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Spectral Triples (Connes)

» Noncommutative geometric spaces are described by spectral
triples (first order elliptic PDE's on NC spaces), (A, H, D),
where

T A— L(H) (*-representation),
D=D":Dom(D)CH—H, sa.

Dr(a) —mw(a) D € L(H), bounded commutators,
D has compact reseolvant.

» Example: The Dirac spectral triple (C>(M), L*(M, S), D),

eg. D= %% or the Cauchy-Riemann operator %.



The scalar curvature of a spectral triple

» Connes’ distance formula recovers the metric from D, but a
more difficult issue is how to define and compute the scalar
curvature using D.

» A spectral triple is a NC Riemannian manifold. It is tempting
to think that one might be able to define a Levi-Civita type
connection for a spectral triple and then define the curvature
of this connection. For many reasons this algebraic approach
does not work in NCG in general.

> Instead one needs to import ideas of spectral geometry to
NCG.
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Spectral geometry: can one hear the shape of a drum?

» Weyl's law: for a compact Riemannian manifold M

(A.)nVOI (M) n

N~ Za S A A e,

where N(\) = #{)\; < A} is the eigenvalue counting function
for the Laplacian A on M.
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Spectral geometry: can one hear the shape of a drum?

» Weyl's law: for a compact Riemannian manifold M

wpVol(M) | »

CEE ~ S

where N(\) = #{)\; < A} is the eigenvalue counting function
for the Laplacian A on M.

> A better way to think of Weyl's law: quantize the classical
Hamiltonian h(x,p) = 2 4 V(z), to the quantum
Hamiltonian H = —ﬁ—mA—i— V(z). Then

N@a<A<b

<A< ):ﬁvmmghgb}m(frd)
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(Physics proof: by Heisenberg unceratinly relation, each
quantum state occupies a volume of ~ (27h)? in phase
space. quantized energy levels are approximated by phase
space volumes; Bohr's correspondence principle; semiclassical
approximation)

Weyl's law: One can hear the volume and dimension of a
manifold. We shall see one can hear the volume and scalar
curvature of curved noncommutative tori too.
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Beyond Weyl's law

» (M, g) = closed Riemannian manifold. Laplacian on forms
A= (d+d)?: QP (M) — QP(M),
has pure point spectrum:

0< A <AL=

» Fact: Dimension, volume, total scalar curvature, Betti
numbers, and hence the Euler characteristic of M are fully
determined by the spectrum of A (on all p-forms).



Heat trace asymptotics

> N(\) = Tr Py is too brutal. Mollify it by a smoothing

operator like Tr(e7**) and use Tauberian theorems to obtain
information about N(\).

> k(t,z,y) = kernel of e~*~. Asymptotic expansion near t = 0:

1
k(t,z,z) ~ W(ao(% N 4ay(z, Nt+ag(z, A)t24---)

> a;(x, D), Seeley-De Witt-Gilkey coefficients.
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» Theorem: a;(z, /) are universal polynomials in the curvature
tensor R = le‘kl and its covariant derivatives:

agp(z, A)
a1z, NN)

as(x, N\)
az(x,NN)

1 Weyl's law

—-S(x) scalar curvature

75 (2IR(2)[* = 2[Ric(2)[* + 5|S(2) )



Noncommutative Local Invariants

> Local geometric invariants such as scalar curvature of
(A, H, D) are detected by the high frequency behavior of the
spectrum of D and the action of A via heat kernel asymptotic
expansions of the form

Trace tDQ ~ Zaj a, D?) t=n /2 N 0, a€ A
7=0



Example: Gauss-Bonnet

» For surfaces

1
X(2) = %/ZKdA

» Spectral zeta function: Let Ay < Ay < A3 < --- be the
eigenvalues of A,

and
Cals) =D A% R(s)> 1

It has a mermorphic extension to C with a simple pole at
5= 3. G-B is equivalent to

Ca(s)+1=0



Curved noncommutative tori

> Ay: universal C*-algebra generated by unitaries U and V'

VU = 2™y v.

» Smooth structure:

P={ Y amalU"V": (ama) €S2}
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» Derivations dq,02 : Ag° — A

» Canonical trace ¢y : Ag — C



Complex structure on Ay

> Fix 7 =7 +im, 72 =S(7)> 0, and define the Dolbeault
operators

0 := 01 + 709, OF := 61 + 7.

v

Let Ho = L?(Ag)= GNS completion of Ay w.r.t. ¢p.

v

H (19 = Hilbert space of (1,0)-forms: completion of finite
sums Y adb, a,b € Ag°, under

(adb,a’ ') := po((a’Ob")*adb).

v

9* is the formal adjoint of 8 : Ho — H10).
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» Flat Dolbeault Laplacian:

A = 8*8 == 5% + 27’1(5152 + ‘7’|26§

For 7 =i, we get
A =067 465,
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Conformal perturbation of the metric

> Fix a Weyl factor: h = h* € Ag°. Replace ¢¢ by

p(a) = po(ae™™).

> ¢ is a KMS state
p(ab) = p(bA(a)),
with modular automorphism
A(a) = oi(a) = e M ael,
and modular group

O't(a) _ eith ae—ith.

» Warning: A and A are very different operators!
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Curved Laplacian

» Hilbert space H, = GNS completion of Ay under

p(a) = polae™).

