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Spectral Triples (Connes)

I Noncommutative geometric spaces are described by spectral
triples (first order elliptic PDE’s on NC spaces), (A,H, D),
where

π : A → L(H) (∗-representation),

D = D∗ : Dom(D) ⊂ H → H, s.a.

Dπ(a)− π(a)D ∈ L(H), bounded commutators,

D has compact reseolvant.

I Example: The Dirac spectral triple
(
C∞(M), L2(M,S), D

)
,

e.g. D = 1
i
d
dx , or the Cauchy-Riemann operator ∂

∂z̄ .
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The scalar curvature of a spectral triple

I Connes’ distance formula recovers the metric from D, but a
more difficult issue is how to define and compute the scalar
curvature using D.

I A spectral triple is a NC Riemannian manifold. It is tempting
to think that one might be able to define a Levi-Civita type
connection for a spectral triple and then define the curvature
of this connection. For many reasons this algebraic approach
does not work in NCG in general.

I Instead one needs to import ideas of spectral geometry to
NCG.
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Spectral geometry: can one hear the shape of a drum?

I Weyl’s law: for a compact Riemannian manifold M

N(λ) ∼ ωnVol(M)

(2π)n
λ

n
2 λ→∞,

where N(λ) = #{λi ≤ λ} is the eigenvalue counting function
for the Laplacian ∆ on M .

I A better way to think of Weyl’s law: quantize the classical

Hamiltonian h(x, p) = p2

2m + V (x), to the quantum

Hamiltonian H = − ~2

2m∆ + V (x). Then

N(a ≤ λ ≤ b) =
1

(2π~)d
Vol {a ≤ h ≤ b}+ o(~−d)
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(Physics proof: by Heisenberg unceratinly relation, each
quantum state occupies a volume of ∼ (2π~)d in phase
space. quantized energy levels are approximated by phase
space volumes; Bohr’s correspondence principle; semiclassical
approximation)

I Weyl’s law: One can hear the volume and dimension of a
manifold. We shall see one can hear the volume and scalar
curvature of curved noncommutative tori too.
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Beyond Weyl’s law

I (M, g) = closed Riemannian manifold. Laplacian on forms

4 = (d+ d∗)2 : Ωp(M)→ Ωp(M),

has pure point spectrum:

0 ≤ λ1 ≤ λ2 ≤ · · · → ∞

I Fact: Dimension, volume, total scalar curvature, Betti
numbers, and hence the Euler characteristic of M are fully
determined by the spectrum of ∆ (on all p-forms).
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Heat trace asymptotics

I N(λ) = TrPλ is too brutal. Mollify it by a smoothing
operator like Tr(e−t∆) and use Tauberian theorems to obtain
information about N(λ).

I k(t, x, y) = kernel of e−t4. Asymptotic expansion near t = 0:

k(t, x, x) ∼ 1

(4πt)m/2
(a0(x,4)+a1(x,4)t+a2(x,∆)t2+· · · )

I ai(x,4), Seeley-De Witt-Gilkey coefficients.
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I Theorem: ai(x,4) are universal polynomials in the curvature
tensor R = R1

jkl and its covariant derivatives:

a0(x,4) = 1 Weyl’s law

a1(x,4) =
1

6
S(x) scalar curvature

a2(x,4) =
1

360
(2|R(x)|2 − 2|Ric(x)|2 + 5|S(x)|2)

a3(x,4) = · · · · · ·
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Noncommutative Local Invariants

I Local geometric invariants such as scalar curvature of
(A,H, D) are detected by the high frequency behavior of the
spectrum of D and the action of A via heat kernel asymptotic
expansions of the form

Trace
(
a e−tD

2)
∼

∞∑
j=0

aj(a,D
2) t(−n+j)/2, t↘ 0, a ∈ A.
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Example: Gauss-Bonnet

I For surfaces

χ(Σ) =
1

2π

∫
Σ

KdA

I Spectral zeta function: Let λ1 ≤ λ2 ≤ λ3 ≤ · · · be the
eigenvalues of 4,
and

ζ4(s) =
∑

λ−sj , <(s) > 1.

It has a mermorphic extension to C with a simple pole at
s = 1

2 . G-B is equivalent to

ζ4(s) + 1 = 0
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Curved noncommutative tori

I Aθ: universal C∗-algebra generated by unitaries U and V

V U = e2πiθUV.

I Smooth structure:

A∞θ =
{ ∑
m,n∈Z

am,nU
mV n : (am,n) ∈ S(Z2)

}
.
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I Derivations δ1, δ2 : A∞θ → A∞θ

δ1(U) = U, δ1(V ) = 0, δ2(U) = 0, δ2(V ) = V,

I Canonical trace ϕ0 : Aθ → C
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Complex structure on Aθ

I Fix τ = τ1 + iτ2, τ2 = =(τ) > 0, and define the Dolbeault
operators

∂ := δ1 + τδ2, ∂∗ := δ1 + τ̄ δ2.

