
Introduction

One of the major advances of science in the 20th century was the discovery of a math-
ematical formulation of quantum mechanics by Heisenberg in 1925 [94].1 From a
mathematical point of view, this transition from classical mechanics to quantum me-
chanics amounts to, among other things, passing from the commutative algebra of
classical observables to the noncommutative algebra of quantum mechanical observ-
ables. To understand this better we recall that in classical mechanics an observable of
a system (e.g. energy, position, momentum, etc.) is a function on a manifold called
the phase space of the system. Classical observables can therefore be multiplied in a
pointwise manner and this multiplication is obviously commutative. Immediately after
Heisenberg’s work, ensuing papers by Dirac [67] and Born–Heisenberg–Jordan [16],
made it clear that a quantum mechanical observable is a (selfadjoint) linear operator
on a Hilbert space, called the state space of the system. These operators can again be
multiplied with composition as their multiplication, but this operation is not necessarily
commutative any longer.2 In fact Heisenberg’s commutation relation
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shows that position and momentum operators do not commute and this in turn can
be shown to be responsible for the celebrated uncertainty principle of Heisenberg.
Thus, to get a more accurate description of nature one is more or less forced to replace
the commutative algebra of functions on a space by the noncommutative algebra of
operators on a Hilbert space.

A little more than fifty years after these developments Alain Connes realized that
a similar procedure can in fact be applied to areas of mathematics where the classical
notions of space (e.g. measure space, locally compact space, or smooth space) lose
its applicability and relevance [37], [35], [36], [39]. The inadequacy of the classical
notion of space manifests itself for example when one deals with highly singular “bad
quotients”: spaces such as the quotient of a nice space by the ergodic action of a group,
or the space of leaves of a foliation in the generic case, to give just two examples. In all
these examples the quotient space is typically ill-behaved, even as a topological space.
For instance it may fail to be even Hausdorff, or have enough open sets, let alone being
a reasonably smooth space. The unitary dual of a discrete group, except when the
group is abelian or almost abelian, is another example of an ill-behaved space.

1A rival proposal which, by the Stone–von Neumann uniqueness theorem, turned out to be essentially
equivalent to Heisenberg’s was arrived at shortly afterwards by Schrödinger [161]. It is however Heisenberg’s
matrix mechanics that directly and most naturally relates to noncommutative geometry.

2Strictly speaking selfadjoint operators do not form an algebra since they are not closed under multipli-
cation. By an algebra of observables we therefore mean the algebra that they generate.
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One of Connes’ key observations is that in all these situations one can define a
noncommutative algebra through a universal method which we call the noncommutative
quotient construction that captures most of the information hidden in these unwieldy
quotients. Examples of this noncommutative quotient construction include the crossed
product by an action of a group, or in general by an action of a groupoid. In general
the noncommutative quotient is the groupoid algebra of a topological groupoid.

This new notion of geometry, which is generally known as noncommutative geome-
try, is a rapidly growing new area of mathematics that interacts with and contributes to
many disciplines in mathematics and physics. Examples of such interactions and con-
tributions include: the theory of operator algebras, index theory of elliptic operators,
algebraic and differential topology, number theory, the Standard Model of elementary
particles, the quantum Hall effect, renormalization in quantum field theory, and string
theory.

To understand the basic ideas of noncommutative geometry one should perhaps first
come to grips with the idea of a noncommutative space. What is a noncommutative
space? The answer to this question is based on one of the most profound ideas in
mathematics, namely a duality or correspondence between algebra and geometry,3

Algebra  ! Geometry

according to which every concept or statement in Algebra corresponds to, and can be
equally formulated by, a similar concept and statement in Geometry.

On a physiological level this correspondence is perhaps related to a division in the
human brain: one computes and manipulates symbols with the left hemisphere of the
brain and one visualizes things with the right hemisphere. Computations evolve in time
and have a temporal character, while visualization is instant and immediate. It was for
a good reason that Hamilton, one of the creators of modern algebraic methods, called
his approach to algebra, e.g. to complex numbers and quaternions, the science of pure
time [92].

