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Figure: Sun’s Spectrum; notice the black lines

AX = λX



Dramatis Personae:

• Physics: Planck, Einstein, Lorentz, Sommerfeld, among others;

quantum mechanics↔ classical mechanics

• Mathematics: Hilbert, Weyl.

spectrum↔ geometry

• In 1910 H. A. Lorentz gave a series of lectures in Göttingen under the
title “old and new problems of physics”. Weyl and Hilbert were in
attendance. In particular he mentioned attempts to drive Planck’s
radiation formula in a mathematically satisfactory way and remarked:



• ‘ It is here that there arises the mathematical problem to prove that the
number of sufficiently high overtones which lie between ν and ν + dν is
independent of the shape of the enclosure and is simply proportional to
its volume. .......There is no doubt that it holds in general even for
multiply connected spaces’.

• Hilbert was not very optimistic to see a solution in his lifetime. His
bright student Hermann Weyl solved this conjecture of Lorentz and
Sommerfeld within a year and announced a proof in 1911! All he needed
was Hilbert’s theory of integral equations and compact operators
developed by Hilbert and his students in 1900-1910.



Figure: Hermann Weyl in Göttingen



Figure: H. A. Lorentz



Black body radiation

Figure: Black body spectrum



Planck’s Radiation Law

I From 1859 (Kirchhoff) till 1900 (Planck) a great effort went into
finding the right formula for spectral energy density function of a
radiating black body

ρ(ν,T )

I Kirchhoff predicted: ρ will be independent of the shape of the cavity
and should only depend on its volume.

I Planck’s formula:

ρ(ν,T ) =
8πhν3

c3

1

ehν/kT − 1



Limits of Planck’s Law

I Quantum Limit (high-frequency or low temperature regime;
hν/kT � 1)

ρ(ν,T ) ∼ Aν3e−Bν/T (T → 0)

I Semiclassical Limit (low frequency or high temperature; hν/kT � 1)

ρ(ν,T ) =
8πν2

c3
(kT )(1 + O(h)) (T →∞)

I RHS is the Rayleigh-Jeans-Einstein radiation formula. It can be
established, assuming Weyl’s Law: “ For high frequencies there are
approximately V (8πν3dν/c3) modes of oscillations in the frequency
interval v , ν + dν.”



I Moral: To relate classical and quantum worlds, Weyl’s law is needed:

One can hear the volume of a cavity.

I But the ultimate question is

What else can one hear about the shape of a cavity?



Dirichlet eigenvalues and Weyl Law

• Let Ω ⊂ R2 be a compact connected domain with a piecewise smooth
boundary.

{
∆u = λu

u|∂Ω = 0

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞

〈ui , uj〉 = δij o.n. basis for L2(Ω)



• Weyl Law for planar domains Ω ⊂ R2

N(λ) ∼ Area(Ω)

4π
λ λ→∞

where N(λ) is the eigenvalue counting function.

• In general, for Ω ⊂ Rn

N(λ) ∼ ωnVol(Ω)

(2π)n
λ

n
2 λ→∞



Weyl Law and acoustics

Figure: One can hear the area of a drum



• One can hear the Volume and dimension of a compact Riemannian
manifold.

• In his book, The Theory of Sound (1877), Lord Rayleigh writes:
Some of the natural notes of the air contained within a room may
generally be detected on singing the scale. Probably it is somewhat in
this way that blind people are able to estimate the size of rooms....... A
remarkable instance is in Darwin’s Zoonomia: “The late blind Justice
Fielding walked for the first time into my room, when he once visited me,
and after speaking a few words said, This room is about 22 feet long, 18
wide, and 12 high; all which he guessed by the ear with great accuracy”



Weyl Law with remainder; oscillations

• Weyl’s conjecture for planar domains Ω ⊂ R2

N(λ) ∼ Area(Ω)

4π
λ− L(∂Ω)

4π

√
λ+ o(

√
λ) λ→∞

• Weyl’s conjecture for spatial domains Ω ⊂ R3

N(λ) ∼ Vol(Ω)

6π2
λ

3
2 − A(∂Ω)

16π
λ+ o(λ) λ→∞

• As innocent as they look, they were only proved in early 1980’s after a
long time effort by many mathematicians.