> Let O, = 01 + 762 : Hy — HEO) It has an adjoint
e R
» Curved Laplacian

N =050, Hy — Hy.
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A Spectral Triple (43°,#, D)

Ho="MH, oH"O,

a»—)(a 2):7—[—>H,

0
0 o
. © .
D.<aw 0).71%%,

Dp =0 =061+ 703 : Hy — HIO,
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Anti-Unitary Equivalence of the Laplacians

D* = ( 3%?08@ 8@08; ) tH, ®HOO = Hy, @ HEO,

Lemma: Let
k= el/2.

We have

0504 My — My, ~ kOOk : Ho — Ho,

0,05 : HWO 5 HO v k29 HOD 5 (0,

(The Tomita anti-unitary map J is used.)



Conformal Geometry of T% with 7=
(Cohen-Connes, late 80’s)

Let
AM< A< A3 < -ee be the eigenvalues of 8;(9@,
and
s) = Z)\j_s, R(s) > 1.
Then

P(F(A)(B1("2)) 81(/2)) + o (F(A)(32("2)) 5("/2)),

where

fw) = ~u

6 71/2’§+£1( u) = 2(1+u) L (u) + (L+ul/?)? Ls(u),

m

w) = (=1 (u—1)""t)( logu — — j+1u
L) = (=) (= 1)~ (logu = J_ (-1 =5 ).

Jj=1
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The Gauss-Bonnet theorem for T

Theorem. (Connes-Tretkoff; Fathizadeh-Kh.) For any 6 € R,
complex parameter 7 € C \ R and Weyl conformal factor e, h =
h* € Ag°, we have

¢(0)+1=0.



Final Part of the Proof

C0)+1=
e Tl 2
s (K65 8:5)) + B (K05 8a5)
277%92()7)wo(K(V)(51(2))52(Z)> 27\;;?}(?5;')¢O<K(V)(52(Z))51(};)),
where
() = _ 3= 35 (5) —3sinh(z) +sinh (7)) csch? (2)

3z2

is an odd entire function, and V = log A.



-10+

3 5
K(w) = % 2;40 N % +0(2*).
wor
o5l
= - ; 5
s



Scalar curvature for Ay

» The scalar curvature of the curved nc torus (T%,7, k) is the
unique element R € A3° satisfying

Trace (aA™%)|_, + Trace (aP) = t(aR), Va € Ay

where P is the projection onto the kernel of A.

> In practice this is done by finding an asymptotic expansin for

the kernel of the operator ae 12,
Trace(a Z Bn(a,D*)t =, a€ Ay.
n>0

using Connes' pseudodifferential calculus for nc tori. A good
pseudo diff calculus for general nc spaces is still illusive.
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Final Formula for the Scalar Curvature of T3

Theorem. (Connes Moscovici; Fathizadeh-Kh.) Up to an overall
factor of J(T), R is equal to

RO+ 2 a2 33 )
FR(V,9) (510 + 12857 + () {8 (5,520}

HW(V,V) (3(7) [51(2),52(2)1).



% __ sinh(z/2)
Ri(x) = =¥——2—.
(@) sinh?(z/4)

. .
50 100
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RQ(S, t) =

_ (I+cosh((s+t)/2))(=t(s+t) cosh s+s(s+t) cosht—(s—t)(s+t4sinh s4sinh t—sinh(s+t

st(s+t) sinh(s/2) sinh(¢/2) sinh?((s+t)/2)




Wi(s,t) =

(—s —t+tcosh s+ scosht + sinh s + sinh ¢ — sinh(s + ¢))

stsinh(s/2) sinh(¢/2) sinh((s 4 t)/2)
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Noncommutative 4-Torus T}

» Complex Structure on T}
a - a1 5> 82,

1 )
81 = 5 ((51 — 2(53),

= 1
o= B (01 +14d3),

=01 ® 0o,
1 .
82 = 5 ((52 — 7,54),

= 1
Oy = 5 (52 + 154)
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Conformal perturbation of the metric

Let h = h* € C°°(T}) and replace the trace ¢y by
¢ :C(T3) — C,

v(a) := gola e_zh), a € C(TP).

@ is a KMS state with the modular group
or(a) = e*ith g e~ 2ith a € C(Ty),
and the modular automorphism
Aa) :=o5(a) = e " ae?, a € C(Tp).

plab) = ga(b A(a)), a,be C(Ty).



Perturbed Laplacian on T}

— 3. 1,0 0,1
d=080:H, - HIO @ HD,
A, = d*d.

Remark. If h =0 then ¢ = ¢ and
Ny =07 405 + 03 + 05 = 9%0

(the underlying manifold is Kahler).



Scalar Curvature for T}

It is the unique element R € C°°(T}) such that
Ress—1(u(s) = po(a R), a € C*(Ty),

where
Ca(s) := Trace(a A*), R(s) > 0.



Final Formula for the Scalar Curvature of T}

Theorem. (Fathizadeh-Kh.) We have

4
J‘k 52 hH(V,V) §i(h)2 |
where
V(a) = [~h,a] aEC’(T4)
=g
H(s,t) = e (e =) s (e - D+ (e - B+ D)

4st(s+1)



+12

s3 s s°

18 7240~ 1440

+

0] (56) .
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(1t 3 5 ot 3
H(s,t) = (4+24+O(t))+s<24 16+80+O(t))

o 1 Tt 3 3
+s ( 3+ 510 144+O(t) +0(s%).
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—4s —3e " +e*+2

G(s) = H(s,—s) = 12
1 s s2 s3 st sP
= 4 45 0 (s%).
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