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1 Introduction

What kind of background does a student need in order to start working
in Noncommutative Geometry (NCG)? The following text is an attempt to
answer this question but I should warn the reader about two things first: 1)
the material emphasized here is a kind of backbone to NCG and is not the
body of material that constitutes NCG itself; in particular, references to the
NCG literature are scarce, 2) by no means am I suggesting here that the
students of NCG should stop learning and doing NCG and start learning the
background material first. One learns mathematics by doing mathematics,
and you pick up more and more items as you go along and as you need them.
This way your learning will also be faster and deeper. The stuff emphasized
here is rather universal in that it is prepared with a view towards the totality
of NCG. To work in each particular area, at least in the beginning, you don’t
need to know too much about neighboring areas. For general advice, I can’t
do better than highly recommending Alain Connes’ article, advice to the
beginner [7].

I have divided the background material into four parts: Algebra, Analysis,
Geometry and Topology, and Physics. Each section is accompanied by only
a very few selected sample references. You should find you own favorites
yourself!
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2 Algebra

Cyclic (co)homology, K-theory, K-homology, and KK-theory are topological
invariants of noncommutative spaces. To understand cyclic (co)homology
and its relation with other (co)homology theories, homological algebra is
essential. Before the discovery of cyclic cohomology, mathematicians had
discovered a whole series of cohomology theories for spaces (such as singular,
Cech, de Rham, etale, etc.), and for algebraic structures (like Hochschild co-
homology, group cohomology, Lie algebra cohomology). Homological algebra
provides the means to compute these theories through the theory of derived
functors and studies the links between them. Weibel [40] and Gelfand-Manin
[19], are two modern introductions to homological algebra and will give you
a good grounding in the subject.

• (co)chain complexes of vector spaces (and R-modules) and their (co)homology,
chain maps, chain homotopy
exact sequences, fundamental lemma of homological algebra: the long exact
sequence of a short sequence and its connecting homomorphism,
resolutions, bar and Koszul resolutions, projective and injective resolutions,
comparison theorem of resolutions
Ext and Tor functors,
Koszul algebras and Koszul duality
group (co)cohomology, Lie algebra (co)homology, Hochschild (co)homology,
spectral sequences

Triangulated and derived categories are very much in vogue these days,
both in physics (homological mirror symmetry, string theory), in algebraic
geometry and homotopy theory, and in noncommutative geometry. If you
need to know this, a very good place to start is Gelfand-Manin [19]. Those
who are more interested in noncommutative algebraic geometry should learn
about Grothendieck’s work, on which a good introduction [22] has just ap-
peared.

There are very exciting connections between number theory and non-
commutative geometry, starting with the work of Bost and Connes and with
Connes’ approach to Riemann hypothesis, relating zeta and other L-functions
to quantum statistical mechanics (cf. [10] for recent work and full references).
The forthcoming book by Connes and Marcolli [12] will contain the latest on
this and much more. Matilde Marcolli’s book [29] is a nice introduction to
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interactions between arithmetic algebraic geometry and NCG. For a modern
survey of number theory, which incidentally covers connections with NCG as
well, look at Manin and Panchishkin’s book [28]. One of the best introduc-
tions to algebraic number theory with a modern perspective is Neukirch’s
[31].

Quantum groups and Hopf algebras are now indispensable for noncommu-
tative geometry and its applications. A good starting point to learn about
both subjects is Majid’s book [27], which points to many references for fur-
ther reading as well.