Wild oscillations!
• To understand the nature of the spectrum, beyond Weyl’s term, one
needs to understand the highly oscillatory remainder term

R(λ) = N(λ)− ωnVol(Ω)

(2π)n
λ

n
2

• Hormander-Avakumovic

R(λ) = O(λ
n−1

2 )

(An improvement over Weyl’s result o(λ
n
2 )

• Compare with Prime number theorem π(x) ∼ x
log x and the Riemann

hypothesis which gives the best estimate for π(x)− Li(x). In fact the two
problems are quite related, thanks to Connes’ trace formula.



Figure: RH is probably true!



Gauss circle problem
• For M = T2 = (R/2πZ)2 with flat metric, the spectrum is

λm,n = m2 + n2, m, n ∈ Z

N(λ) = #{(m, n) : m2 + n2 ≤ λ}

is the number of integral lattice points in a circle of radius
√
λ.

• Gauss:
N(λ) = πλ+ O

√
λ

• Circle problem: let
R(λ) = N(λ)− πλ

Find α0 = inf (α) such that

R(λ) = O(λα)



• Hardy’s conjecture: α0 = 1
4 . He showed that α0 ≥ 1

4 .

• van der Corput (1923): α0 ≤ 37
112 = 0.330 . . .

• Iwaniec and Mozzochi (1988): α0 ≤ 7
22 = 0.318 . . .

• Huxley (1992):

R(x) = O(x
23
73 (log x)

315
146 )

• We are still far off from Hardy’s conjectured value of 1
4 for α0!
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A simple example in spectral geometry: flat tori

I Let Γ ⊂ Rm be a cocompact lattice.

M = Rm/Γ flat torus

4 = −
m∑
i=1

∂2

∂x2
i

: Dom(∆) ⊂ L2(M)→ L2(M) flat Laplacian

is an unbounded, s.a., positive operator with pure point spectrum:

spec(4) = {4π2||γ∗||2; γ∗ ∈ Γ∗},

I Heat equation: (∂t +4)ϕ = 0



I Let k(t, x , y) = fundamental solution of the heat equation= kernel
of e−t4. Then:

K (t, x , y) =
1

(4πt)m/2

∑
γ∈Γ

e−4π2||x−y+γ||2/4t

Tre−t∆ =

∫
M

k(t, x , x) =
∑
γ∗∈Γ∗

e−4π2||γ∗||2t

=
Vol(M)

(4πt)m/2

∑
γ∈Γ

e−4π2||γ||2/4t

And from this we obtain the asymptotic expansion of the heat trace
near t = 0

Tre−t∆ ∼ Vol(M)

(4πt)m/2
(t → 0)



Can one hear the shape of a drum ?

I Cor: One can hear the dimension and volume of M. In fact more is
true: a Tauberian theorem + asymptotic expansion ⇒ Weyl’s law:

N(λ) ∼ Vol (M)

(4π)m/2Γ(1 + m/2)
λm/2 λ→∞

I Cor: One can hear the total scalar curvature of M (= 0).



From heat trace and zeta functions to spectral invariants

I (M, g) = closed Riemannian manifold. Laplacian on functions

4 = d∗d : C∞(M)→ C∞(M)

is an unbounded positive operator with pure point spectrum

0 ≤ λ1 ≤ λ2 ≤ · · · → ∞

I The spectrum contains a wealth of geometric and topological
informations about M. In particular the dimension, volume, total
scalar curvature, Betti numbers, and hence the Euler characteristic
of M are fully determined by the spectrum of ∆ (on all p-forms).



The heat engine

I Let k(t, x , y) = kernel of e−t4. Restrict to the diagonal: as t → 0,
we have (Minakshisundaram-Plejel; MacKean-Singer)

k(t, x , x) ∼ 1

(4πt)m/2
(a0(x ,4) + a1(x ,4)t + a2(x ,∆)t2 + · · · )

I ai (x ,4): the Seeley-De Witt-Schwinger coefficients.



