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1 Abstract

Ergodic Theory refers to nice mathematical models for dynamical systems. More specifi-
cally it deals with measure preserving transformations on a measure space. We will consider
ergodic theory on Hilbert spaces and take advantage of conservation of energy. Having an
understanding of Hilbert spaces and other material from our Functional Analysis course is
assumed. Previous knowledge of physics may help, as this theory is a direct application of
physics. Additionally further experience with measure theory will be useful, but since I had
limited knowledge of measure theory beforehand I avoid assuming much experience in the
field.

We will mostly be following the set-up of [2], with examples from [3] interjected. In the
beginning of this lecture we will set up what we are working with and explore a useful result
(Koopman’s Lemma) for unitary operators. Then we will define ergodic and explore an
equivalent definition, which will allow us to look at a nice example of an ergodic operator.
Once we understand what it means to be ergodic we will state and prove the useful von
Neumann’s Ergodic Theorem, which it turn reveals yet another equivalent characterization
of ergodic functions. Finally, we will state the Birkhoff Ergodic Theorem and briefly mention
a nice result of it.
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2 The Set-Up

Following [2], we will be looking at connecting functional analysis with mathematical physics,
by considering time-dependent systems’ behaviour (in classical mechanics) after running for
a long time.

Let’s begin by looking at some phase space Γ. You can think of this as all possible states of
an object, states are generally the position or momentum of an object.

For a time t, ∃ a map Tt : Γ → Γ, where Tt(x) is the state which results from looking the
time evolution of a system from time t0 to t+ t0. Then Ts+t = TsTt

While in classical mechanics we can look at observables (energy, position, temperature etc.)
as functions on the phase space. Let T be the period; we want to run our system for a long
time so we can consider T →∞. Note that the symbol for period T and transformation Tt
are alike.

Also we will consider energy being constant in our system, which we can as energy is con-
served in an isolated system, Eavg = Eint. Let ΩE be our constant energy surface in our
given phase space for each w ∈ ΩE and for a continuous function f we get a well-defined
measure µ(f)1.

µ(f) = lim
T→∞

1

T

∫ T

0

f(Ttw)dt

We get the following nice properties:
1) µ(1) = 1
Simply substitute in in f = 1
2) µ is linear
Shown by substituting in the following into the integration and re-arranging µ(af) = aµ(f)
and µ(f) + µ(g) = µ(f + g)
3) µ(f) ≥ 0 when f ≥ 0
As T ≥ 0 since T is the period and therefore positive then again simply substitute in

When F ⊂ ΩE, let µ(F ) := µ(χF )

1Showing that this is a measure involves sufficient knowledge of measure theory on compact spaces, which
is an extension of the lectures of this course, however it outside the scope of the material presented. As a
result it is omitted, that being said section IV.4 of [2] deals with this concept.
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The measure also has the following nice property:

For a fixed time s and a measurable set F ⊂ ΩE with a characteristic function χF of F . Then

1

T

∫ T

0

χTs−1F (Ttw)dt =
1

T

∫ T

0

χF (TsTtw)dt

So if the limit exists then µ(T−1
s F ) = µ(F )

We say that µ is invariant and Ts is measure preserving.

Hilbert space methods are nice enough that we can reformulate the problem in terms of
L2(ΩE, dµE). Therefore if f ∈ L2(ΩE, µE) define a map:

Ut : f → f ◦ Tt
(Utf)(w) = f(Ttw)

We can show this is unitary from the following theorem.

Theorem 1 (Koopman’s Lemma). Ut is a unitary map of L2(ΩE, dµE) onto L2(ΩE, dµE).

Proof.

〈Utf, Utg〉 =

∫
ΩE

f(Ttw)g(Ttw)dµE(w)

Let y = Ttw

=

∫
ΩE

f(y)g(y)dµE(T−1
t y)

We have µ(T−1
t y) = µ(y) so

=

∫
ΩE

f(y)g(y)dµE(y)

= 〈f, g〉

So U is an isometry as it perseveres the inner product.
And UtU−t = Ut−t = U0

While (U0f)(w) = f(T0w) = f(w). So U0 = I and Ut is invertible.

