From Spectral Geometry to Geometry of Noncommutative Spaces III

Masoud Khalkhali

University of Western Ontario

Workshop on the Geometry of Noncommutative Manifolds Fields Inst. Toronto, March 2015

Recall from last lecture

Friedmann-Lemaître-Robertson-Walker metric

▶ (Euclidean) FLRW metric with the scale factor *a*(*t*):

$$ds^{2} = dt^{2} + a^{2}(t) d\sigma^{2}.$$

Where $d\sigma^2$ is the round metric on 3-sphere. It describes a homogeneous, isotropic (expanding or contracting) universe with spatially closed universe.

Friedmann-Lemaître-Robertson-Walker metric

(Euclidean) FLRW metric with the scale factor a(t):

$$ds^{2}=dt^{2}+a^{2}\left(t\right) d\sigma^{2}.$$

Where $d\sigma^2$ is the round metric on 3-sphere. It describes a homogeneous, isotropic (expanding or contracting) universe with spatially closed universe.

• For $a(t) = \sin(t)$ one obtains the round metric on S^4 .

$$ds^2 = dt^2 + a^2(t) \left(d\chi^2 + \sin^2(\chi) \left(d\theta^2 + \sin^2(\theta) d\varphi^2 \right) \right)$$

FLRW Metric

References

1. Chamseddine and Connes: Spectral Action for Robertson-Walker metrics (JHEP 2012)

2. Fathizadeh, Ghorbanpour, and Khalkhali: Rationality of Spectral Action for Robertson-Walker Metrics (JHEP 2014)

Dirac spectrum

• Spectrum of Dirac for round S^4 :

	eigenvalues	multiplicity
D	$\pm k$	$\frac{2}{3}(k^3-k)$
D^2	k^2	$\frac{4}{3}(k^3-k)$

► To find heat kernel coefficients of D² we apply the Euler Maclaurin formula for a = 0, b = ∞ and

$$g(x) = \frac{4}{3}(x^3 - x)f(x) = \frac{4}{3}(x^3 - x)e^{-tx^2}$$

The integral term gives

$$\int_{a}^{b} g(x) dx = \frac{4}{3} \int_{0}^{\infty} (x^{3} - x) e^{-tx^{2}} dx = \frac{2}{3} (t^{-2} - t^{-1})$$

The term $\frac{g(a)+g(b)}{2}$ is zero since $g(0) = g(\infty) = 0$. And

$$g^{(2m-1)}(0)/(2m-1)! = (-1)^m \frac{4}{3} \left(\frac{t^{m-2}}{(m-2)!} + \frac{t^{m-1}}{(m-1)!} \right)$$

Putting all these together we get

$$\frac{3}{4}\mathrm{Tr}(e^{-tD^2}) = \frac{1}{2t^2} - \frac{1}{2t} + \frac{11}{120} + \sum_{k=1}^m (-1)^k \left(\frac{B_{2k+2}}{2k+2} + \frac{B_{2k+4}}{2k+4}\right) \frac{t^k}{k!} + o(t^m)$$

Euler Maclaurin formula and spectral action for S^4

For general f the Euler Maclaurin formula gives

$$\frac{3}{4} \operatorname{Tr}(f(tD^2)) = \int_0^\infty f(tx^2)(x^3 - x)dx + \frac{11f(0)}{120} - \frac{31f'(0)}{2520}t + \frac{41f''(0)}{10080}t^2 - \frac{31f^{(3)}(0)}{15840}t^3 + \frac{10331f^{(4)}(0)}{8648640}t^4 + \ldots + R_m$$

Levi-Civita Connection and the Spin Connection

Fix a frame $\{\theta_{\alpha}\}$ and coframe $\{\theta^{\alpha}\}$. Connection 1-forms

$$\nabla \theta^{\alpha} = \omega^{\alpha}_{\beta} \theta^{\beta}.$$

Metric connection:

$$\omega_{\beta}^{\alpha} = -\omega_{\alpha}^{\beta}.$$

Levi-Civita Connection and the Spin Connection

Fix a frame $\{\theta_{\alpha}\}$ and coframe $\{\theta^{\alpha}\}$. Connection 1-forms

$$\nabla \theta^{\alpha} = \omega^{\alpha}_{\beta} \theta^{\beta}.$$

Metric connection:

$$\omega_{\beta}^{\alpha} = -\omega_{\alpha}^{\beta}.$$

Cartan structure equations: curvature and torsion 2-forms:

$$egin{aligned} \Omega &= d\omega - \omega \wedge \omega \ T^lpha &= d heta^lpha - \omega^lpha_eta \wedge heta^eta \end{aligned}$$