3 Analysis

Index theory of elliptic differential operators, K-theory, K-homology and KK-
theory, and spectral geometry are the heart of noncommutative geometry.
The common idea here is the study of a space and its topological invariants
through operators on a Hilbert space. So far it seems this is the only way
one can extend ideas of geometry to the noncommutative realm. There is a
beautiful synthesis of these ideas in Connes’ notion of a spectral triple, which
among other things captures metric aspects of noncommutative spaces [9].
The basic analysis here is that of operators on a Hilbert space. For this rea-
son functional analysis and the theory of operator algebras are essential for
NCG. There is no shortage of good books here but I recommend the books
by P. Lax [25], and Reed and Simon [33]. For an introduction to Banach
and C∗-algebra techniques check out Douglas [16], or Fillmore [17]. The
history of functional analysis is well presented in Dieudonn, from which one
can also learn a lot. An elegant survey of von Neumann and C∗-algebras and
their place in NCG can be found in Connes’ book [9]. See also Takesaki’s [38].

• Hilbert space and its unique place among all Banach space; at a later stage
you also need to know about topological vector spaces
bounded and unbounded operators on a Hilbert space
spectral theory and the spectral theorem
compact, trace class, Hilbert-Schmidt, and p-summable operators; ideals of
operators
Fredholm operators and Fredholm index, abstract index theory
Banach algebras, Gelfand’s theory of commutative Banach algebras
theorems of Gelfand-Naimark, and Gelfand-Naimark-Segal

3



C* algebras as noncommutative topological spaces; von Neumann algebras as
noncommutative measure thorny; Type I, II, and III von Neumann algebras
and its geometric meaning
(pseudo)differential operators on compact manifolds and the Atiyah-Singer
index theorem
topological K-theory for Banach and C*-algebras, K-homology and KK-theory.

4 Geometry and Topology

What has come to be known as noncommutative geometry is on closer inspec-
tion really a mixture of rather independent areas which share the notion of a
noncommutative space at their core. Thus within noncommutative geometry
we can talk about noncommutative algebraic and differential topology, non-
commutative differential geometry, etc. With this in mind it goes without
saying that a practitioner of NCG should gain reasonable familiarity with
the classical counterparts of these subjects.

• Algebraic Topology
A good introductory book on algebraic topology is Hatchers’ [21]. Bott and
Thu [5] offer an approach via differential forms which is specially welcome for
noncommutative geometry. A history of algebraic and differential topology
by Dieudonn [15] is also a good source of information.

homotopy equivalence, fundamental group and ways to compute it: covering
spaces
higher homotopy groups and the fibration homotopy exact sequence
singular homology, homotopy invariance and excision; Eilenberg-Steenrod ax-
ioms
Poincare duality and the Thom isomorphism
characteristic classes of vector and principal bundles (Chern, Pontryagin and
Euler classes; Chern character)
classifying spaces of topological groups,
topological K-theory, Bott periodicity,

• Differential Geometry
Here is a simple example that clearly indicates why a good grasp of differen-
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tial geometry is so vital for NCG: the concept of metric in NCG is defined
using a Dirac operator (see Alain Connes’ book [9] for explanation). In fact
a key idea in NCG is to import spectral methods from differential geometry
and analysis to the noncumulative realm. I give another example: there are
many ways to define topological invariants and characteristic classes in the
classical case, but only two of them, de Rham and Chern-Weil theory, extend
to noncommutative geometry. For a modern survey of many aspects of dif-
ferential geometry, and specially spectral geometry, check out M. Berger’s A
Panoramic View of Riemannian Geometry [3]. Modern classics of the subject
include Kobayashi and Nomizu [23] and Spivak’s five volume set [35]. For
Dirac operators and index theory, start with Lawson and Michelson’s spin ge-
ometry [24] and Roe [34]. Milnor and Stasheff [30] (specially its appendix 3)
is a good place to start learning about characteristic classes and Chern-Weil
theory. You will also learn a lot by consulting Atiyah’s and Bott’s collected
works as well as Connes papers and his expository articles. 1

smooth manifolds, differential and integral calculus on manifolds (tensor
analysis), Riemannian metrics, connection and curvature
spectral geometry: Weyl’s law
Chern-Weil approach to characteristic classes
index theory of elliptic operators

5 Physics

The relation between noncommutative geometry and the “mathematics of
spaces” is in many ways similar to the relation between quantum physics
and classical physics. One moves from the commutative algebra of func-
tions on a space (or a commutative algebra of classical observable in classical
physics) to a noncommutative algebra representing a noncommutative space
(or a noncommutative algebra of quantum observable in quantum physics).
Beyond this general remark, one should also bear in mind quite serious in-
teractions between NCG and physics which include: Connes’ geometrization
of the standard model via noncommutative geometry2, applications of NCG

1Many of Connes’ writings on the subject are now available at his website
www.alainconnes.org.

