)
that makes its relation with pseudodifferential operators and index theory more
transparent. Let H = L2(S1)+ denote the Hilbert space of square integrable
functions on the circle whose negative Fourier coefficients vanish (the Hardy space)
and let P : L2(S1) → L2(S1)+ denote the canonical projection. Any continuous
function f ∈ C(S1) defines a Toeplitz operator

Tf : L2(S1)+ → L2(S1)+, Tf (g) = P (gf).

It can be shown that the C∗-algebra generated by the set of Toeplitz operators
{Tf ; f ∈ C(S1)} is isomorphic to the Toeplitz algebra T . The relation

TfTg − Tfg ∈ K(H)

shows that any element T of this C∗-algebra can be written as

T = Tf +K,

where K is a compact operator. In fact this decomposition is unique and gives
another definition of the symbol map σ by σ(Tf + K) = f . It is also clear from
extension (4.23) that a Toeplitz operator T is Fredholm if and only if its symbol
σ(T ) is an invertible function on S1.

The algebra generated by Toeplitz operators Tf for f ∈ C∞(S1) is called the
smooth Toeplitz algebra T ∞ ⊂ T . Similar to (4.23) we have an extension

0→ K∞ → T ∞ σ−→ C∞(S1)→ 0. (4.24)

The Toeplitz extension (4.23) has a grand generalization. On any closed
smooth manifold M , a (scalar) pseudodifferential operator D of order zero de-
fines a bounded linear map D : L2(M)→ L2(M) and its principal symbol σ(D) is
a continuous function on S∗(M), the unit cosphere bundle of M with respect to a
Riemannian metric. Let Ψ0(M) ⊂ L(L2(M)) denote the C∗-algebra generated by
all pseudodifferential operators of order zero on M . We then have a short exact
sequence of C∗-algebras

0→ K(L2(M))→ Ψ0(M)
σ−→ C(S∗M)→ 0.

For M = S1, the cosphere bundle splits as the disjoint union of two copies of S1

and the above sequence is the direct sum of two identical copies, each of which is
isomorphic to the Toeplitz extension (4.23).

Exercise 4.3.1. Give an example of a Banach algebra A and a dense subalgebra
B ⊂ A such that B is not stable under holomorphic functional calculus in A but
for all a ∈ B, spB(a) = spA(a).

Exercise 4.3.2 (Smooth compact operators). Let K∞ ⊂ K(`2(N)) be the algebra
of infinite matrices (aij) with rapid decay coefficients. Show that K∞ is stable
under holomorphic functional calculus in the algebra of compact operators K.
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Exercise 4.3.3. Show that the smooth Toeplitz algebra T ∞ is stable under holo-
morphic functional calculus in T .

Exercise 4.3.4. Show that

ϕ(A, B) := Tr([A, B])

defines a cyclic 1-cocycle on T ∞. If f is a smooth non-vanishing function on the
circle, show that

index(Tf ) = ϕ(Tf , Tf−1).

4.4 A final word: basic noncommutative geome-
try in a nutshell

A better title for this last section would be ‘This book in one diagram’. It is now
time to integrate the various concepts and results we covered so far into one single
big idea. In fact many aspects of noncommutative geometry that we have covered
so far can be succinctly encapsulated into one commutative diagram. Rewriting
Connes’ index formulae (Theorem 4.2.1 and Proposition 4.2.5) in a commutative
diagram, we obtain

K∗(A)×K∗(A)

Ch∗

��

Ch∗

��

index // Z

��
HP ∗(A)×HP∗(A) // C.

(4.25)

Furthermore the following holds:

1) A is an algebra which may very well be noncommutative.

2) K∗(A) is the set of even resp. odd finitely summable Fredholm modules over
A. It is closely related to the K-homology of A.

3) K∗(A) is the algebraic K-theory of A.

4) Ch∗ is Connes–Chern character in K-homology.

5) Ch∗ is Connes–Chern character in K-theory.

6) HP ∗(A) is the periodic cyclic cohomology of A and HP∗(A) is the periodic
cyclic homology of A.

7) The top row is the analytic index map. It computes the Fredholm index of
a Fredholm module twisted by a K-theory class.

8) The bottom row is the natural pairing between cyclic cohomology and ho-
mology. Once composed with vertical arrows it gives the topological index maps

[(H, F, γ)]× [e] 7→ 〈Ch0(H, F, γ), Ch0(e)〉,
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[(H, F )]× [u] 7→ 〈Ch1(H, F ), Ch1(u)〉.

So the commutativity of the diagram amounts to the following equality:

Topological Index = Analytic Index (4.26)

Notice that the Atiyah–Singer index theorem amounts to an equality of the above
type, where in this classical case A = C∞(M) is a commutative algebra.

We can summarize what we have done in this book as a way of extending (4.26)
beyond its classical realm of manifolds and differential operators to a noncommu-
tative world. The following ingredients were needed:

1. What is a noncommutative space and how to construct one? This was
discussed in Chapters 1 and 2. We saw that a major source of noncommutative
spaces is noncommutative quotients, replacing bad quotients by groupoid algebras.

2. Cohomological apparatus. This includes noncommutative analogues of topo-
logical invariants such as K-theory, K-homology, de Rham cohomology, and Chern
character maps. Cyclic cohomology and the theory of characteristic classes in non-
commutative geometry as we discussed in Chapters 3 and 4 are the backbone of
noncommutative geometry.

Now, the diagram (4.25) should be seen as the prototype of a series of results
in noncommutative geometry that aims at expressing the analytic index by a topo-
logical formula. In the next step it would be desirable to have a local expression for
the topological index, that is, for the Connes–Chern character Chi. The local index
formula of Connes and Moscovici [54] solves this problem by replacing the char-
acteristic classes Chi(H, F ) by a cohomologous cyclic cocycle Chi(H, D). Here
D is an unbounded operator that defines a refinement of the notion of Fredholm
module to that of a spectral triple, and F is the phase of D.

In the above we tried to summarize the way index theory informed and influ-
enced noncommutative geometry in its first phase of development up to the year
1985 and the publication of [39]. To gain an idea of what happened next we refer
the reader to the introduction and references cited there. It suffices to say that it
is the spectral geometry that takes the center stage now. And here I shall stop!



Appendix A

Gelfand–Naimark theorems

In Section 1.1 we defined notions of Banach and C∗-algebras and gave several
examples of C∗-algebras that frequently occurs in noncommutative geometry. The
classic paper of Gelfand and Naimark [82] is the birth-place of the theory of C∗-
algebras. The following two results on the structure of C∗-algebras are proved in
this paper.

Theorem A.1 (Gelfand–Naimark; [82]). a) For any commutative C∗-algebra A
with spectrum Â the Gelfand transform

A→ C0(Â), a 7→ â, (A.1)

defines an isomorphism of C∗-algebras.

b) Any C∗-algebra is isomorphic to a C∗-subalgebra of the algebra L(H) of
bounded operators on a Hilbert space H.

In the remainder of this appendix we sketch the proofs of statements a) and b)
above. They are based on Gelfand’s theory of commutative Banach algebras, and
the Gelfand–Naimark–Segal (GNS) construction of representations of C∗-algebras
from states, respectively.