For torsion free connections:

$$d\theta^{\beta} = \omega_{\alpha}^{\beta} \wedge \theta^{\alpha}.$$

Connection one-form for Levi-civita connection

Orthonormal basis for the cotangent space

$$\begin{aligned} \theta^1 &= dt, \\ \theta^2 &= a(t) \, d\chi, \\ \theta^3 &= a(t) \sin \chi \, d\theta, \\ \theta^4 &= a(t) \sin \chi \sin \theta \, d\varphi. \end{aligned}$$

The computation by Chamseddin-Connes shows that the connection one-form is given by

$$\omega = \begin{bmatrix} 0 & -\frac{a'(t)}{a(t)}\theta^2 & -\frac{a'(t)}{a(t)}\theta^3 & -\frac{a'(t)}{a(t)}\theta^4 \\ \frac{a'(t)}{a(t)}\theta^2 & 0 & -\frac{\cot(\chi)}{a(t)}\theta^3 & -\frac{\cot(\chi)}{a(t)}\theta^4 \\ \frac{a'(t)}{a(t)}\theta^3 & \frac{\cot(\chi)}{a(t)}\theta^3 & 0 & -\frac{\cot(\theta)}{a(t)\sin(\chi)}\theta^4 \\ \frac{a'(t)}{a(t)}\theta^4 & \frac{\cot(\chi)}{a(t)}\theta^4 & \frac{\cot(\theta)}{a\sin(\chi)}\theta^4 & 0 \end{bmatrix}$$

The Spin Connection

The spin connection is the lift of the Levi-Civita connection defined on T^*M . Now we have the connection one-forms ω , which is a skew symmetric matrix, i.e. $\omega \in \mathfrak{so}(4)$. Using the Lie algebra isomorphism $\mu : \mathfrak{so}(4) \to \mathfrak{spin}(4)$ given by

$$egin{aligned} & A\mapsto rac{1}{4}\sum_{lpha,eta}\langle A heta^{lpha}, heta^{eta}
angle oldsymbol{c}(heta^{lpha})oldsymbol{c}(heta^{eta})oldsymbol{c}(heta^{eta}) \end{aligned}$$

Since ω is written in the orthonormal basis θ^{α} so $\langle \omega \theta^{\alpha}, \theta^{\beta} \rangle = \omega_{\beta}^{\alpha}$. So the connection one forms for the spinor connection is given by

$$\tilde{\omega} = \frac{1}{2}\omega_2^1\gamma^{12} + \frac{1}{2}\omega_3^1\gamma^{13} + \frac{1}{2}\omega_4^1\gamma^{14} + \frac{1}{2}\omega_3^2\gamma^{23} + \frac{1}{2}\omega_4^2\gamma^{24} + \frac{1}{2}\omega_4^3\gamma^{34}$$

Chamseddine-Connes Computations

They used Gilkey's local formulae to obtain the heat kernel coefficients

$$\begin{aligned} a_{0} &= \frac{a(t)^{3}}{2} \\ a_{2} &= \frac{1}{4}a(t)\left(a(t)a''(t) + a'(t)^{2} - 1\right) \\ a_{4} &= \frac{1}{120}(3a^{(4)}(t)a(t)^{2} + 3a(t)a''(t)^{2} - 5a''(t) + 9a^{(3)}(t)a(t)a'(t) - 4a'(t)^{2}a''(t)) \\ a_{6} &= \frac{1}{5040a(t)^{2}}(9a^{(6)}(t)a(t)^{4} - 21a^{(4)}(t)a(t)^{2} - 3a^{(3)}(t)^{2}a(t)^{3} - 56a(t)^{2}a''(t)^{3} + 42a(t)a''(t)^{2} + 36a^{(5)}(t)a(t)^{3}a'(t) + 6a^{(4)}(t)a(t)^{3}a''(t) - 42a^{(4)}(t)a(t)^{2}a'(t)^{2} + 60a^{(3)}(t)a(t)a'(t)^{3} + 21a^{(3)}(t)a(t)a'(t) + 240a(t)a'(t)^{2}a''(t)^{2} - 60a'(t)^{4}a''(t) - 21a'(t)^{2}a''(t) - 252a^{(3)}(t)a(t)^{2}a'(t)a''(t)) \end{aligned}$$