We emphasize that the algebra-geometry correspondence is by no means a new
observation or a new trend in mathematics. On the contrary, this duality has always
existed and has been utilized in mathematics and its applications very often. The ear-
liest example is perhaps the use of numbers in counting. It is, however, the case that
throughout history each new generation of mathematicians has found new ways of
formulating this principle and at the same time broadening its scope. Just to mention
a few highlights of this rich history we quote Descartes (analytic geometry), Hilbert
(affine varieties and commutative algebras), Gelfand–Naimark (locally compact spaces
and commutative C �-algebras), and Grothendieck (affine schemes and commutative

3For a modern and very broad point of view on this duality, close to the one adopted in this book, read
the first section of Shafarevich’s book [164] as well as Cartier’s article [31].
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rings). A key idea here is the well-known relation between a space and the commu-
tative algebra of functions on that space. More precisely, there is a duality between
certain categories of geometric spaces and the corresponding categories of algebras
representing those spaces. Noncommutative geometry builds on, and vastly extends,
this fundamental duality between classical geometry and commutative algebras.

For example, by a celebrated theorem of Gelfand and Naimark [82], one knows
that the information about a compact Hausdorff space is fully encoded in the algebra of
continuous complex-valued functions on that space. The space itself can be recovered
as the space of maximal ideals of the algebra. Algebras that appear in this way are
commutative C �-algebras. This is a remarkable theorem since it tells us that any
natural construction that involves compact spaces and continuous maps between them
has a purely algebraic reformulation, and vice-versa any statement about commutative
C �-algebras andC �-algebraic maps between them has a purely geometric-topological
meaning.

Thus one can think of the category of not necessarily commutative C �-algebras
as the dual of an, otherwise undefined, category of noncommutative locally compact
spaces. What makes this a successful proposal is, first of all, a rich supply of examples
and, secondly, the possibility of extending many of the topological and geometric
invariants to this new class of ‘spaces’ and applications thereof.

Noncommutative geometry has as its special case, in fact as its limiting case, classi-
cal geometry, but geometry expressed in algebraic terms. In some respect this should be
compared with the celebrated correspondence principle in quantum mechanics where
classical mechanics appears as a limit of quantum mechanics for large quantum num-
bers or small values of Planck’s constant. Before describing the tools needed to study
noncommutative spaces let us first briefly recall a couple of other examples from a long
list of results in mathematics that put in duality certain categories of geometric objects
with a corresponding category of algebraic objects.

To wit, Hilbert’s Nullstellensatz states that the category of affine algebraic vari-
eties over an algebraically closed field is equivalent to the opposite of the category of
finitely generated commutative algebras without nilpotent elements (so-called reduced
algebras). This is a perfect analogue of the Gelfand–Naimark theorem in the world of
algebraic geometry. Similarly, Swan’s (resp. Serre’s) theorem states that the category
of vector bundles over a compact Hausdorff space (resp. over an affine algebraic vari-
ety) X is equivalent to the category of finitely generated projective modules over the
algebra of continuous functions (resp. the algebra of regular functions) on X .

A pervasive idea in noncommutative geometry is to treat certain classes of noncom-
mutative algebras as noncommutative spaces and to try to extend tools of geometry,
topology, and analysis to this new setting. It should be emphasized, however, that,
as a rule, this extension is hardly straightforward and most of the times involves sur-
prises and new phenomena. For example, the theory of the flow of weights and the
corresponding modular automorphism group in von Neumann algebras [41] has no
counterpart in classical measure theory, though the theory of von Neumann algebras
is generally regarded as noncommutative measure theory. Similarly, as we shall see in
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Chapters 3 and 4 of this book, the extension of de Rham (co)homology of manifolds to
cyclic (co)homology for noncommutative algebras was not straightforward and needed
some highly non-trivial considerations. As a matter of fact, de Rham cohomology can
be defined in an algebraic way and therefore can be extended to all commutative alge-
bras and to all schemes. This extension, however, heavily depends on exterior products
of the module of Kähler differentials and on the fact that one works with commutative
algebras. In the remainder of this introduction we focus on topological invariants that
have proved very useful in noncommutative geometry.

Of all topological invariants for spaces, topologicalK-theory has the most straight-
forward extension to the noncommutative realm. Recall that topological K-theory
classifies vector bundles on a topological space. Motivated by the above-mentioned
Serre–Swan theorem, it is natural to define, for a not necessarily commutative ring A,
K0.A/ as the group defined by the semigroup of isomorphism classes of finite projec-
tive A-modules. Provided that A is a Banach algebra, the definition of K1.A/ follows
the same pattern as for spaces, and the main theorem of topologicalK-theory, the Bott
periodicity theorem, extends to all Banach algebras [14].