I Let H0 = L2(Aθ)= GNS completion of Aθ w.r.t. ϕ0.

I H(1,0) = Hilbert space of (1, 0)-forms: completion of finite
sums

∑
a∂b, a, b ∈ A∞θ , under

〈a∂b, a′∂b′〉 := ϕ0((a′∂b′)∗a∂b).

I ∂∗ is the formal adjoint of ∂ : H0 → H(1,0).
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I Flat Dolbeault Laplacian:

4 = ∂∗∂ = δ2
1 + 2τ1δ1δ2 + |τ |2δ2

2 .

For τ = i, we get
4 = δ2

1 + δ2
2 .
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Conformal perturbation of the metric

I Fix a Weyl factor: h = h∗ ∈ A∞θ . Replace ϕ0 by

ϕ(a) = ϕ0(a e−h).

I ϕ is a KMS state

ϕ(a b) = ϕ
(
b∆(a)

)
,

with modular automorphism

∆(a) = σi(a) = e−h a eh,

and modular group

σt(a) = eith a e−ith.

I Warning: 4 and ∆ are very different operators!
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Curved Laplacian

I Hilbert space Hϕ = GNS completion of Aθ under

ϕ(a) = ϕ0(a e−h).

I Let ∂ϕ = δ1 + τδ2 : Hϕ → H(1,0). It has an adjoint

∂∗ϕ = Rk2∂
∗ : H(1,0) → Hϕ.

I Curved Laplacian

4′ = ∂∗ϕ∂ϕ : Hϕ → Hϕ.
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A Spectral Triple (A∞θ ,H, D)

H := Hϕ ⊕H(1,0),

a 7→
(
a 0
0 a

)
: H → H,

D :=

(
0 ∂∗ϕ
∂ϕ 0

)
: H → H,

∂ϕ := ∂ = δ1 + τ̄ δ2 : Hϕ → H(1,0).
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Anti-Unitary Equivalence of the Laplacians

D2 =

(
∂∗ϕ∂ϕ 0

0 ∂ϕ∂
∗
ϕ

)
: Hϕ ⊕H(1,0) → Hϕ ⊕H(1,0).

Lemma: Let
k = eh/2.

We have

∂∗ϕ∂ϕ : Hϕ → Hϕ ∼ k∂̄∂k : H0 → H0,

∂ϕ∂
∗
ϕ : H(1,0) → H(1,0) ∼ ∂̄k2∂ : H(1,0) → H(1,0).

(The Tomita anti-unitary map J is used.)
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Conformal Geometry of T2
θ with τ = i

(Cohen-Connes, late 80’s)

Let

λ1 ≤ λ2 ≤ λ3 ≤ · · · be the eigenvalues of ∂∗ϕ∂ϕ,

and
ζ(s) =

∑
λ−sj , <(s) > 1.

Then
ζ(0) + 1 =

ϕ
(
f(∆)(δ1(eh/2)) δ1(eh/2)

)
+ ϕ

(
f(∆)(δ2(eh/2)) δ2(eh/2)

)
,

where

f(u) =
1

6
u−1/2− 1

3
+L1(u)−2(1+u1/2)L2(u)+(1+u1/2)2L3(u),

Lm(u) = (−1)m(u− 1)−(m+1)
(

log u−
m∑
j=1

(−1)j+1 (u− 1)j

j

)
.
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The Gauss-Bonnet theorem for T2
θ

Theorem. (Connes-Tretkoff; Fathizadeh-Kh.) For any θ ∈ R,
complex parameter τ ∈ C \ R and Weyl conformal factor eh, h =
h∗ ∈ A∞θ , we have

ζ(0) + 1 = 0.
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Final Part of the Proof

ζ(0) + 1 =

2π

=(τ)
ϕ0

(
K(∇)(δ1(

h

2
)) δ1(

h

2
)
)

+
2π|τ |2

=(τ)
ϕ0

(
K(∇)(δ2(

h

2
)) δ2(

h

2
)
)

+
2π<(τ)

=(τ)
ϕ0

(
K(∇)(δ1(

h

2
)) δ2(

h

2
)
)

+
2π<(τ)

=(τ)
ϕ0

(
K(∇)(δ2(

h

2
)) δ1(

h

2
)
)
,

where

K(x) = −
(
3x− 3 sinh

(
x
2

)
− 3 sinh(x) + sinh

(
3x
2

))
csch2

(
x
2

)
3x2

is an odd entire function, and ∇ = log ∆.
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K(x) = − x

20
+

x3

2240
− 23x5

806400
+O

(
x6
)
.
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Scalar curvature for Aθ

I The scalar curvature of the curved nc torus (T2
θ, τ, k) is the

unique element R ∈ A∞θ satisfying

Trace (a4−s)|s=0
+ Trace (aP ) = t (aR), ∀a ∈ A∞θ ,

where P is the projection onto the kernel of 4.