Using Euler-Maclaurin summation and Feynman-Kac formula they computed up to a_{10} :

$$\begin{split} &\frac{a_{5}}{10080a(t)^{4}} \left(-a^{(8)}(t)a(t)^{6} + 3a^{(6)}(t)a(t)^{4} + 13a^{(4)}(t)^{2}a(t)^{5} - 24a^{(3)}(t)^{2}a(t)^{3} - 114a(t)^{3}a^{\prime\prime}(t)^{4} + 43a(t)^{2}a^{\prime\prime}(t)^{3} - 5a^{(7)}(t)a(t)^{5}a^{\prime}(t) + 2a^{(6)}(t)a(t)^{5}a^{\prime\prime}(t) + 9a^{(6)}(t)a(t)^{4}a^{\prime}(t)^{2} + 16a^{(3)}(t)a^{(5)}(t)a(t)^{5} - 24a^{(5)}(t)a(t)^{3}a^{\prime\prime}(t)^{3} - 6a^{(5)}(t)a(t)^{3}a^{\prime\prime}(t) + 69a^{(4)}(t)a(t)^{3}a^{\prime\prime}(t)^{2} - 36a^{(4)}(t)a(t)^{3}a^{\prime\prime}(t) + 60a^{(4)}(t)a(t)^{2}a^{\prime}(t)^{4} + 15a^{(4)}(t)a(t)^{2}a^{\prime}(t)^{2} + 90a^{(3)}(t)^{2}a(t)^{4}a^{\prime\prime}(t) - 216a^{(3)}(t)^{3}a^{\prime}(t)^{2} - 108a^{(3)}(t)a^{(4)}(t)^{5}(t)^{5} - 27a^{(3)}(t)a(t)a^{\prime}(t)^{3} + 801a(t)^{2}a^{\prime\prime}(t)^{3} - 588a(t)a^{\prime}(t)^{4}a^{\prime\prime}(t)^{2} - 27a^{(4)}(t)a^{\prime\prime}(t)^{2} + 78a^{(5)}(t)a^{(4)}a^{\prime\prime}(t)^{4} + 132a^{(3)}(t)a^{(4)}(t)a^{(4)}(t)a^{\prime}(t)^{4} + 78a^{(5)}(t)a^{(4)}a^{\prime\prime}(t) + 132a^{(3)}(t)a^{(4)}(t)a^{\prime}a^{\prime}(t) - 312a^{(4)}(t)a(t)^{3}a^{\prime\prime}(t)^{2} - 819a^{(3)}(t)a^{\prime\prime}(t)^{3}a^{\prime\prime}(t)^{2} - 768a^{(3)}(t)a^{(2)}a^{\prime\prime}(t)^{2} + 768a^{(3)}(t)a^{(2)}a^{\prime\prime}(t)^{2} + 102a^{(3)}(t)a^{(2)}a^{\prime\prime}(t)^{2} - 312a^{(4)}(t)a^{(4)}a^{\prime\prime}(t)^{3} - 819a^{(3)}(t)a^{\prime\prime}(t)^{3} + 810a^{(3)}a^{\prime\prime}(t)^{2} + 102a^{(3)}(t)a^{(4)}a^{\prime\prime}(t)^{4} - 768a^{(3)}(t)a^{(2)}a^{\prime\prime}(t)^{2} + 102a^{(3)}(t)a^{(4)}a^{\prime\prime}(t)^{2} - 312a^{(4)}(t)a^{(4)}a^{\prime\prime}(t)^{3} - 819a^{(3)}(t)a^{(4)}a^{\prime\prime}(t)^{2} + 768a^{(3)}(t)a^{(2)}a^{\prime\prime}(t)^{2} + 102a^{(3)}(t)a^{(2)}a^{\prime\prime}(t)^{2} - 312a^{(4)}(t)a^{(4)}a^{\prime\prime}(t)^{3} - 810a^{(4)}(t)a^{(4)}(t)a^{(4)}a^{\prime\prime}(t)^{2} - 312a^{(4)}(t)a^{(4)}a^{\prime\prime}(t)^{3} - 810a^{(4)}(t)a^{(4)}(t)a^{(4)}(t)a^{(4)}(t)a^{\prime\prime}(t)^{2} + 310a^{(4)}(t)a^{(4)}(t)a^{(4)}(t)^{3}a^{\prime\prime}(t)^{2} + 310a^{(4)}(t)a^{(4)}(t)a^{(4)}(t)^{3}a^{\prime\prime}(t)^{2} + 310a^{(4)}(t)a^{(4)}(t)a^{(4)}(t)^{3}a^{\prime\prime}(t)^{3} + 801a^{(4)}(t)a^{(4)}(t)^{3}(t)a^{(4)}(t)^{3}(t)a^{(4)}(t)^{3}$$