⇒ U−1
t = U∗t since invertible and isometry. UtU

∗
t = U∗t Ut = I

⇒ Ut is unitary.
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3 Ergodic

In the continuous case we have Utf = f ◦ Tt, we are concerned with what functions in
L2(ΩE, dµE) will satisfy Utf = f .

If f is constant, say f(w) = c, ∀w ∈ ΩE then
(Utf)(w) = (f ◦ Tt)(w) = f(Tt(w)) = c as Tt : ΩE → ΩE

Definition 3.1. Tt is called ergodic if the constant functions are the only functions in
L2(ΩE, dµE) for which f ◦ Tt = f (as L2 functions) for all t.

Proposition 1. Tt is ergodic if and only if for all measurable sets F ⊂ ΩE, we have T
−1
t F =

F for all t then µE(F ) = 0 or µE(F ) = 1.

Proof.

⇒ Suppose Tt is ergodic and T−1
t F = F ∀t (so T−1

t sends F to F ).
Then for f = χF , we get T−1

t χF = χF ⇒ χF = Tt ◦ χF so χF is constant (as Tt is ergodic).
Then χF ≡ 0 almost everywhere or χF ≡ 1 almost everywhere.
Therefore almost everything is in F or almost nothing is in F ,

which gives us µE(F ) = 0 or µE(F ) = 1 as required.

⇐ This direction depends on further measure theory knowledge,
however the outlining idea is as follows.

Suppose that µE(F ) = 0 or µE(F ) = 1 for measurable sets F and T−1
t F = F for all t.

Then B = {w ∈ F |f(w) < a} is invariant under Tt, then µE(B) = 0 and µE(F −B) = 1, or
the opposite is true; so f(w) < a almost everywhere or f(w) ≥ a almost everywhere.

Since true for an arbitrary a, f(w) can only vary on a set of measure 0. Therefore f(w) is
constant almost everywhere.

Therefore the statement is only true when functions f are constant, so Tt is ergodic.

Example 1. Circle Rotation

Using setup from [3], let S := [0, 1) with measure µ, define α ∈ S, Rα : S → S by Rα(x) ≡
(x+ α) mod 1, so Rα(x) ∈ S.
NOTE: The rotation on the circle map Θ(x) := exp(2πix) is isomorphic to Rα

Also Rα is measure preserving as if F ⊂ S,
then µ(R−1

α F ) = µ(F ) since it simply shifts x by −α.

Rα is ergodic if and only if α 6∈ Q
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First if α ∈ Q
Suppose α = p

q
, when p, q ∈ Z, q 6= 0.

Then (Rα(x))q = Rα(Rα(. . . Rα(x))) = x+ p
q

+ p
q
. . . p

q
= x+ q

(
p
q

)
= x+ p ≡ x mod 1.

Now fix some x ∈ S and ε sufficiently small that the ε-neighbourhoods of x + kα for
k = 0, 1, . . . q − 1 are disjoint. The union of these neighbourhoods (call it F ) is an invariant
set of positive measure, and we choose ε small enough so that F 6= S. Thus 0 < µ(F ) < 1
so Rα is not ergodic.

Now if α 6∈ Q
For a measurable set F such that T−1

t F = F ,choose f s.t. f(x) = x ∀x ∈ F .
We can write f =

∑
n∈Z f̂(n) exp(2πint) (Fourier Series expansion).

But since Rα is measure preserving over F , f = f ◦Rα =
∑

n∈Z exp(2πinα)f̂(n) exp(2πint)

∴ f̂(n) = f̂(n) exp(2πinα) but α 6∈ Q⇒ exp(2πinα) 6= 1, so f̂(n) = 0, n 6= 0.
So f = f̂(0) almost everywhere, and f̂(0) =

∫
F
f(x)dx = µ(F ).

