
Functional Analysis
Topics discussed per day

Instructor: Masoud Khalkhali
Mathematics Department, University of Western Ontario

London, ON, Canada

This document is meant to record the topics discussed in my course, Func-
tional Analysis, per each class. It can also be useful to draw your attention
to important points discussed in each class.

• First two weeks of December: Students presented various topics related to
the course material and functional analysis (the course ended on December
14, 2009):

1. Saugmann: Hilbert space and quantum mechanics ( Chapter 6 of Kowal-
ski’s ETH notes)

2. Sinnamon: Fredholm operators and index theory (pp 108-124 in R. G.
Douglas’ book Banach algebra techniques in operator theory)

3. Mamun: Operator algebras and MASA’a from G. Pederson’s book (Anal-
ysis now)

4. Gao: Sturm Liouville theory (from Young’s book ‘An introduction to
Hilbert space’)

5. Acar: Groups of unitary operators (Chapter 5 of Pederson’s book ‘Anal-
ysis now’)

6. Wagley: Chapter 5 and Sections 4.6 of Kowalski’s ETH notes.
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• The last week of November: Functional analysis and quantum mechanics-
postulates of quantum mechanics: state space, observables, measurements
and Born’s probabilistic interpretation, quantum dynamics (Schroedinger
equation); Stone’s theorem on (strongly continuous) one parameter groups
of unitary operators on a Hilbert space; the role of unbounded operators
in QM; Heisenberg’s commutation relations; A proof of Heisenberg’s uncer-
tainty principle.

• Third week of November: Spectral theorem for compact selfadjoint oper-
ators. (I intended to give applications to Sturm-Liouville theory, and the
Peter-Weyl theorem. No time!).

• Second week of November: Spectral theory basics: the spectrum is com-
pact and non-empty (Gelfand); spectral radius formula; examples of spec-
trum computations; spectrum of compact operators (discrete with 0 as the
only limit point).

• First week of November: Theory of compact operators (mostly in Hilbert
space); equivalent formulations, finite rank operators, Hilbert-Schmidt oper-
ators, examples: integral operators with L2-kernels;

• Wednesday, October 28: As an application of the closed graph theorem,
proved the Hellinger-Toepliz theorem on automatic continuity of symmetric
everywhere defined operators; consequences for quantum mechanics. Spec-
trum of a bounded linear operator on a Banach space (the word spectrum was
used by Newton in his spectrum of light; amazingly the two uses of the word
are related!) Eigenvalues and why they are not all of the spectrum in general
(shift operator); Spectrum of a diagonal infinite matrix; first goal: to show
the spectrum is compact and non-empty; compactness is done, non-empty
will be done next Monday.

• Monday, October 26: Finished proof of open mapping theorem; corollary:
continuity of the inverse (when it exists); proof of closed graph theorem, coun-
terexample in the nonlinear case. So, done with ‘Big Three’.

• Wednesday, October 21: Discussed the idea of open mapping theorem,
counter examples in the nonlinear case. started its proof.
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• Monday, October 19: No classes-I gave a colloquium in Toronto (York).

• Wednesday, October 14: Finished proof of Hahn-Banach Theorem (real
case); corollaries: the continuous dual X∗ of a normed space X, showed
(l1)∗ = l∞, tried to identify l∞-no time; the canonical isometric embedding
X → X∗∗; reflexive Banach spaces, examples: finite dimensional normed
spaces, Hilbert spaces, lp for 1 < p < ∞ is reflexive (not prove yet); warning:
l1 is NOT reflexive! the Baire category theorem: nowhere dense sets in com-
plete metric spaces; application: proved the uniform boundedness principle;
Banach-Steinhaus theorem.

• Monday, October 12: Thanksgiving Monday-no class.