A.1 Gelfand’s theory of commutative Banach al-
gebras

The whole theory is based on the notion of the spectrum of an element of a Banach
algebra and the fact that the spectrum is non-empty (and compact). The notion
of spectrum can be defined for elements of an arbitrary algebra and it can be easily
shown that for finitely generated complex algebras the spectrum is non-empty. As
is shown in [33], this latter fact leads to an easy proof of Hilbert’s Nullstellensatz
(over C).

189
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Let A be a unital complex algebra. Algebras are not assumed to be commu-
tative, unless explicitly stated so. The spectrum of an element a ∈ A is defined as
follows:

sp(a) = {λ ∈ C; a− λ1 is not invertible}

The complement of the spectrum C− sp(a) is called the resolvent set of a and the
function Ra : C − sp(a) → A sending λ to (a − λ1)−1 is the resolvent function of
a. We should think of the spectrum as the noncommutative analogue of the set of
values of a function. This is justified in the following example.

Example A.1. 1. Let A = C(X) be the algebra of continuous complex-valued
functions on a compact space X. For any f ∈ A,

sp(f) = {f(x); x ∈ X},

is the range of f .

2. Let A = Mn(C) be the algebra of n× n matrices with coefficients in C. For
any matrix a ∈ A,

sp(a) = {λ ∈ C; det(a− λ1) = 0}

is the set of eigenvalues of a.

3. The theory of measurements in quantum mechanics postulates that when an
observable, i.e., a selfadjoint operator, is measured one actually finds a point in the
spectrum of the operator. This should be compared with classical measurements
where one evaluates a real valued function, i.e., a classical observable, at a phase
space point.

In general, the spectrum may be empty. We give two general results that
guarantee the spectrum is non-empty. They are at the foundation of the Gelfand–
Naimark theorem and Hilbert’s Nullstellensatz. Part b) is in [33].

Theorem A.2. a) (Gelfand) Let A be a unital Banach algebra over C. Then for
any a ∈ A, sp(a) 6= ∅.

b) Let A be a unital algebra over C. Assume that dimCA is countable. Then
for any a ∈ A, sp(a) 6= ∅. Furthermore, an element a is nilpotent if and only if
sp(a) = {0}.

Proof. We sketch a proof of both statements. For a) assume that the spectrum of
an element a is empty. Then the function

R : C→ A, λ 7→ (a− λ1)−1,

is holomorphic (in an extended sense), non-constant, and bounded. This is easily
shown to contradict the classical Liouville theorem from complex analysis.

For b), again assume that the spectrum of a is empty. Then it is easy to see
that the uncountable set

{(a− λ1)−1; λ ∈ C}
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is linearly independent over C. But this contradicts the fact that dimCA is count-
able.

For the second part of b), assume sp(a) = {0}. Then, using a similar argument
as above, we can find constants ci, µi, i = 1, . . . n, in C such that

∑
i ci(a−µi)−1 =

0. It follows that a satisfies a polynomial equation. Let

p(a) = ak(a− λ1) . . . (a− λn) = 0

be the minimal polynomial of A. Then n = 0 since otherwise, for some i, an
element a− λi would be non-invertible with λi 6= 0 and this would contradict our
assumption that sp(a) = {0}. Conversely, if a is nilpotent, by a geometric series
argument one can show that (a− λ) is invertible for any λ 6= 0.

The first part of the following corollary is known as the Gelfand–Mazur theorem.

Corollary A.1. Let A be either a unital complex Banach algebra or a unital
complex algebra such that dimCA is countable. If A is a division algebra, then
A ' C.

Let A be an algebra. By a character of A we mean a nonzero algebra homo-
morphism

ϕ : A→ C.

Note that if A is unital, then ϕ(1) = 1. We establish the link between characters
and maximal ideals of A. For the following result A is either a commutative
unital complex Banach algebra, or is a commutative unital algebra with dimCA
countable. Using Corollary A.1, we have:

Corollary A.2. The relation I = kerϕ defines a one-to-one correspondence be-
tween the set of maximal ideals of A and the set of characters of A.

Before embarking on the proof of the Gelfand–Naimark theorem, we sketch a
proof of Hilbert’s Nullstellensatz, following [33].

Let

A = C[x1, . . . , xn]/I

be a finitely generated commutative reduced algebra. Recall that reduced means if
an = 0 for some n then a = 0 (no nilpotent elements). Equivalently, the ideal I is
radical. Let

V = {z ∈ Cn; p(z) = 0, for all p in I},

let J(V ) be the ideal of functions vanishing on V , and let

C[V ] = C[x1, . . . , xn]/J(V )

be the algebra of regular functions on V . Since I ⊂ J(V ), we have an algebra
homomorphism

π : A→ C[V ].
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One of the original forms of Hilbert’s Nullstellensatz states that this map is an
isomorphism. It is clearly surjective. For its injectivity, let a ∈ A and let π(a) = 0,
or equivalently π(a) ∈ J(V ). Since a vanishes on all points of V , it follows that
a is in the intersection of all maximal ideals of A. This shows that its spectrum
sp(a) = {0}. By Theorem A.2 b), it follows that a is nilpotent and since A is
reduced, we have a = 0.

The rest of this section is devoted to sketching a proof of the Gelfand–Naimark
theorem on the structure of commutative C∗-algebras. Let A be a unital Banach
algebra. The spectrum sp(a) of an element a ∈ A is a non-empty compact subset
of C. We only need to check the compactness. In fact the geometric series formula
(1−a)(1+a+a2 + · · · ) = 1 shows that 1−a is invertible when ‖a‖ < 1. From this
it easily follows that for any a and any λ ∈ sp(a) we have |λ| ≤ ‖a‖ and that the
complement of sp(a) is an open set. So sp(a) is bounded and closed and hence is
compact. The spectral radius of a ∈ A is the number r(a) := max{|λ|; λ ∈ sp(a)}.
It is given by Beurling’s formula (cf. e.g. [122] for a proof):

r(a) = Limn→∞ ‖an‖
1
n = inf

n≥1
‖an‖ 1

n .

Now let A be a C∗-algebra and let x ∈ A be selfadjoint. Then, using the
C∗-identity, we have ‖x2‖ = ‖x∗x‖ = ‖x‖2, and in general ‖x2n‖ = ‖x‖2n . So, we
have

r(x) = Limn→∞ ‖x2n‖ 1
2n = ‖x‖.

From this it follows that for any x ∈ A, we have

‖x‖ = r(x∗x)
1
2 . (A.2)

This is indeed a remarkable result as it shows that the norm of a C∗-algebra
is completely determined by its algebraic structure and therefore is unique. As
another corollary we mention that if f : A→ B is a C∗-map between C∗-algebras
A and B, then f is automatically continuous and in fact ‖f‖ ≤ 1. To prove this
we can assume that A and B are unital and f is unit preserving. Then since
sp(f(a)) ⊂ f(sp(a)), we have

‖f(x)‖2 = ‖f(x∗x)‖ = r(f(x∗x)) ≤ r(x∗x) = ‖x‖2.