I Functions ai (x ,4): expressed by universal polynomials in curvature
tensor R and its covariant derivatives:

a0(x ,4) = 1

a1(x ,4) =
1

6
S(x) scalar curvature

a2(x ,4) =
1

360
(2|R(x)|2 − 2|Ric(x)|2 + 5|S(x)|2)

a3(x ,4) = · · · · · ·

I For flat torus ai (x ,4) = 0 for all i ≥ 1.



Short time asymptotics of the heat trace

Trace(e−t4) =
∑

e−tλi =

∫
M

k(t, x , x)dvolx

∼ (4πt)
−m

2

∞∑
j=0

aj t
j (t → 0)

So

aj =

∫
M

aj(x ,4)dvolx ,

are manifestly spectral invariants.

a0 =

∫
M

dvolx = Vol(M), =⇒ Weyl’s law

a1 =
1

6

∫
M

S(x)dvolx , total scalar curvature



Abelian-Tauberian Theorem

Assume
∑∞

1 e−λnt is convergent for all t > 0. TFAE:

lim
t→0+

tr
∞∑
1

e−λnt = a,

lim
λ→∞

N(λ)

λr
=

a

Γ(r + 1)



Spectral zeta functions

ζ4(s) :=
∑
λj 6=0

λ−sj , Re(s) >
m

2

Mellin transform + asymptotic expansion:

λ−s =
1

Γ(s)

∫ ∞
0

e−tts−1 dt Re(s) > 0

ζ4(s) =
1

Γ(s)

∫ ∞
0

(Trace(e−t4)− Dim Ker4)ts−1 dt

=
1

Γ(s)
{
∫ c

0

· · ·+
∫ ∞
c

· · · }

The second term defines an entire function, while the first term has a
meromorphic extension to C with simple poles within the set



m

2
− j , j = 0, 1, · · ·

Also: 0 is always a regular point.

Simplest example: For M = S1 with round metric, we have

ζ4(s) = 2ζ(2s) Riemann zeta function



The spectral invariants ai in the heat asymptotic expansion

Trace(e−t4) ∼ (4πt)
−m

2

∞∑
j=0

aj t
j (t → 0)

are related to residues of spectral zeta function by

Ress=αζ4(s) = (4π)−
m
2

am
2 −α

Γ(α)
, α =

m

2
− j > 0

Focusing on subleading pole s = m
2 − 1 and using a1 = 1

6

∫
M

S(x)dvolx ,
we obtain a formula for scalar curvature density.



Let ζf (s) := Tr (f4−s), f ∈ C∞(M).

Res ζf (s)|s= m
2 −1 =

(4π)−m/2

Γ(m/2− 1)

∫
M

fS(x)dvolx , m ≥ 3

ζf (s)|s=0 =
1

4π

∫
M

fS(x)dvolx − Tr(fP) m = 2

log det(4) = −ζ ′(0), Ray-Singer regularized determinant



Spectral Triples: (A,H,D)

I A= involutive unital algebra, H = Hilbert space,

π : A → L(H), D : H → H

D has compact resolvent and all commutators [D, π(a)] are
bounded.

I An asymptotic expansion holds

Trace (e−tD
2

) ∼
∑

aαtα (t → 0)

I Let 4 = D2. Spectral zeta function

ζD(s) = Tr (|D|−s) = Tr (∆−s/2), Re(s)� 0.

I The metric dimension and dimension spectrum of (A,H,D).



Noncommutative Torus

I Fix θ ∈ R. Aθ = C∗-algebra generated by unitaries U and V
satisfying

VU = e2πiθUV .

I Dense subalgebra of ‘smooth functions’:

A∞θ ⊂ Aθ,

a ∈ A∞θ iff

a =
∑

amnUmV n

where (amn) ∈ S(Z2) is rapidly decreasing:

sup
m,n

(1 + m2 + n2)k |amn| <∞

for all k ∈ N.