Then when µ(F ) > 0, f(x) = x = µ(F )× x⇒ µ(F ) = 1.
Therefore for all measurable sets F we get µ(F ) = 0 or µ(F ) = 1 Therefore Rα is ergodic.

Example 2. Angle Doubling

There is also a similar example is for angle doubling. Again from [3], let S = [0, 1), and
D : S → S s.t. D(x) = 2x mod 1. D is an angle doubling map as Θ(x) := exp(2πix) is an
isomorphism between D and the angle doubling map exp(x)→ exp(2x) on the circle.
However to show that D is ergodic requires more advanced knowledge (i.e. mixing). So it
will not be shown.2

4 von Neumann’s Ergodic Theorem

Continuing from [2], we want to look at:

1

T

∫ T

0

(Utf)(w)dµ(w)

In order to simplify some calculations we will look at the discrete analogue:

1

N

N−1∑
n=0

(Unf)(w)

This leads to the following very powerful result.

2[3] Chapter 2 deals with mixing and proves that Angle Doubling is ergodic.
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Theorem 2 (von Neumann’s Ergodic Theorem). Let U be a unitary operator on a Hilbert
space H, with P being the orthogonal projection onto {ψ ∈ H|Uψ = ψ}. Then, for any
f ∈ H.

lim
N→∞

1

N

N−1∑
n=0

Unf = Pf

However, before we prove this, let’s prove some easy results to help us.

Lemma 1. If U is unitary, Uf = f ⇐⇒ U∗f = f

Proof.
Uf = f ⇐⇒ f = U−1f ⇐⇒ f = U∗f

Lemma 2. If U is unitary, ‖U‖ = 1

(This was discussed in class)

Proof.

‖U‖ = sup
x∈H

||Ux||
||x||

= sup
x∈H

(〈Ux, Ux〉) 1
2

(〈x, x〉) 1
2

= sup
x∈H

(
〈x, U∗Ux〉
〈x, x〉

) 1
2

= sup
x∈H

(
〈x, x〉
〈x, x〉

) 1
2

= 1

Lemma 3. For any operator A on a Hilbert Space H, (imA)⊥ = kerA∗

(This was done during an assignment)

Proof.
ψ ∈ kerA∗ then 〈φ,A∗ψ〉 = 〈φ, 0〉 = 0,∀φ ∈ H

While ψ ∈ (imA)⊥gives 〈Aϕ,ψ〉 = 0,∀ϕ ∈ H

∴ ψ ∈ (imA)⊥ ⇐⇒ 〈Aϕ,ψ〉 = 0∀ϕ ∈ H ⇐⇒ 〈ϕ,A∗ψ〉 = 0∀ϕ ∈ H ⇐⇒ ψ ∈ kerA∗
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Now we can prove the important theorem stated above.

Proof of von Neumann’s Ergodic Theorem.

Let f = g − Ug ⇒ f ∈ im(I − U) then

∥∥∥∥∥ 1

N

N−1∑
n=0

Unf

∥∥∥∥∥ =

∥∥∥∥∥ 1

N

N−1∑
n=0

Un(g − Ug)

∥∥∥∥∥ =

∥∥∥∥ 1

N
(g − UNg)

∥∥∥∥
Also we can use the previous lemma 2 to get ‖UN‖ = 1 as UN is unitary when U is.

Then ‖g − UNg‖ ≤ ‖g‖+ ‖UN‖ ‖g‖ = ‖g‖(1 + ‖UN‖) = ‖g‖(2) = 2‖g‖

∴

∥∥∥∥∥ 1

N

N−1∑
n=0

Unf

∥∥∥∥∥ =

∥∥∥∥ 1

N
(g − UNg)

∥∥∥∥ ≤ 2 ‖g‖
N

Which goes to 0 as N →∞

⇒

∥∥∥∥∥ 1

N

N−1∑
n=0

Unf

∥∥∥∥∥→ 0 ∀f ∈ im(I − U)

Additionally we show this holds for im(I − U), consider f ∈ im(I − U) then
∃f̃ ∈ im(I − U) s.t. ‖f − f̃‖ < ε