Let A be a unital Banach algebra. It is easy to see that any character ϕ of
A is continuous of norm 1. To prove this, note that if this is not the case then
there exists an a ∈ A with ‖a‖ < 1 and ϕ(a) = 1. Let b =

∑
n≥1 a

n. Then from
a+ ab = b, we have

ϕ(b) = ϕ(a) + ϕ(a)ϕ(b) = 1 + ϕ(b),

which is impossible. Therefore ‖ϕ‖ ≤ 1, and since ϕ(1) = 1, ‖ϕ‖ = 1. From this
it follows that for any A, unital or not, and any character ϕ on A, ‖ϕ‖ ≤ 1.

Now let us recall the definition of the Gelfand transform from Section 1.1. Let
A be a commutative Banach algebra and let Â denote the spectrum of A, defined
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as the space of characters of A. The Gelfand transform is the map Γ: A→ C0(Â),
defined by

Γ(a) = â, â(ϕ) = ϕ(a),

for any a ∈ A and ϕ ∈ Â. This map is obviously an algebra homomorphism. Since
characters are contractive, we have |(Γ(a))(ϕ)| = |ϕ(a)| ≤ ‖a‖, so that ‖Γ‖ ≤ 1,
i.e., Γ is contractive.

The kernel of the Gelfand transform is called the radical of A. It consists of
elements a whose spectral radius r(a) = 0, or equivalently, sp(a) = {0}. Hence
the radical contains all the nilpotent elements, but it may be bigger. An element
a is called quasi-nilpotent if sp(a) = 0. A is said to be semi-simple if its radical is
zero, i.e., the only quasi-nilpotent elements of A is 0. Now if A is a commutative
C∗-algebra and x ∈ A is quasi-nilpotent, then x∗x is quasi-nilpotent as well and
using (A.2) we see that x = 0. This shows that the Gelfand transform is injective
for C∗-algebras.

We are now ready to prove the Gelfand–Naimark theorem for commutative
C∗-algebras. First we need to show that Γ preserves the ∗-structure. Let a ∈ A
be a selfadjoint element of a commutative C∗-algebra A and let ϕ ∈ Â be a

character. Then ϕ(a) is real. In fact since eia :=
∑
n≥0

(ia)n

n! is a unitary, we have

|eiϕ(a)| = |ϕ(eia)| = 1 and therefore ϕ(a) is real. Now any a ∈ A can be written
as a = x+ iy with x and y selfadjoint. So we have

ϕ(a∗) = ϕ(x− iy) = ϕ(x)− iϕ(y) = ϕ(x) + iϕ(y) = ϕ(a).

This shows that Γ is a ∗-map. We can also show that, for C∗-algebras, Γ is
isometric. In fact, for any a ∈ A, we have

‖a‖2 = r(a∗a) = ‖Γ(a∗a)‖∞ = ‖Γ(a)Γ(a)‖∞ = ‖Γ(a)‖2∞.

We can now prove the first Gelfand–Naimark theorem.

Theorem A.3 (Gelfand–Naimark). Let A be a commutative C∗-algebra. Then
the Gelfand transform Γ: A→ C0(Â) is an isomorphism of C∗-algebras.

Proof. We prove the unital case. The non-unital case follows with minor modifica-
tions [66]. What we have shown so far is that Γ is an isometric ∗-algebra map whose
image separates the points of the spectrum Â, and contains the constant functions.
Since Γ is isometric its image is closed and thus, by the Stone–Weierstrass theorem,
Γ(A) = C(Â).

The above theorem is a landmark application of Gelfand’s theory of commu-
tative Banach algebras. While a complete classification of commutative Banach
algebras seems to be impossible, this result classifies all commutative C∗-algebras.
Another striking application was Gelfand’s very simple proof of a classical result
of Wiener to the effect that if f is a nowhere vanishing function with an absolutely

convergent Fourier series then 1
f has the same property [122].
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Example A.2. We give an example of a commutative Banach algebra for which
the Gelfand transform is injective, in fact isometric, but not surjective. Let
A = H(D) be the space of continuous functions on the unit disk D which are
holomorphic in the interior of the disk. With the sup-norm ‖f‖ = ‖f‖∞ it is a
Banach algebra. It is, however, not a C∗-algebra (why?). It is easy to check that
Â ' D and the Gelfand transform coincides with the embedding H(D) ↪→ C(D).

A.2 States and the GNS construction

Our goal in this section is to sketch a proof of the second main result of Gelfand and
Naimark in [82] to the effect that any C∗-algebra can be embedded in the algebra
of bounded operators on Hilbert space. The main idea of the proof is an adaptation
of the idea of left regular representation to the context of C∗-algebras. This is the
Gelfand–Naimark–Segal (GNS) construction and is based on the concept of states
of a C∗-algebra.

The concept of state is the noncommutative analogue of Borel probability mea-
sure. A state of a unital C∗-algebra A is a positive normalized linear functional
ϕ : A→ C, namely ϕ is C-linear and satisfies

ϕ(a∗a) ≥ 0 for all a ∈ A and ϕ(1) = 1.

The quantum mechanical intuition behind this concept is important too. We can
think of a C∗-algebra as the algebra of operators generated by the set of observables
of a quantum system. In fact one of the postulates of quantum mechanics dictates
that an observable, e.g. energy or angular momentum, of a quantum system is
a (selfadjoint unbounded) operator on the Hilbert space while the states of the
system are represented by rays (or unit vectors, up to phase) in the Hilbert space.
In the abstract formulation of quantum mechanics we abandon the idea of Hilbert
space and instead start with a C∗-algebra while states are defined as above. The
expectation value of an element (an ‘observable’) a ∈ A, when the system is in the
state ϕ, is defined by ϕ(a). This terminology is also directly related and motivated
by the notion of states in classical statistical mechanics, where one abandons the
idea of describing the state of a system by a point in the phase space. Instead,
the only reasonable question to ask is the probability of finding the system within
a certain region in the phase space. This probability is of course given by a
probability measure µ. Then the expected value of an observable f : M → R, if
the system is in the state µ, is

∫
f dµ.

Similarly, in quantum statistical mechanics [20] the idea of describing the quan-
tum states of a system by a vector (or ray) in Hilbert space is extended and instead
of a pure state one uses a mixed state or a density matrix, i.e., a trace class positive
operator p with Tr(p) = 1. The expectation value of an observable a, if the system
is in the state p, is given by Tr(ap). As we shall see later these are exactly the
(normal) states of the C∗-algebra L(H). We go back to mathematics now.

A positive linear functional on a C∗-algebra A is a C-linear map ϕ : A → C
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such that for all a in A,

ϕ(a∗a) ≥ 0.

Equivalently ϕ(x) ≥ 0 for any positive element x ∈ A. ( By definition, x is called
positive if it is selfadjoint and sp(a) ⊂ R.) Positive functionals are automatically
bounded. A state on A is a positive linear functional ϕ with ‖ϕ‖ = 1. It can be
shown that if A is unital then this last condition is equivalent to ϕ(1) = 1.

If ϕ1 and ϕ2 are states then for any t ∈ [0, 1], tϕ1 + (1 − t)ϕ2 is a state as
well. Thus the set of states of A, denoted by S(A), forms a convex subset of the
unit ball of A∗. The extreme points of S(A) are called pure states. Other states
are mixed states. A state ϕ is said to be faithful if ϕ(aa∗) = 0 implies a = 0. A
tracial state is a state which is a trace at the same time, i.e., ϕ(ab) = ϕ(ba) for all
a, b ∈ A.