I Differential operators on Aθ

δ1, δ2 : A∞θ → A∞θ ,

Infinitesimal generators of the action

αs(UmV n) = e is.(m,n)UmV n s ∈ R2.

Analogues of 1
i
∂
∂x ,

1
i
∂
∂y on 2-torus.

I Canonical trace t : Aθ → C on smooth elements:

t(
∑

m,n∈Z

am,nU
mV n) = a0,0.



Complex structures on Aθ

I Let H0 = L2(Aθ)= GNS completion of Aθ w.r.t. t.

I Fix τ = τ1 + iτ2, τ2 = =(τ) > 0, and define

∂ := δ1 + τδ2, ∂∗ := δ1 + τ̄ δ2.

I Hilbert space of (1, 0)-forms:

H(1,0) := completion of finite sums
∑

a∂b, a, b ∈ A∞θ , w.r.t.

〈a∂b, a′∂b′〉 := t((a′∂b′)∗a∂b).

I Flat Dolbeault Laplacian: ∂∗∂ = δ2
1 + 2τ1δ1δ2 + |τ |2δ2

2 .



Conformal perturbation of metric

I Fix h = h∗ ∈ A∞θ . Replace the volume form t by ϕ : Aθ → C,

ϕ(a) := t(ae−h), a ∈ Aθ.

I It is a KMS state with modular group

σt(x) = e ithxe−ith,

and modular automorphism (Tomita-Takesaki theory)

σi (x) = ∆(x) = e−hxeh.

ϕ(ab) = ϕ(b∆(a)), ∀a, b ∈ Aθ.

I Warning: 4 and ∆ are very different operators!



Connes-Tretkoff spectral triple

I Hilbert space Hϕ := GNS completion of Aθ w.r.t. 〈, 〉ϕ,

〈a, b〉ϕ := ϕ(b∗a), a, b ∈ Aθ

I View ∂ϕ = ∂ = δ1 + τδ2 : Hϕ → H(1,0). and let

∂∗ϕ : H(1,0) → Hϕ

H = Hϕ ⊕H(1,0),

D =

(
0 ∂∗ϕ
∂ϕ 0

)
: H → H.



Full perturbed Laplacian:

4 := D2 =

(
∂∗ϕ∂ϕ 0

0 ∂ϕ∂
∗
ϕ

)
: H → H.

Lemma: ∂∗ϕ∂ϕ : Hϕ → Hϕ, and ∂ϕ∂
∗
ϕ : H(1,0) → H(1,0) are anti-unitarily

equivalent to
k∂∗∂k : H0 → H0,

∂∗k2∂ : H(1,0) → H(1,0),

where k = eh/2.

The Tomita anti-unitary map J is used.



Scalar curvature for Aθ

I The scalar curvature of the curved nc torus (T2
θ, τ, k) is the unique

element R ∈ A∞θ satisfying

Trace (a4−s)|s=0
+ Trace (aP) = t (aR), ∀a ∈ A∞θ ,

where P is the projection onto the kernel of 4.

I In practice this is done by finding an asymptotic expansin for the
kernel of the operator e−t4, using Connes’ pseudodifferential
calculus.



Connes’ pseudodifferential calculus

I Symbols: ρ : R2 → A∞θ .

I ΨDO’s: Pρ : A∞θ → A∞θ ,

Pρ(a) = (2π)−2

∫
R2

∫
R2

e−is.ξρ(ξ)αs(a)dsdξ.

I For example:

ρ(ξ1, ξ2) =
∑

aijξ
i
1ξ

j
2, aij ∈ A∞θ ⇒ Pρ =

∑
aijδ

i
1δ

j
2.

I Multiplication of symbol.

σ(PQ) ∼
∑

`1,`2≥0

1

`1!`2!
∂`1

1 ∂
`2
2 (ρ(ξ))δ`1

1 δ
`2
2 (ρ′(ξ)).