 $a_{10} =$ $\frac{10}{665280.a(t)^6} (3a^{(10)}(t)a(t)^8 - 222a^{(5)}(t)^2a(t)^7 - 348a^{(4)}(t)a^{(6)}(t)a(t)^7 - 147a^{(3)}(t)a^{(7)}(t)a(t)^7 - 18a^{\prime\prime}(t)a^{(8)}(t)a(t)^7 + 147a^{(10)}(t)a^{(10)}(t$ $18a'(t)a^{(9)}(t)a(t)^7 - 482a''(t)a^{(4)}(t)^2a(t)^6 - 331a^{(3)}(t)^2a^{(4)}(t)a(t)^6 - 1110a''(t)a^{(3)}(t)a^{(5)}(t)a(t)^6$ $1556a'(t)a^{(4)}(t)a^{(5)}(t)a(t)^{6} - 448a''(t)^{2}a^{(6)}(t)a(t)^{6} - 1074a'(t)a^{(3)}(t)a^{(6)}(t)a(t)^{6} - 476a'(t)a''(t)a^{(7)}(t)a(t)^{6}$ $43a'(t)^{2}a^{(8)}(t)a(t)^{6} - 11a^{(8)}(t)a(t)^{6} + 8943a'(t)a^{(3)}(t)^{3}a(t)^{5} + 21846a''(t)^{2}a^{(3)}(t)^{2}a(t)^{5} + 4092a'(t)^{2}a^{(4)}(t)^{2}a(t)^{5}$ $396a^{(4)}(t)^{2}a(t)^{5} + 10560a^{\prime\prime}(t)^{3}a^{(4)}(t)a(t)^{5} + 39402a^{\prime}(t)a^{\prime\prime}(t)a^{(3)}(t)a^{(4)}(t)a(t)^{5} + 11352a^{\prime}(t)a^{\prime\prime}(t)^{2}a^{(5)}(t)a(t)^{5} + 11352a^{\prime}(t)a^{\prime\prime}(t)a^{(3)}(t)a^{(4$ $6336a'(t)^2a^{(3)}(t)a^{(5)}(t)a(t)^5 + 594a^{(3)}(t)a^{(5)}(t)a(t)^5 + 294a^{(3)}(t)a^{(5)}(t)a(t)^5 + 294a'(t)^2a''(t)a^{(6)}(t)a(t)^5 + 264a''(t)a^{(6)}(t)a(t)^5 + 264a''(t)a^{(6)}(t)a(t)a^{(6)$ $165a'(t)^{3}a^{(7)}(t)a(t)^{5} + 33a'(t)a^{(7)}(t)a(t)^{5} - 1033a''(t)^{5}a(t)^{4} - 95919a'(t)^{2}a''(t)a^{(3)}(t)^{2}a(t)^{4} - 3729a''(t)a^{(3)}(t)^{2}a(t)^{4} - 3729a''(t)^{2}a(t)^{4} - 3729a''(t)^{4} - 3729a''(t)^$ $117600a'(t)a''(t)^{3}a^{(3)}(t)a(t)^{4} - 68664a'(t)^{2}a''(t)^{2}a^{(4)}(t)a(t)^{4} - 2772a''(t)^{2}a^{(4)}(t)a(t)^{4} - 23976a'(t)^{3}a^{(3)}(t)a^{(4)}(t)a(t)^{4} - 23976a'(t)^{3}a^{(4)}(t)a^{(4)}(t)a(t)^{4} - 23976a'(t)^{3}a^{(4)}(t)a^{(4)}(t)a(t)^{4} - 23976a'(t)^{3}a^{(4)}(t)a^{(4)}(t)a(t)^{4} - 23976a'(t)^{3}a^{(4)}(t)a^{(4)}(t)a^{(4)}(t)a(t)^{4} - 23976a'(t)^{3}a^{(4)}(t)a^{(4)}($ $2640a'(t)a^{(3)}(t)a^{(4)}(t)a(t)^{4} - 12762a'(t)^{3}a''(t)a^{(5)}(t)a(t)^{4} - 1386a'(t)a''(t)a^{(5)}(t)a(t)^{4} - 651a'(t)^{4}a^{(6)}(t)a(t)^{4} - 661a'(t)^{4}a^{(6)}(t)a(t)^{4} - 661a'(t)a^{(6)}(t)a(t)^{4} - 661a'(t)a^{(6)}(t)a(t)a(t)^{4} - 661a'(t)a^{(6)}(t)a(t)a^{(6)}(t)a(t)$ $132a'(t)^{2}a^{(6)}(t)a(t)^{4} + 111378a'(t)^{2}a''(t)^{4}a(t)^{3} + 2354a''(t)^{4}a(t)^{3} + 31344a'(t)^{4}a^{(3)}(t)^{2}a(t)^{3} + 3729a'(t)^{2}a^{(3)}(t)^{2}a(t)^{3} + 3729a'(t)^{2}a^{(3)}(t)^{2}a^{(3)}(t)^{2}a(t)^{3} + 3729a'(t)^{2}a^{(3)}(t)^{2}a^$ $236706a'(t)^{3}a''(t)^{2}a^{(3)}(t)a(t)^{3} + 13926a'(t)a''(t)^{2}a^{(3)}(t)a(t)^{3} + 43320a'(t)^{4}a''(t)a^{(4)}(t)a(t)^{3} + 5214a'(t)^{2}a''(t)a^{(4)}(t)a(t)^{3} + 5214a'(t)a^{(4)}(t)a(t)^{3} + 5214a'(t)a^{(4)}(t)a(t)a^{(4)}(t)a(t)a^{(4)}(t)a(t)a^{(4)}(t)a^{(4)}(t)a^{(4)}(t)a^{(4)}(t)a^{(4$ $103884a'(t)^5a''(t)a^{(3)}(t)a(t)^2 - 13332a'(t)^3a''(t)a^{(3)}(t)a(t)^2 - 6138a'(t)^5a^{(4)}(t)a(t)^2 - 1287a'(t)^4a^{(4)}(t)a(t)^2 + 1287a'(t)^4a^{(4)}(t)a(t)^4a^{(4)}(t)a(t)^2 + 1287a'(t)^4a^{(4)}(t)a(t)^4a^{(4)}(t)$ $76440a'(t)^{6}a''(t)^{2}a(t) + 10428a'(t)^{4}a''(t)^{2}a(t) + 11700a'(t)^{7}a^{(3)}(t)a(t) + 2475a'(t)^{5}a^{(3)}(t)a(t) - 11700a'(t)^{8}a''(t) - 11700a'(t)^{$ $2475a'(t)^{6}a''(t)$