Example A.3. 1. States are noncommutative analogues of probability measures.
This idea is corroborated by the Riesz representation theorem: For a locally com-
pact Hausdorff space X there is a one-to-one correspondence between states on
C0(X) and regular Borel probability measures on X. To such a probability mea-
sure µ is associated the state ϕ defined by

ϕ(f) =

∫
X

f dµ.

ϕ is a pure state if and only if µ = δx is a Dirac measure for a point x ∈ X.

2. Let A = Mn(C) and p ∈ A be a positive matrix with tr(p) = 1. (Such
matrices, and their infinite dimensional analogues, are called density matrices or
density operators in quantum statistical mechanics.) Then

ϕ(a) = tr(ap) (A.3)

defines a state on A. It is easy to see that all states on Mn(C) are obtained this
way. ϕ is pure if and only p is a rank one projection.

3. Let A = L(H) be the algebra of bounded operators on the Hilbert space
H and let p ∈ L(H) be a density operator, namely a positive trace class operator
with Tr(p) = 1. Then (A.3) defines a state on L(H), and again all normal states
on L(H) are of this form [15].

4. Let π : A → L(H) be a representation of a unital C∗-algebra A on the
Hilbert space H. This simply means that π is a morphism of unital C∗-algebras.
Let x ∈ H be a vector of length one. Then

ϕ(a) = 〈π(a)x, x〉

defines a state on A, called a vector state. In the following we show that, conversely,
any state on A is a vector state with respect to a suitable representation, called
the GNS (Gelfand–Naimark–Segal) representation.
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5. For a final example let A = C∗rG be the reduced group C∗-algebra of a
discrete group G. In Example 1.1.6 we defined a trace on A by

τ(a) = 〈aδe, δe〉, a ∈ C∗rG.

Clearly τ is a vector state, is faithful, and since it is a trace it is called a tracial
state. Notice that not all states have the trace property. For example onMn(C) the
only tracial state is the normalized canonical trace 1

n tr corresponding to p = 1
nI

in (A.3).

Let ϕ be a positive linear functional on A. Then

〈a, b〉 = ϕ(b∗a)

is a semi-definite sesquilinear form on A. Thus it satisfies the Cauchy–Schwarz
inequality: for all a, b,

|ϕ(b∗a)|2 ≤ ϕ(a∗a)ϕ(b∗b).

Let
N = {a ∈ A; ϕ(a∗a) = 0}.

It is easy to see, using the above Cauchy–Schwarz inequality, that N is a closed
left ideal of A. So the following positive-definite inner product is well defined on
the quotient space A/N :

〈a+N, b+N〉 := 〈a, b〉.

Let Hϕ denote the Hilbert space completion of A/N under the above inner
product. The left regular representation A × A → A, (a, b) 7→ ab of A on itself
induces a bounded linear map A×A/N → A/N, (a, b+N) 7→ ab+N . We denote
its unique extension to Hϕ by

πϕ : A→ L(Hϕ).

The representation (πϕ, Hϕ) is called the GNS representation defined by the
state ϕ. The state ϕ can be recovered from the representation (πϕ, Hϕ) as a vector
state as follows. Let Ω := πϕ(1). Then for all a in A,

ϕ(a) = 〈πϕ(a)(Ω), Ω〉.

It is natural to ask if the GNS construction has a universal property. In fact
it does: For any other representation π : A→ L(H) such that ϕ(a) = 〈π(a)(v), v〉
for some unit vector v ∈ H, there is a unique isometry V : Hϕ → H such that
π(a) = V πϕ(a)V ∗ for all a ∈ A.

The representation (πϕ, Hϕ) may not be faithful. It can be shown that it is
irreducible if and only if ϕ is a pure state [66]. To construct a faithful represen-
tation, and hence an embedding of A into the algebra of bounded operators on a
Hilbert space, one first shows that there are enough pure states on A. The proof
of the following result is based on the Hahn–Banach and Krein–Milman theorems.
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Lemma A.1. For any selfadjoint element a of A, there exists a pure state ϕ on
A such that |ϕ(a)| = ‖a‖.

Using the GNS representation associated to ϕ, we can then construct, for any
a ∈ A, an irreducible representation π of A such that ‖π(a)‖ = |ϕ(a)| = ‖a‖.

We can now prove the second theorem of Gelfand and Naimark.

Theorem A.4 (Gelfand–Naimark). Every C∗-algebra is isomorphic to a C∗-sub-
algebra of the algebra of bounded operators on a Hilbert space.

Proof. Let π =
∑
ϕ∈S(A) πϕ denote the direct sum of all GNS representations for

all states of A. By the above remark π is faithful.

Example A.4. We give a couple of simple examples of GNS representations. Let
A = C(X) and ϕ be the state defined by a probability measure µ on a compact
space X. Then Hϕ ' L2(X,µ) and the GNS representation is the representation
of C(X) as multiplication operators on L2(X,µ). For example if µ = δx is the
Dirac mass at x ∈ X then Hϕ ' C and πϕ(f) = f(x) for all f ∈ C(X).

For a simple noncommutative example let A = Mn(C) and let ϕ(a) = Tr(ap),
where p is a rank one projection in A. Then Hϕ ' Cn and the GNS representation
is the standard representation of Mn(C) on Cn. If on the other extreme we let
ϕ(a) = 1

n Tr(a), then Hϕ = Mn(C) where the inner product is the Hilbert–Schmidt
product 〈a, b〉 = 1

n Tr(b∗a). The action of A is simply by left multiplication (left
regular representation).

In the remainder of this section we look at the Kubo–Martin–Schwinger (KMS)
equilibrium condition for states and some of its consequences. KMS states replace
the Gibbs equilibrium states for interacting systems with infinite number of de-
grees of freedom. See [20] for an introduction to quantum statistical mechanics;
see also [52] for relations between quantum statistical mechanics, number theory
and noncommutative geometry. For relations with Tomita–Takesaki theory and
Connes’ classification of factors the best reference is [41].

Let (A, G, σ) be a C∗-dynamical system consisting of a C∗-algebra A, a locally
compact group G and a continuous action

σ : G→ Aut(A)

of G on A. Of particular interest is when G = R. Then the dynamical system
represents a quantum mechanical system evolving in time. For example, by Stone’s
theorem one knows that continuous one-parameter groups of automorphisms of
A = L(H) are of the form

σt(a) = eitHae−itH ,

where H, the Hamiltonian of the system, is a selfadjoint, in general unbounded,
operator on H. Assuming the operator e−βH is trace class, the corresponding
Gibbs equilibrium state at inverse temperature β = 1

kT > 0 is the state

ϕ(a) =
1

Z(β)
Tr(ae−βH), (A.4)
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where the partition function Z is defined by

Z(β) = Tr(e−βH).

According to Feynman, formula (A.4) for the Gibbs equilibrium state (and
its classical analogue) is the apex of statistical mechanics. It should however be
added that (A.4) is not powerful enough to deal with systems with infinite number
of degrees of freedom (cf. [74], [20], [41] for explanations and examples), and in
general it should be replaced by the KMS equilibrium condition.