Local expression for the scalar curvature

I Cauchy integral formula:

e−t4 =
1

2πi

∫
C

e−tλ(4− λ)−1 dλ.

I Bλ ≈ (4− λ)−1 :

σ(Bλ) ∼ b0(ξ, λ) + b1(ξ, λ) + b2(ξ, λ) + · · · ,

each bj(ξ, λ) is a symbol of order −2− j , and

σ(Bλ(4− λ)) ∼ 1.

(Note: λ is considered of order 2.)



Proposition: The scalar curvature of the spectral triple attached to
(Aθ, τ, k) is equal to

1

2πi

∫
R2

∫
C

e−λb2(ξ, λ) dλ dξ,

where b2 is defined as above.



Final formula for the scalar curvature (Connes-Moscovici,
Fathizadeh-K, Oct. 2011)

Theorem: The scalar curvature of (Aθ, τ, k), up to an overall factor of
−π
τ2

, is equal to

R1(log ∆)
(
40(log k)

)
+

R2(log ∆(1), log ∆(2))
(
δ1(log k)2+|τ |2δ2(log k)2+τ1

{
δ1(log k), δ2(log k)

})
+

iW (log ∆(1), log ∆(2))
(
τ2

[
δ1(log k), δ2(log k)

])



where

R1(x) = −
1
2 −

sinh(x/2)
x

sinh2(x/4)
,

R2(s, t) = (1 + cosh((s + t)/2))×

−t(s + t) cosh s + s(s + t) cosh t − (s − t)(s + t + sinh s + sinh t − sinh(s + t))

st(s + t) sinh(s/2) sinh(t/2) sinh2((s + t)/2)
,

W (s, t) = − (−s − t + t cosh s + s cosh t + sinh s + sinh t − sinh(s + t))

st sinh(s/2) sinh(t/2) sinh((s + t)/2)
.



The limiting case

In the commutative case, the above modular curvature reduces to a
constant multiple of the formula of Gauss:

1

τ2
δ2

1(log k) +
|τ |2

τ2
δ2

2(log k) + 2
τ1

τ2
δ1δ2(log k).



First application: conformal anomaly (Connes-Moscovici)

Polyakov’s conformal anomaly formula:

log det(4) = −ζ ′4(0)

log det(4)− log det(40) = logϕ0(e−h) + ϕ0(R̃).



Second application: the Gauss-Bonnet theorem for Aθ

I How to relate geometry (short term asymptotics) to topology (long
term asymptotics)? MacKean-Singer formula:

m∑
p=0

(−1)pTr (e−t∆p ) =
m∑

p=0

(−1)pβp = χ(M) ∀t > 0

I Spectral formulation of the Gauss-Bonnet theorem:

ζ(0) + 1 =
1

12π

∫
Σ

R vol(g) =
1

6
χ(Σ)



Theorem (Connes-Tretkoff; Fathizadeh-K.): Let θ ∈ R, τ ∈ C \ R,
k ∈ A∞θ be a positive invertible element. Then

Trace(4−s)|s=0
+ 2 = t (R) = 0,

where 4 is the Laplacian and R is the scalar curvature of the spectral
triple attached to (Aθ, τ, k).



Third application: Weyl Law for Aθ

N(λ) ∼ π

=(τ)
ϕ(1)λ as λ→∞.

Equivalently:

λj ∼
=(τ)

πϕ(1)
j as j →∞.

• This suggests:

Vol(T2
θ) :=

4π2

=(τ)
ϕ(1) =

4π2

=(τ)
ϕ0(k−2).



The geometry in noncommutative geometry

I Geometry starts with metric and curvature. While there are a good
number of ‘soft’ topological tools in NCG, like cyclic cohomology, K
and KK-theory, and index theory, a truly noncommutative theory of
curvature is still illusive. The situation is better with scalar
curvature, but computations are quite tough at the moment.

I Metric aspects of NCG are informed by Spectral Geometry. Spectral
invariants are the only means by which we can formulate metric
ideas of NCG.
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