2
. And N such that∥∥∥∥∥ 1

N

N−1∑
n=0

Unf̃

∥∥∥∥∥ < ε

2

∴

∥∥∥∥∥ 1

N

N−1∑
n=0

Unf

∥∥∥∥∥ =

∥∥∥∥∥ 1

N

N−1∑
n=0

Un((f − f̃) + f̃)

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

N

N−1∑
n=0

Un(f − f̃)

∥∥∥∥∥+

∥∥∥∥∥ 1

N

N−1∑
n=0

Unf̃

∥∥∥∥∥
<
ε

2

(
1

N

N−1∑
n=0

‖Un‖

)
+
ε

2
≤ ε

2
+
ε

2
= ε. Using that Un is unitary

∴

∥∥∥∥∥ 1

N

N−1∑
n=0

Unf

∥∥∥∥∥ < ε

From our lemma 1 and 3
(im(I − U))⊥ = ker(I − U∗) = {ψ ∈ H|U∗ψ − ψ = 0} = {ψ ∈ H|U∗ψ = ψ} = {ψ ∈ H|Uψ = ψ}

∴ Pf = 0 ⇐⇒ f ∈ im(P )⊥ ⇐⇒ f ∈ (im(I − U)⊥)⊥ ⇐⇒ f ∈ im(I − U)
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Now suppose Pf = f . Then Uf = f , where f ∈ {ψ ∈ H|Uψ = ψ} ⇒ f ∈ im(I − U)⊥

∴
1

N

N−1∑
n=0

Unf =
Nf

N
= f , so it converges to f = Pf

So the following holds ∀f ∈ im(I − U)⊕ (im(I − U))⊥ = H

lim
N→∞

1

N

N−1∑
n=0

Unf = Pf

In the continuous case we then get3

1

T

∫ T

0

(Utf)(w)dµ = Pf

Corollary 1. For Tt ergodic then for any f ∈ L2(ΩE, dµE)

lim
T→∞

1

T

∫ T

0

f(Ttw)dt =

∫
ΩE

f(y)dµE(y)

Proof.

Since Tt is ergodic, {f ∈ L2(ΩE, dµE)|Uf = f} is a collection of constant maps,
so Pf ≡ c, where c ∈ R

lim
T→∞

1

T

∫ T

0

f(Ttw)dt = lim
T→∞

1

T

∫ T

0

(Utf)(w)dt = Pf = c = 〈f, 1〉 =

∫
ΩE

f(y)dµE(y)

As 〈f − Pf, Pf〉 = 0⇒ 〈f − Pf, Pf〉 = 〈f − c, c〉 = 〈f, c〉 − 〈c, c〉 = 0
So 〈f, c〉 = 〈c, c〉 ⇒ c〈f, 1〉 = c2 ⇒ 〈f, 1〉 = c

The converse can be shown similarly, so Tt is ergodic if and only if the corollary holds.

3This is omitted as it is similar but with more work (as it involves integration as compared to summation).
However section 35.2 of [1] proves the continuous case.
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5 Conclusion

Finally, I would like to introduce the following theorem.
Theorem 3 (Birkhoff Ergodic Theorem). Let T be a measure preserving transformation on
a measure space (Ω, µ). Then, for any f ∈ L1(Ω, µ), we get

lim
N→0

1

N

N−1∑
n=0

f(T nx)

which exists pointwise almost everywhere and is some function f̃ ∈ L1(Ω, µ) s.t. f̃(Tx) =
f̃(x).

If µ(Ω) <∞, then ∫
Ω

f̃(x)dµ(x) =

∫
Ω

f(x)dµ(x)

Furthermore, if µ is ergodic and µ(Ω) = 1, then as N →∞, the space average of f becomes
the time average f .

lim
N→0

1

N

N−1∑
n=0

f(T nx) −→
∫

Ω

f(y)dµ(y)

for almost all x.

In general, the space and time averages of a function are different, so this can be a very
useful result in physics. Additionally, this theorem has better connections with statistical
mechanics than the von Neumann theorem.
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