Let (A, σt) be a C∗-dynamical system evolving in time. A state ϕ : A → C is
called a KMS state at inverse temperature β > 0 if for all a, b ∈ A there exists a
function Fa,b(z) which is continuous and bounded on the closed strip 0 ≤ Im z ≤ β
in the complex plane and holomorphic in the interior such that for all t ∈ R,

Fa,b(t) = ϕ(aσt(b)) and Fa,b(t+ iβ) = ϕ(σt(b)a).

Let A ⊂ A denote the set of analytic vectors of σt consisting of those elements
a ∈ A such that t 7→ σt(a) extends to a holomorphic function on C. One shows
that A is a dense ∗-subalgebra of A. Now the KMS condition is equivalent to a
twisted trace property for ϕ: for all analytic vectors a, b ∈ A we have

ϕ(ba) = ϕ(aσiβ(b)).

Notice that the automorphism σiβ obtained by analytically continuing σt to imag-
inary time (in fact imaginary temperature!) is only densely defined.

Example A.5. Any Gibbs state is a KMS state as can be easily checked.

Example A.6 (Hecke algebras [18], [52]). A subgroup Γ0 of a group Γ is called
almost normal if every left coset γΓ0 is a finite union of right cosets. In this case
we say (Γ, Γ0) is a Hecke pair. Let L(γ) denote the number of distinct right cosets
Γ0γi in the decomposition

γΓ0 =
⋃
i

Γ0γi,

and let R(γ) = L(γ−1).
The rational Hecke algebra AQ = HQ(Γ, Γ0) of a Hecke pair (Γ, Γ0) consists of

functions with finite support
f : Γ0 \ Γ→ Q

which are right Γ0-invariant, i.e., f(γγ0) = f(γ) for all γ ∈ Γ and γ0 ∈ Γ0. Under
the convolution product

(f1 ∗ f2)(γ) :=
∑
Γ0\Γ

f1(γγ−1
1 )f2(γ1),

HQ(Γ, Γ0) is an associative unital algebra. Its complexification

AC = AQ ⊗Q C
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is a ∗-algebra with an involution given by

f∗(γ) := f(γ−1).

Notice that if Γ0 is normal in Γ then one obtains the group algebra of the quo-
tient group Γ/Γ0. We refer to [18], [52] for the C∗-completion of AC, which is
similar to the C∗-completion of group algebras. There is a one-parameter group
of automorphisms of this Hecke algebra (and its C∗-completion) defined by

(σtf)(γ) =

(
L(γ)

R(γ)

)−it
f(γ).

Let P+ denote the subgroup of the “ax+ b” group with a > 0. The corresponding
C∗-algebra for the Hecke pair (Γ0, Γ) where Γ = P+

Q and Γ0 = P+
Z is the Bost-

Connes C∗-algebra. One feature of these systems is that their partition functions
are expressible in terms of zeta and L-functions of number fields.

Given a normal and faithful state ϕ on a C∗-algebra A one may ask if there is a
one-parameter group of automorphisms of A for which ϕ is a KMS state at inverse
temperature β = 1. Thanks to Tomita’s theory (cf. [41], [15]) one knows that the
answer is positive if A is a von Neumann algebra, which we will denote by M now.
The corresponding automorphism group σϕt , called the modular automorphism
group, is uniquely defined subject to the condition ϕσϕt = ϕ for all t ∈ R.

A von Neumann algebra typically carries many states. One of the first achieve-
ments of Connes, which set his grand classification program of von Neumann al-
gebras in motion, was his proof that the modular automorphism group is unique
up to inner automorphisms. More precisely, for any other state ψ on M there is a
continuous map u from R to the group of unitaries of M such that

σϕt (x) = utσ
ψ
t (x)u−1

t and ut+s = utσ
ϕ
s us.

It follows that the modular automorphism group is independent, up to inner au-
tomorphisms, of the state (or weight) and if Out(M) denotes the quotient of the
group of automorphisms of M by inner automorphisms, any von Neumann algebra
has a god-given dynamical system

σ : R→ Out(M)

attached to it. This is a purely non-abelian phenomenon, as the modular auto-
morphism group is trivial for abelian von Neumann algebras as well for type II
factors. For type III factors it turns out that the modular automorphism group
possesses a complete set of invariants for the isomorphism type of the algebra in
the injective case. This is the beginning of Connes’ grand classification theorems
for von Neumann algebras, for which we refer the reader to his book [41] and
references therein.

Exercise A.1. 1) Show that if a is nilpotent then sp(a) = {0}.
2) Show that

sp(ab) \ {0} = sp(ba) \ {0}.
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Appendix B

Compact operators,
Fredholm operators, and
abstract index theory

The theory of operators on Hilbert space is essential for noncommutative geome-
try. Operator theory is the backbone of von Neumann and C∗-algebras and these
are natural playgrounds for noncommutative measure theory and topology. We
saw, for example, that K-homology has a natural formulation in operator theoretic
terms using compact and Fredholm operators and it is this formulation that lends
itself to generalization to the noncommutative setup. Similarly, the more refined
aspects of noncommutative geometry, like noncommutative metric and Rieman-
nian geometry, can only be formulated through spectral invariants of operators on
Hilbert space.

We assume that the reader is familiar with concepts of Hilbert space, bounded
operators on Hilbert space, and basic spectral theory as can be found in the first
chapters of, e.g. [122], [153], [70]. A good reference for ideals of compact operators
is [165]. For basic Fredholm theory and abstract index theory we recommend [70],
[122]. In this section H will always stand for a Hilbert space over the complex
numbers and L(H) for the algebra of bounded linear operators on H. The adjoint
of an operator T shall be denoted by T ∗.

Our first task in this section is to introduce several classes of ideals in L(H),
most notably ideals of compact operators and the Schatten ideals. Let F(H)
denote the set of finite rank operators on H, i.e., operators whose range is finite
dimensional. F(H) is clearly a two-sided ∗-ideal in L(H) and in fact it is easy to
show that it is the smallest proper two-sided ideal in L(H).

Let
K(H) := F(H)

be the norm closure of F(H). It is clearly a norm closed two-sided ∗-ideal in L(H).
An operator T is called compact if T ∈ K(H). Let H1 denote the closed unit ball
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of H. It can be shown that an operator T ∈ L(H) is compact if and only if the
norm closure T (H1) is a compact subset of H in norm topology. It follows that
the range of a compact operator can never contain a closed infinite dimensional
subspace. The spectrum of a compact operator is a countable subset of C with 0
as its only possible limit point. Any nonzero point in the spectrum is an eigenvalue
whose corresponding eigenspace is finite dimensional. For a compact operator T ,
let

µ1(T ) ≥ µ2(T ) ≥ µ3(T ) ≥ · · ·

denote the sequence of singular values of T . By definition, µn(T ) is the n-th

eigenvalue of |T | := (T ∗T )
1
2 , the absolute value of T ,

It can be shown that if H is separable and infinite dimensional, which is the
case in almost all examples, then K(H) is the unique proper and closed two-sided
ideal of L(H). In this case it is also the largest proper two-sided ideal of L(H).
Thus for any other two sided operator ideal J we have

F(H) ⊂ J ⊂ K(H).