• Wednesday, October 7: talked a bit more about integral operators and
the linear algebra-functional analysis analogy (the ‘Rosetta Stone’); simplest
example of a differential operator

d

dx
: Dom(

d

dx
) ⊂ L2[0, 1] → L2[0, 1];

why it is not L2-bounded, problems with its domain; how to think about
L2(S1), why

−i
d

dx
: L2(S1) → L2(S1)

is a symmetric operator; the 3 pillars of functional analysis; started with the
Hahn-Banach theorem: first tried the real case-the main technical lemma
(how to extend f to a bit bigger subspace first) not quite finished yet! gave
one application: continuous linear functionals separate the points of X; what
Hahn-Banach means? there are plenty of cont. linear functionals on any
normed space.

• Monday, October 5: The adjoint T ∗ : H2 → H1 of a bounded linear
operator T : H1 → H2 between Hilbert spaces, defined by

〈Tx, y〉 = 〈x, T ∗y〉.

Properties of the adjoint: anti-linear, anti-multiplicative, involutive; better
yet: take H1 = H2 = H, then the adjoint operation T → T ∗ turns L(H) into
a C∗-algebra (I shall mention the axioms of a C∗-algebra in the next class).
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The matrix of the adjoint in an o.n. basis; important classes of operators:
selfadjoint, isometry, unitary, co-isomtery; isometry does not imply unitary
in infinite dimensions: the forward shift operator is an example of this; the
backward shift operator; the Volterra integral operator V : L2[0, 1] → L2[0, 1]

(V f)(x) =

∫ x

0

f(y)dy.

It is a bounded linear operator. V is an example of an integral operator.
The class of integral operators provide one of the most important and widely
studied classes of linear operators; general definition: given K : [0, 1] ×
[0, 1] → C, define TK : L2[0, 1] → L2[0, 1] by

(TKf)(x) =

∫ 1

0

K(x, y)f(y)dy

K is called the kernel of TK . If K is continuous then TK is a bounded; this is
too restrictive: e.g. the Volterra is an integral operator with a discontinuous
kernel. If T ∈ L2([0, 1]2), then TK is bounded. Spent some time to discuss
the important analogy between TK and a linear operator defined by a ma-
trix: this is far reaching and played an important role in Volterra, Fredholm,
Hilbert and many others’ work up to now!

• Wednesday, September 30: complete metric spaces and how completion
works, examples and applications to inner product spaces and normed spaces;
bounded linear operators between normed spaces, equivalent definitions of
boundedness; why closedness of the kernel is not enough (unlike linear func-
tionals on a Hilbert space ), gave a counter example on an inner product
space (not a Hilbert space), here is a good question: give an example of a
linear operator T : H → H on a Hilbert space whose kernel is closed, but
is not bounded; (orthogonal) projection operators, orthogonal versus non-
orthogonal projections.

• Monday, September 28: Gram-Schmidt orthonormalization process; sepa-
rable Hilbert spaces and equivalent criteria for separability; L2-spaces (just
L2[0, 1] for the moment), how to prove it is separable and how to find a count-
able o.n. basis for it; Fourier series, how to prove that en = e2πinx, n ∈ Z
form an o.n. basis for L2[0, 1]: Weierstrass approximation theorem and its
generalization, the Stone-Weierstrass approximation theorem; compare L2-
convergence of functions with other types of convergence, e.g. pointwise or
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uniform convergence.

• Wednesday, September 23: complete o.n. sets (Hilbert basis) and its var-
ious equivalent formulations, existence of Hilbert basis for Hilbert spaces
(using Zorn’s lemma, what is Zorn’s lemma?), comparing the Hilbert di-
mension with the vector space dimension; isomorphism theorem for Hilbert
spaces, moral: there aren’t that ‘many’ Hilbert spaces out there! compare
with Banach spaces.

• Monday, September 21: continuous linear functionals, Riesz representation
theorem for continuous linear functionals, the dual H∗ of a Hilbert space and
its relation to H.

• Wednesday, September 16: distance to closed convex sets, orthogonality,
orthogonal complement, the orthogonal decomposition theorem.

• Monday, September 14: First lecture: definition of a complex pre-Hilbert
space (also called inner product space, Hermitian space); Pythagorean theo-
rem; Cauchy-Schwartz inequality-this was an unusual derivation! norm and
metric of a pre-Hilbert space; introduce normed spaces; completeness condi-
tion: defined Hilbert space; examples: Cn and `2.
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