2see “Noncommutative Geometry and the standard model with neutrino mixing”, hep-
th/0608226, by Alain Connes, for a very recent exciting development on this
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to renormalization schemes in quantum field theory (the work of Connes-
Kreimer and Connes-Marcoli reported in detail in [12]), the work of Belis-
sard in solid state physics and the quantum Hall effect, and the impact of
noncommutative gauge theory on string theory. The holy grail of modern
particle physics is quantum gravity and the ultimate unification of forces of
nature at high energies. It is widely believed that NCG and a radical re-
thinking of the structure of spacetime will be quite relevant in this quest. It
is with these connections in mind that a practitioner of NCG should pursue
an understanding of modern physics.

For a general historical account of modern physics, start with the two
books by Abraham Pais: Subtle is the Lord and Inward Bound: Of Matter
and Forces in the Physical World. The first is a detailed account of Einstein’s
achievements in physics and the second is a history of elementary particle
physics. I should also recommend Roger Penrose’ book, The Road to Reality:
A Complete Guide to the Laws of the Universe, which is a unique account
with more details than we are used to see in such books of the current state of
our understanding of high energy physics and the quest for quantum gravity.
A somewhat more serious text, but with a more modest scope, is Malcolm
Longair’s book Theoretical Concepts in Physics: An Alternative View of The-
oretical Reasoning in Physics [26].

• Classical field theory
This is essentially the theory underlying the classical physics and includes:
classical mechanics, classical electrodynamics, special and general relativity,
classical gauge theory, thermodynamics and classical statistical physics. A
classical field is, at least locally, nothing but a map from a manifold M
(the background space time) to a target manifold N which describes internal
degrees of freedom of the field. Dynamics of the system is governed by
certain partial differential equations derived from variational principles (e.g.
from Lagrange’s principle of least action). Among all field theories, classical
gauge theory is the most favored tool used to probe elementary particles at a
classical level. Its mathematical structure is amazingly similar to differential
geometry of a principal G-bundle. One starts with a principal G-bundle over
a background spacetime M , where G is the group of internal symmetries of
the theory, describing internal degrees of freedom of particles and forces. One
also fixes a linear representation of G, describing matter fields (G is U(1),
SU(2), or SU(3), for electrodynamics, weak, and strong force, respectively).
Matter fields are sections of the associated bundle and gauge fields or vector
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potentials, intermediating between matter field as forces, are connections on
this bundle. The field strength, or force, is measured by the curvature of this
connection. This is a the paradigm one should keep in mind when dealing
with the standard model of elementary particles. Remarkably, more or less
all aspects of this formalism extend to noncommutative geometry and play
an essential role in Connes’ geometrization of the standard model.

The books by Arnold [2] and, to some extent, Agricola-Friedrich [1] give
a modern treatment of classical mechanics based on symplectic geometry of
the phase space. Guillemin-Sterberg [20] is an excellent account of the ori-
gins of Hamilton’s work in geometric optics and how it evolved (primarily
in the hands of Jacobi) into the Hamiltonian approach to classical mechanics.