An interesting point of view, advocated by Connes and of fundamental impor-
tance for noncommutative geometry [41], is that compact operators are the true
counterparts of infinitesimals in noncommutative geometry. If we regard L(H) as
a replacement for C in noncommutative geometry (as in going from c-numbers to
q-numbers in quantum mechanics), then compact operators should be regarded as
infinitesimals. Classically, an infinitesimal is a ‘number’ whose absolute value is
less than any positive number! The following lemma shows that the norm of a
compact operator can be made as small as we wish, provided we stay away from
a finite dimensional subspace:

Lemma B.1. Let T be a compact operator. For any ε > 0 there is a finite
dimensional subspace V ⊂ H such that ‖PTP‖ < ε, where P is the orthogonal
projection onto the orthogonal complement of V .

The first thorough study of the ideal structure of L(H) was done by Calkin
[28]. Among the two-sided ideals of L(H), and perhaps the most important ones
for noncommutative geometry, are the Schatten ideals, and ideals related to the
Dixmier trace [41]. Let us recall the definition of the former class of ideals next.

A compact operator T ∈ K(H) is called a trace class operator if

∞∑
n=1

µn(T ) <∞.

Let en, n ≥ 1, be an orthonormal basis of H. It is easy to see that if T is trace
class then

Tr(T ) :=
∑
i

〈Tei, ei〉
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is finite and is independent of the choice of basis. We denote the set of trace class
operators by L1(H). It is a two sided ∗-ideal in L(H). Using the definition of the
trace Tr, it is easy to check that if A and B are both trace class, then

Tr(AB) = Tr(BA). (B.1)

What is much less obvious though, and that is what we actually used in Chapter
4, is that if both AB and BA are trace class then (B.1) still holds. A proof of this
can be given using Lidski’s theorem. This theorem is one of the hardest facts to
establish about trace class operators (cf. [165] for a proof).

Theorem B.1 (Lidski’s theorem). If A is a trace class operator then

Tr(A) =

∞∑
i

λi,

where the summation is over the set of eigenvalues of A.

Now since for any two operators A and B, AB and BA have the same spectrum
(and spectral multiplicity) except for 0 (cf. Exercise A.1) we obtain the

Corollary B.1. Assume A and B are bounded operators such that AB and BA
are both trace class. Then (B.1) holds.

Next we define the class of Schatten-p ideals for p ∈ [1,∞) by

Lp(H) := {T ∈ L(H); |T |p ∈ L1(H)}.

Thus T ∈ Lp(H) if and only if

∞∑
n=1

µn(T )p <∞.

It is clear that if p ≤ q then Lp(H) ⊂ Lq(H). The Schatten p-norm is defined by

‖T‖pp =

∞∑
n=1

µn(T )p.

Proposition B.1. 1) Lp(H) is a two-sided ideal of L(H).

2) (Hölder inequality) Let p, q, r ∈ [1,∞] with 1
r = 1

p + 1
q . For any S ∈ Lp(H)

and T ∈ Lq(H), we have ST ∈ Lr(H) and

‖ST‖r ≤ ‖S‖p‖T‖q.

In particular if Ai ∈ Ln(H) for i = 1, 2, . . . , n, then their product A1A2 . . . An
is in L1(H).
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Example B.1. 1. Let us fix an orthonormal basis en, n = 0, 1, 2, . . . , in H. The
diagonal operator defined by Ten = λn en, n ≥ 0 is compact if and only if λn → 0
as n → ∞. It is in Lp(H) if and only if

∑
i |λi|p < ∞. By the spectral theorem

for compact operators, every selfadjoint compact operator is unitarily equivalent
to a diagonal operator as above.

2. Integral operators with L2 kernels provide typical examples of operators in
L2(H), the class of Hilbert–Schmidt operators. Let K be a complex-valued square
integrable function on X×X where (X, µ) is a measure space. Then the operator
TK on L2(X,µ) defined by

(TKf)(x) =

∫
X

K(x, y)f(y) dµ

is a Hilbert–Schmidt (in particular compact) operator, with

‖TK‖22 = ‖K‖22 =

∫
X

∫
X

|K(x, y)|2 dxdy.

Under suitable conditions, e.g. when X is compact Hausdorff and the kernel
K is continuous, TK is a trace class operator and

Tr(TK) =

∫
X

K(x, x) dx.

In the remainder of this section we shall recall some basic definitions and facts
about Fredholm operators and index. A bounded linear operator T : H1 → H2

between two Hilbert spaces is called a Fredholm operator if its kernel and cokernel
are both finite dimensional:

dim ker(T ) <∞, dim coker(T ) <∞.

The index of a Fredholm operator is the integer

index(T ) := dim ker(T )− dim coker(T )

= dim ker(T )− dim ker(T ∗).

We list some of the standard properties of Fredholm operators and the index
that are frequently used in noncommutative geometry:

1. (Atkinson’s theorem) A bounded operator T : H1 → H2 is Fredholm if
and only if it is invertible modulo compact operators, that is, if there exists an
operator S : H2 → H1 such that 1− ST and 1− TS are compact operators on H1

and H2 respectively. S is called a parametrix for T . It can also be shown that T
is Fredholm if and only if it is invertible module finite rank operators.

Let C := L(H)/K(H) denote the Calkin algebra and π : L(H) → C be the
quotient map. (By general C∗-algebra theory, a quotient of a C∗-algebra by a
closed two sided ∗-ideal is a C∗-algebra in a natural way). Thus Atkinson’s theorem
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can be reformulated as saying that an operator T is Fredholm if and only if π(T )
is invertible in the Calkin algebra. This for example immediately implies that
Fredholm operators form an open subset of L(H) which is invariant under compact
perturbations.

2. If T1 and T2 are Fredholm operators then T1T2 is also a Fredholm operator
and

index(T1T2) = index(T1) + index(T2).

3. The Fredholm index is stable under compact perturbations: if K is a com-
pact operator and T is Fredholm, then T +K is Fredholm and

index(T +K) = index(T ).

4. The Fredholm index is a homotopy invariant: if Tt, t ∈ [0, 1] is a norm
continuous family of Fredholm operators then

index(T0) = index(T1).

It is this homotopy invariance, or continuity, of the index that makes it computable
and extremely useful. Note that dim kerTt can have jump discontinuities.

5. Let Fred(H) denote the set of Fredholm operators on a separable infinite
dimensional Hilbert space. It is an open subset of L(H) and the index map

index: Fred(H)→ Z

induces a one-to-one correspondence between the connected components of Fred(H)
and Z.

6. Fred(H) is a classifying space for K-theory. More precisely, by a theorem
of Atiyah and Jänich, for any compact Hausdorff space X, we have a canonical
isomorphism of abelian groups

K0(X) ' [X, Fred(H)],

where [X, Fred(H)] is the set of homotopy classes of norm continuous maps from
X → Fred(H). Thus continuous families of Fredholm operators on X, up to
homotopy, gives the K-theory of X.