The situation was much less clear for K-homology, a dual of K-theory. By the
work of Atiyah [6], Brown–Douglas–Fillmore [22], and Kasparov [106], one can say,
roughly speaking, that K-homology cycles on a space X are represented by abstract
elliptic operators on X and, whereas K-theory classifies the vector bundles on X , K-
homology classifies the abstract elliptic operators onX . The pairing betweenK-theory
and K-homology takes the form hŒD�; ŒE�i D index.DE /, the Fredholm index of the
elliptic operator D with coefficients in the ‘vector bundle’ E. Now one good thing
about this way of formulating K-homology is that it almost immediately extends to
noncommutative C �-algebras. The two theories are unified in a single theory called
KK-theory, due to Kasparov [106].

Cyclic cohomology was discovered by Connes in 1981 [36], [39] as the right non-
commutative analogue of the de Rham homology of currents and as a receptacle for
a noncommutative Chern character map from K-theory and K-homology. One of the
main motivations was transverse index theory on foliated spaces. Cyclic cohomology
can be used to identify the K-theoretic index of transversally elliptic operators which
lie in the K-theory of the noncommutative algebra of the foliation. The formalism of
cyclic cohomology and noncommutative Chern character maps form an indispensable
part of noncommutative geometry. A very interesting recent development in cyclic co-
homology theory is the Hopf cyclic cohomology of Hopf algebras and Hopf (co)module
(co)algebras in general. Motivated by the original work in [54], [55] this theory has
now been extended in [89], [90].

The following “dictionary” illustrates noncommutative analogues of some of the
classical theories and concepts originally conceived for spaces. In this book we deal
only with a few items of this ever expanding dictionary.
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commutative noncommutative

measure space von Neumann algebra

locally compact space C �-algebra

vector bundle finite projective module

complex variable operator on a Hilbert space

infinitesimal compact operator

range of a function spectrum of an operator

K-theory K-theory

vector field derivation

integral trace

closed de Rham current cyclic cocycle

de Rham complex Hochschild homology

de Rham cohomology cyclic homology

Chern character Connes–Chern character

Chern–Weil theory noncommutative Chern–Weil theory

elliptic operator K-cycle

spinc Riemannian manifold spectral triple

index theorem local index formula

group, Lie algebra Hopf algebra, quantum group

symmetry action of Hopf algebra

Noncommutative geometry is already a vast subject. This book is an introduction
to some of its basic concepts suitable for graduate students in mathematics and physics.
While the idea was to write a primer for the novice to the subject, some acquaintance
with functional analysis, differential geometry and algebraic topology at a first year
graduate level is assumed. To get a better sense of the beauty and depth of the subject
the reader can go to no better place than the authoritative book [41]. There are also
several introductions to the subject, with varying lengths and attention to details, that
the reader can benefit from [85], [174], [144], [97], [118], [108], [133], [135], [64],
[63]. They each emphasize rather different aspects of noncommutative geometry. For
the most complete account of what has happened in the subject after the publication of
[41], the reader should consult [52] and references therein.

To summarize our introduction we emphasize that what makes the whole project
of noncommutative geometry a viable and extremely important enterprize are the fol-
lowing three fundamental points:
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� There is a vast repertoire of noncommutative spaces and there are very general
methods to construct them. For example, consider a bad quotient of a nice and smooth
space by an equivalence relation. Typically the (naive) quotient space is not even
Hausdorff and has very bad singularities, so that it is beyond the reach of classical
geometry and topology. Orbit spaces of group actions and the space of leaves of a
foliation are examples of this situation. In algebraic topology one replaces such naive
quotients by homotopy quotients, by using the general idea of a classifying space. This
is however not good enough and not general enough, as the classifying space is only a
homotopy construction and does not see any of the smooth structure. A key observation
throughout [41] is that in all these situations one can attach a noncommutative space,
e.g. a (dense subalgebra of a)C �-algebra or a von Neumann algebra, that captures most
of the information hidden in these quotients. The general construction starts by first
replacing the equivalence relation by a groupoid and then considering the associated
groupoid algebra in its various completions. We shall discuss this technique in detail
in Chapter 2 of this book.

�The possibility of extending many of the tools of classical geometry and topology
that are used to probe classical spaces to this noncommutative realm. The topological
K-theory of Atiyah and Hirzebruch, and its dual theory known as K-homology, as
well as the Bott periodicity theorem, have a natural extension to the noncommutative
world [14]. Finding the right noncommutative analogue of de Rham cohomology and
Chern–Weil theory was less obvious and was achieved thanks to the discovery of cyclic
cohomology [36], [38]. In Chapters 3 and 4 of this book we shall give a detailed account
of cyclic cohomology and its relation with K-theory and K-homology. Another big
result of recent years is the local index formula of Connes and Moscovici [54]. Though
we shall not discuss it in this book, it suffices to say that this result comprises a vast
extension of the classical Atiyah–Singer index theorem to the noncommutative setup.