Gallileo’s principle of relativity
Newtonian mechanics
Lagrangian mechanics: mechanics on the tangent bundle of the configuration
space, the principle of least action, Euler-Lagrange equations
Hamiltonian mechanics: symplectic manifolds, phase space and its symplec-
tic structure, Poisson manifolds, Hamilton’s equation of motion, Liouville’s
theorem
completely integrable systems and Arnold-Liouville theorem on invariant tori
symmetry of mechanical systems, Noether’s theorem

Maxwell’s equations and its modern geometric formulation
Special and general theory of relativity
Einstein’s principle of relativity, Special theory of relativity
The equivalence principle, general theory of relativity

I can’t resist quoting Arnold: “Every mathematician knows that it is im-
possible to understand any elementary course in thermodynamics”3. This is
in part due to the fact that the geometric structures behind classical ther-
modynamics and statistical mechanics are more complicated than classical
mechanics. The books by Agricola-Friedrich [1], Longair [26], and Bamberg-
Sternberg [?] give a good accounts of the more elementary aspects of the
subject. The goal of statistical mechanics is to derive the macroscopic laws
of thermodynamics from the microscopic laws of statistical mechanics within
the framework of classical mechanics (the work of Clausius, Boltzmann and

3Proceedings of the Gibbs Symposium; AMS publication
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Gibbs). This is very well presented in [1]. When learning thermodynamics,
make sure you understand the second law and the notion of entropy well.

• Quantum field theory
Quantum physics can be conveniently divided into quantum mechanics (QM)
and quantum field theory (QFT). The latter is our ultimate weapon in probing
nature at high energies, high velocities, and small distances. Make sure you
understand QM well enough before jumping into QFT. The original Heisen-
berg, Dirac, Pauli, Jordan and Schrodinger papers of 1920’s are reproduced
in [39] and [36]. The original quantum electrodynamics (QED, the first suc-
cessful QFT) papers are collected in [37].

Unlike quantum field theory, the mathematics of quantum mechanics is
well understood and sound. It is essentially the theory of bounded and
unbounded operators on a Hilbert space. The classics by Dirac, Landau-
Lifschitz, and Feynman, are excellent introduction to the subject. For quan-
tum statistical mechanics, from an operator algebraic perspective, see [6].

why we need QM? black body radiation, emission and absorbtion spectrum
geometric optics-wave optics correspondence and classical mechanics-quantum
mechanics analogy
states and observable in QM: Hilbert space and operators
Heisenberg and Schrodinger picture of QM
Heisenberg uncertainty principle
problem of quantization, Dirac quantization rules, no go theorems
quantum harmonic oscillator, Hydrogen atom
Poisson manifolds, deformation quantization of Poisson manifolds
symmetry in QM
spin, Bosons and Fermions, supersymmetry
quantum statistical mechanics

Quantum field theory combines the special theory of relativity with quan-
tum mechanics. SR predicts that, as a result of mass energy relation, particles
can be created and annihilated. Thus the number of particles in a quantum
processes is not constant. Non-relativistic quantum mechanics has no way
of dealing with this particle creation and annihilation problem. Apart from
observed experimental facts, a major theoretical forerunner for QFT was
Dirac’s equation with its celebrated prediction of anti-matter and the process
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matter + anti-matter ; photon. Feynman’s path integral approach greatly
simplifies the QED and can be successful applied to other QFT’s including
the standard model. For a general introduction to QFT start with A. Zee’s
Quantum Field Theory in a Nutshell [41]. For a more serious account start
with Peskin and Shroeder [32].

physical basis of QFT (particle production and annihilation)
quantization of Lagrangian field theories via path integrals
QFT on a finite set of points-Gaussian integrals
evaluation of Gaussian integrals-stationary phase approximation and steepest
descent methods; emergence of Feynman graphs and Feynman rules
divergences in perturbation expansion of path integrals
regularization and renormalization of QFT
an example: from the Dirac equation to QED; case study: compute the
anomalous magnetic moment of the electron
the standard model: electroweak theory and quantum chromodynamics
difficulty with gravity and how to quantize it: noncommutative geometry,
string theory, and other proposals
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