7. (Calderón’s formula [27]) Let P : H1 → H2 be a Fredholm operator and let
Q : H2 → H1 be a parametrix for P . Assume that for some positive integer n,
(1− PQ)n and (1−QP )n are both trace class operators. Then we have

index(P ) = Tr(1−QP )n − Tr(1− PQ)n. (B.2)

Here is an alternative formulation of the above result. Let H = H1⊕H2. It is a
super Hilbert space with even and odd parts given by H1 and H2. Let F =

(
0 Q
P 0

)
and γ be the corresponding grading operator. Then we have

index(P ) = Trs(1− F 2)n, (B.3)

where Trs is the supertrace of trace class operators, defined by Trs(X) = Tr(γX).
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Example B.2. We give a few examples of Fredholm operators and Fredholm
index.

1. Any operator T : H1 → H2 where both H1 and H2 are finite dimensional is
Fredholm. Its index is independent of T and is given by

index (T ) = dim(H1)− dim(H2).

If only one of H1 or H2 is finite dimensional then no T can be Fredholm. This
shows that the class of Fredholm operators and index is a purely infinite dimen-
sional phenomenon and are only interesting when both H1 and H2 are infinite
dimensional.

2. Let us fix an orthonormal basis en, n = 0, 1, 2, . . . , for H. The unilateral
shift operator is defined by

T (ei) = ei+1, i ≥ 0.

It is easy to see that T is injective and its range is the closed subspace spanned by
ei, i ≥ 1. Thus T is a Fredholm operator with index(T ) = −1. Its adjoint T ∗ (the
backward shift) has index +1. Their powers Tm and T ∗m are m-step forward and
backward shifts, respectively, with index(Tm) = m and index(T ∗m) = −m.

3. We saw in Section 4.2 that for any odd Fredholm modules (H, F ) over an
algebra A and an invertible element U ∈ A the operator PUP : PH → PH is
a Fredholm operator, where P = 1+F

2 is the projection onto the 1-eigenspace of
F . Similarly for an even Fredholm module (H, F, γ) over A and an idempotent
e ∈ A, the operator F+

e : (eFe)+ : e+H+ → e−H− is Fredholm.

4. Elliptic differential operators acting on smooth sections of vector bundles
over closed manifolds define Fredholm operators on the corresponding Sobolev
spaces of sections. Computing the index of such Fredholm operators is what the
index theorem of Atiyah–Singer achieves. Let M be a smooth manifold and let E
and F be smooth complex vector bundles on M . Let

D : C∞(E)→ C∞(F )

be a liner differential operator. This means that D is a C-linear map which is
locally expressible by an m × n matrix of differential operators. This matrix of
course depends on the choice of local coordinates on M and local frames for E and
F . The principal symbol of D is defined by replacing differentiation by covectors in
the leading order terms D. The resulting ‘matrix-valued function on the cotangent
bundle’

σD ∈ C∞(Hom(π∗E, π∗F ))

can be shown to be invariantly defined. Here π : T ∗M →M is the natural projec-
tion map of the cotangent bundle. A differential operator D is called elliptic if for
all x ∈M and all nonzero ξ ∈ T ∗xM , the principal symbol σD(x, ξ) is an invertible
matrix.



B Compact operators, Fredholm operators, and abstract index theory 207

Let W s(E) denote the Sobolev space of sections of E (roughly speaking, it
consists of sections whose ‘derivatives of order s’ are square integrable). The main
results of the theory of linear elliptic PDE’s show that for each s ∈ R, D has a
unique extension to a bounded and Fredholm operator D : W s(E) → W s−n(F )
between Sobolev spaces (n is the order of the differential operator D). Moreover
the Fredholm index of D is independent of s and coincides with the index defined
using smooth sections.

Exercise B.1. Any invertible operator is clearly Fredholm and its index is zero.
Thus any compact perturbation of a an invertible operator is Fredholm and its
index is zero. Is it true that any Fredholm operator with zero index is a compact
perturbation of an invertible operator?

Exercise B.2. Prove Calderón’s formula (B.2) for n = 1.

Exercise B.3. Formula (B.3) relates the Fredholm index with the operator trace.
Here is a similar formula. Let H be a Z2-graded Hilbert space and let D be an
unbounded odd selfadjoint operator on H such that e−tD

2

is a trace class operator
for all t > 0. Show that index(D) := dim ker(D+) − dim ker(D−) is well defined
and is given by the McKean–Singer formula

index(D) = Trs(e
−tD2

) for all t > 0.
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Projective modules

Let A be a unital algebra over a commutative ring k and let MA denote the
category of right A-modules. We assume that our modules are unitary in the
sense that the unit of the algebra acts as the identity on the module. A morphism
of this category is a right A-module map f : M → N , i.e., f is additive and
f(ma) = f(m)a for all a in A and m in M .

A free module, indexed by a set I, is a module of the type

M = AI =
⊕
I

A,

where the action of A is by componentwise right multiplication. Equivalently, M
is free if and only if there are elements mi ∈ M , i ∈ I, such that any m ∈ M can
be uniquely expressed as a finite sum m =

∑
imiai. A module M is called finite

(= finitely generated) if there are elements m1,m2, . . . ,mk in M such that every
element of m ∈M can be expressed as m = m1a1 + · · ·+mkak, for some ai ∈ A.
Equivalently, M is finite if there is a surjective A-module map Ak →M for some
integer k.

Free modules correspond to trivial vector bundles. To obtain a more interesting
class of modules we consider the class of projective modules. A module P is called
projective if it is a direct summand of a free module, that is, if there exists a
module Q such that

P ⊕Q ' AI .
A module is said to be finite projective (= finitely generated projective), if it is

both finitely generated and projective.

Lemma C.1. Let P be an A-module. The following conditions on P are equiva-
lent:

1. P is projective.

2. Any surjection

M
f−→ P → 0,
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splits in the category of A-modules.

3. For all A-modules N and M and morphisms f, g with g surjective in the
following diagram, there exists a morphism f̃ such that the following diagram
commutes:

P

∃f̃

~~}
}

}
}

}
}

f

��
N

g // M // 0

We say that f̃ is a lifting of f along g.

4. The functor
HomA(P,−) : MA →Mk

is exact in the sense that for any short exact sequence of A-modules

0→ R→ S → T → 0,

the sequence of k-modules

0→ HomA(P,R)→ HomA(P, S)→ HomA(P, T )→ 0

is exact.

Example C.1. We give a few examples of projective modules:

1. Free modules are projective.

2. If A is a division ring, then any A-module is free, hence projective.

3. M = Z/nZ, n ≥ 2, is not projective as a Z-module.

4. A direct sum P =
⊕

i Pi of modules is projective if and only if each summand
Pi is projective.

We refer to Section 1.3 for more examples of finite projective modules and
methods of constructing them, e.g. via idempotents in matrix algebras.
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Equivalence of categories

There are at least two ways to compare two categories with each other: isomor-
phism and equivalence. Isomorphism of categories is a very strong requirement
and is hardly useful. Equivalence of categories, on the other hand, is a much more
flexible concept and is very useful.

Categories A and B are said to be equivalent if there is a functor F : A → B
and a functor G : B → A, called a quasi-inverse of F , such that

F ◦G ' 1B and G ◦ F ' 1A,

where ' means isomorphism, or natural equivalence, of functors. This means for
every X ∈ objA, Y ∈ objB,

FG(Y ) ∼ Y and GF (X) ∼ X,

where ∼ denotes isomorphism of objects.
If F ◦ G = 1B and G ◦ F = 1A (equality of functors), then we say that the

categories A and B are isomorphic, and F is an isomorphism.
The opposite, or dual, of a category A, is a category denoted by Aop. It has

the same class of objects as A and its morphisms are given by HomAop(X,Y ) =
HomA(Y,X). Categories A and B are said to be antiequivalent if the opposite
category Aop is equivalent to B.