�Applications. Even if we wanted to restrict ourselves just to classical spaces, meth-
ods of noncommutative geometry would still be very relevant and useful. For example,
a very natural and general proof of the Novikov conjecture on the homotopy invari-
ance of higher signatures of non-simply connected manifolds (with word hyperbolic
fundamental groups) can be given using the machinery of noncommutative geometry
[53]. The relevant noncommutative space here is the (completion of the) group ring
of the fundamental group of the manifold. We also mention the geometrization of the
Glashow–Weinberg–Salam Standard Model of elementary particles via noncommuta-
tive geometry (cf. [52] and references therein). Moving to more recent applications, we
mention the approach to the Riemann hypothesis and the spectral realization of zeros
of the zeta function via noncommutative spaces [18], [42] as well as the mathematical
underpinning of renormalization in quantum field theory as a Riemann–Hilbert Cor-
respondence [47], [48]. These results have brought noncommutative geometry much
closer to central areas of modern number theory, algebraic geometry and high energy
physics. We shall not follow these developments in this book. For a complete and up
to date account see [52].
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Let me now briefly explain the contents of this book. Chapter 1 describes some of the
fundamental algebra-geometry correspondences that are vital for a better understanding
of noncommutative geometry. The most basic ones, for noncommutative geometry at
least, are the Gelfand–Naimark and the Serre–Swan theorems. They lead to ideas of
noncommutative space and noncommutative vector bundles. We give several examples
of noncommutative spaces, most notably noncommutative tori, groupC �-algebras, and
quantum groups. The last section of this first chapter is a self contained introduction
to Hopf algebras and quantum groups and the idea of symmetry in noncommutative
geometry. Chapter 2 is about forming noncommutative quotients via groupoids and
groupoid algebras. This is one of the most universal and widely used methods for
constructing noncommutative spaces. Another important concept in this chapter is the
idea of Morita equivalence of algebras, both at purely algebraic andC �-algebraic levels.
Among other things, Morita equivalence clarifies the relation between noncommutative
quotients and classical quotients. Chapter 3 is devoted to cyclic (co)homology, its
relation with Hochschild (co)homology through Connes’ long sequence and spectral
sequence, and its relation with de Rham (co)homology. Three different definitions of
cyclic cohomology are given in this chapter, each shedding light on a different aspect
of the theory. Continuous versions of cyclic and Hochschild theory for topological
algebras is developed in this section. This plays an important role in applications. We
also give several important examples of algebras for which these invariants are fully
computed. In Chapter 4 we define the Connes–Chern character map for bothK-theory
and K-homology. For K-theory it is the noncommutative analogue of the classical
Chern character map fromK-theory to de Rham cohomology. It can also be described
as a pairing between K-theory and cyclic cohomology. Fredholm modules, as cycles
for K-homology, are introduced next and, for finitely summable Fredholm modules,
their Connes–Chern character with values in cyclic cohomology is introduced. Then we
use these pairings to prove an index formula from [39] relating the analytic Fredholm
index of a finitely summable Fredholm module to its topological index. This is an
example of an index formula in noncommutative geometry. The very last section of
this chapter summarizes many ideas of the book into one commuting diagram which
is the above mentioned index formula. In an effort to make this book as self-contained
as possible, we have added four appendices covering basic material on C �-algebras,
compact and Fredholm operators, projective modules, and some basic category theory
language.

This book is partly based on series of lectures I gave at the Fields Institute in
Toronto, Canada, in Fall 2002 and at the second and fifth Annual Spring Institute on
Noncommutative Geometry and Operator Algebras in spring 2004 and spring 2007 at
Vanderbilt University, USA.

It is a great pleasure to acknowledge my deepest gratitude to Alain Connes for his
invaluable advice, support, and encouragement over many years and during the writ-
ing of this book. I would like to warmly thank Klaas Landsman and Joseph Varilly
who carefully read the entire manuscript and provided me with many valuable sug-
gestions and corrections. I would also like to sincerely thank Manfred Karbe and



xvi Introduction

Irene Zimmermann of the European Mathematical Society Publishing House for tak-
ing care of the text and technical production, Matilde Marcolli for encouraging me to
publish the book at an early stage, and Katia Consani for inviting me to give a series
of lectures at Johns Hopkins University in March 2008 based on a pre-final version of
this book. I also thank Piotr Hajac and Gianni Landi for reading the text and for their
valuable suggestions. Finally I would like to thank Arthur Greenspoon for carefully
proofreading the whole text.