I In practice this is done by finding an asymptotic expansin for
the kernel of the operator ae−t4,

Trace(a e−tD
2

) ∼
∑
n≥0

Bn(a,D2) t
n−2
2 , a ∈ A∞θ .

using Connes’ pseudodifferential calculus for nc tori. A good
pseudo diff calculus for general nc spaces is still illusive.
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Final Formula for the Scalar Curvature of T2
θ

Theorem. (Connes-Moscovici; Fathizadeh-Kh.) Up to an overall
factor of −π=(τ) , R is equal to

R1(∇)
(
δ2
1(
h

2
) + 2 τ1 δ1δ2(

h

2
) + |τ |2 δ2

2(
h

2
)
)

+R2(∇,∇)
(
δ1(

h

2
)2 + |τ |2 δ2(

h

2
)2 + <(τ)

{
δ1(

h

2
), δ2(

h

2
)
})

+iW (∇,∇)
(
=(τ) [δ1(

h

2
), δ2(

h

2
)]
)
.
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R1(x) =
1
2 −

sinh(x/2)
x

sinh2(x/4)
.
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R2(s, t) =

− (1+cosh((s+t)/2))(−t(s+t) cosh s+s(s+t) cosh t−(s−t)(s+t+sinh s+sinh t−sinh(s+t)))
st(s+t) sinh(s/2) sinh(t/2) sinh2((s+t)/2)

.
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W (s, t) =

(−s− t+ t cosh s+ s cosh t+ sinh s+ sinh t− sinh(s+ t))

st sinh(s/2) sinh(t/2) sinh((s+ t)/2)
.
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Noncommutative 4-Torus T4
θ

I Complex Structure on T4
θ

∂ = ∂1 ⊕ ∂2, ∂̄ = ∂̄1 ⊕ ∂̄2,

∂1 =
1

2
(δ1 − iδ3), ∂2 =

1

2
(δ2 − iδ4),

∂̄1 =
1

2
(δ1 + iδ3), ∂̄2 =

1

2
(δ2 + iδ4).
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Conformal perturbation of the metric

Let h = h∗ ∈ C∞(T4
θ) and replace the trace ϕ0 by

ϕ : C(T4
θ)→ C,

ϕ(a) := ϕ0(a e−2h), a ∈ C(T4
θ).

ϕ is a KMS state with the modular group

σt(a) = e2ith a e−2ith, a ∈ C(T4
θ),

and the modular automorphism

∆(a) := σi(a) = e−2h a e2h, a ∈ C(T4
θ).

ϕ(a b) = ϕ
(
b∆(a)

)
, a, b ∈ C(T4

θ).
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Perturbed Laplacian on T4
θ

d = ∂ ⊕ ∂̄ : Hϕ → H(1,0)
ϕ ⊕H(0,1)

ϕ ,

4ϕ := d∗d.

Remark. If h = 0 then ϕ = ϕ0 and

4ϕ0 = δ2
1 + δ2

2 + δ2
3 + δ2

4 = ∂∗∂

(the underlying manifold is Kähler).
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Scalar Curvature for T4
θ

It is the unique element R ∈ C∞(T4
θ) such that

Ress=1 ζa(s) = ϕ0(aR), a ∈ C∞(T4
θ),

where
ζa(s) := Trace(a4−sϕ ), <(s)� 0.
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Final Formula for the Scalar Curvature of T4
θ

Theorem. (Fathizadeh-Kh.) We have

R = e−h k(∇)
( 4∑
i=1

δ2
i (h)

)
+ e−hH(∇,∇)

( 4∑
i=1

δi(h)2
)
,

where

∇(a) = [−h, a], a ∈ C(T4
θ),

k(s) =
1− e−s

2s
,

H(s, t) = −e
−s−t ((−es − 3) s (et − 1) + (es − 1) (3et + 1) t)

4 s t (s+ t)
.
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k(s) =
1

2
− s

4
+
s2

12
− s3

48
+

s4

240
− s5

1440
+O

(
s6
)
.
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H(s, t) =

(
−1

4
+

t

24
+O

(
t3
))

+ s

(
5

24
− t

16
+
t2

80
+O

(
t3
))

+s2

(
− 1

12
+

7t

240
− t2

144
+O

(
t3
))

+O
(
s3
)
.
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H(s, s) = −e
−2s (es − 1)

2

4s2

= −1

4
+
s

4
− 7s2

48
+
s3

16
− 31s4

1440
+

s5

160
+O

(
s6
)
.
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G(s) := H(s,−s) =
−4s− 3e−s + es + 2

4s2

= −1

4
+
s

6
− s2

48
+

s3

120
− s4

1440
+

s5

5040
+O

(
s6
)
.
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