Note that a functor F : A → B is an isomorphism if and only if F : objA →
objB is one-to-one, onto and F is full and faithful in the sense that for all X,Y ∈
objA,

F : HomA(X,Y )→ HomB(F (X), F (Y ))

is one-to-one (faithful) and onto (full).
It is easy to see that an equivalence F : A → B is full and faithful, but it may

not be one-to-one, or onto on the class of objects. As a result an equivalence
may have many quasi-inverses. The following concept clarifies the situation with
objects of equivalent categories.

211



212 D Equivalence of categories

A subcategory A′ of a category A is called skeletal if 1) the embedding A′ → A
is full, i.e., if

HomA′(X,Y ) = HomA(X,Y )

for all X,Y ∈ objA′, and 2) for any object X ∈ objA, there is a unique object
X ′ ∈ objA′ isomorphic to X. Any skeleton of A is equivalent to A and it is not
difficult to see that two categories A and B are equivalent if and only if they have
isomorphic skeletal subcategories A′ and B′.

In some examples, like the Gelfand–Naimark theorem, there is a canonical
choice for a quasi-inverse for a given equivalence functor F (F = C0 and G is the
spectrum functor). There are instances, however, like the Serre–Swan theorem,
where there is no canonical choice for a quasi-inverse. The following proposition
gives a necessary and sufficient condition for a functor F to be an equivalence of
categories. We leave its simple proof to the reader.

Proposition D.1. A functor F : A → B is an equivalence of categories if and
only if

a) F is full and faithful, and

b) any object Y ∈ objB is isomorphic to an object of the form F (X), for some
X ∈ objA.

A functor satisfying condition b) in the above proposition is called essentially
surjective.

Exercise D.1. Show that the category of finite dimensional vector spaces over a
field is equivalent to its opposite category, but the category of all vector spaces
over a field is not equivalent to its opposite. There is a similar problem with the
category of finite sets and the category of all sets.
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[35] A. Connes, C∗ algébres et géométrie différentielle. C. R. Acad. Sci. Paris Sér. A-B
290 (1980), no. 13, A599–A604. ix, 21, 22, 130, 154, 164, 165, 166

[36] A. Connes, Spectral sequence and homology of currents for operator algebras. Ober-
wolfach Tagungsber. 41/81, Funktionalanalysis und C∗-Algebren, 27-9/3-10, 1981.
ix, xii, xv, 85, 123

[37] A. Connes, A survey of foliations and operator algebras. In Operator algebras and
applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math. 38, Amer.
Math. Soc., Providence, R.I., 1982, 521–628. ix, 185

[38] A. Connes, Cohomologie cyclique et foncteurs Extn. C. R. Acad. Sci. Paris Sr. I
Math. 296 (1983), no. 23, 953–958. xv, 128, 130, 136, 140, 141, 142, 144

[39] A. Connes, Noncommutative differential geometry. Chapter I: The Chern character
in K-homology, Preprint IHES octobre 1982; Chapter II: de Rham homology and
noncommutative algebra, Preprint IHES février 1983; Inst. Hautes tudes Sci. Publ.
Math. 62 (1985), 41–144. ix, xii, xvi, 88, 89, 93, 100, 107, 111, 112, 113, 114, 116,
123, 125, 127, 130, 131, 138, 147, 148, 150, 154, 164, 166, 167, 174, 177, 188

[40] A. Connes, Cyclic cohomology and the transverse fundamental class of a foliation.
In Geometric methods in operator algebras (Kyoto, 1983), Pitman Res. Notes Math.
Ser. 123, Longman Sci. Tech., Harlow 1986, 52–144.

[41] A. Connes, Noncommutative geometry. Academic Press, San Diego, Ca., 1994. xii,
xiv, xv, 10, 21, 45, 49, 50, 52, 54, 55, 60, 61, 71, 72, 74, 77, 82, 83, 106, 111, 128,
149, 154, 158, 159, 166, 168, 182, 183, 184, 197, 198, 199, 202

[42] A. Connes, Trace formula in noncommutative geometry and the zeros of the Rie-
mann zeta function. Selecta Math. (N.S.) 5 (1999), no. 1, 29–106. xv

[43] A. Connes, C. Consani and M. Marcolli, Noncommutative geometry and motives:
the thermodynamics of endomotives. Adv. Math. 214 (2007), no. 2, 761–831. 140

[44] A. Connes and M. Dubois-Violette, Moduli space and structure of noncommutative
3-spheres. Lett. Math. Phys. 66 (2003), no. 1–2, 91–121 84

[45] A. Connes and M. Dubois-Violette, Yang–Mills and some related algebras. J. Al-
gebra 261 (2003), 172–185.

[46] A. Connes and M. Dubois-Violette, Noncommutative finite-dimensional manifolds.
II. Moduli space and structure of noncommutative 3-spheres. Comm. Math. Phys.
281 (2008), no. 1, 23–127. 22

[47] A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative
geometry. Comm. Math. Phys. 199 (1998), 203–242. xv, 41

[48] A. Connes and D. Kreimer, Renormalization in Quantum Field Theory and the
Riemann-Hilbert problem I. Comm. Math. Phys. 210 (2000), no. 1, 249–273. xv,
41

[49] A. Connes and D. Kreimer, Lessons from quantum field theory: Hopf algebras and
spacetime geometries. Mosh Flato (1937–1998). Lett. Math. Phys. 48 (1999), no.
1, 85–96. 41



218 Bibliography

[50] A. Connes and G. Landi, Noncommutative manifolds, the instanton algebra and
isospectral deformations. Comm. Math. Phys. 221 (2001), no. 1, 141–159.

[51] A. Connes and M. Marcolli, A walk in the noncommutative garden. In An invita-
tion to noncommutative geometry (ed. by M. Khalkhali and M. Marcolli), World
Scientific Publishing, Hackensack, N.J., 2008, 1–128. 41, 110

[52] A. Connes and M. Marcolli, Noncommutative geometry, quantum fields and mo-
tives. Amer. Math. Soc. Colloq. Publ. 55, Amer. Math. Soc., Providence, R.I.,
2008. xiv, xv, 41, 182, 197, 198, 199

[53] A. Connes and H. Moscovici, Cyclic cohomology, the Novikov conjecture and hy-
perbolic groups. Topology 29 (1990), no. 3, 345–388. xv

[54] A. Connes and H. Moscovici, The local index formula in noncommutative geometry.
Geom. Funct. Anal. 5 (1995), no. 2, 174–243. xiii, xv, 42, 188

[55] A. Connes and H. Moscovici, Hopf algebras, cyclic cohomology and the transverse
index theorem, Comm. Math. Phys. 198 (1998), no. 1, 199–246. xiii, 40, 41, 42,
140, 144, 145

[56] A. Connes and H. Moscovici, Cyclic cohomology and Hopf algebra symmetry. Con-
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