Conjectures and question about coefficients (CC):

- Check the agreement between the above formulas for a₈ and a₁₀ and the universal formulas.
- Show that the term a_{2n} of the asymptotic expansion of the spectral action for Robertson-Walker metric is of the form $P_n(a, \dots, a^{(2n)})/a^{2n-4}$ where P_n is a polynomial with rational coefficients and compute P_n .

Our approach: spectral analysis via pseudodifferential calculus

$$D = \gamma^{\alpha} \nabla_{\theta_{\alpha}} = \gamma^{\alpha} \left(\theta_{\alpha} + \omega(\theta_{\alpha})\right)$$

= $\gamma^{0} \frac{\partial}{\partial t} + \gamma^{1} \frac{1}{a} \frac{\partial}{\partial \chi} + \gamma^{2} \frac{1}{a \sin \chi} \frac{\partial}{\partial \theta} + \gamma^{3} \frac{1}{a \sin \chi \sin \theta} \frac{\partial}{\partial \varphi}$
+ $\frac{3a'}{2a} \gamma^{0} + \frac{\cot(\chi)}{a} \gamma^{1} + \frac{\cot(\theta)}{2a \sin(\chi)} \gamma^{2}$

So the symbol of the Dirac operator would be

$$\sigma_D(\mathbf{x},\xi) = i\gamma^0\xi_1 + \frac{i}{a}\gamma^1\xi_2 + \frac{i}{a\sin(\chi)}\gamma^2\xi_3 + \frac{i}{a\sin(\chi)\sin(\theta)}\gamma^3\xi_4 + \frac{3a'}{2a}\gamma^0 + \frac{\cot(\chi)}{a}\gamma^1 + \frac{\cot(\theta)}{2a\sin(\chi)}\gamma^2$$

Symbol of D^2

Using the symbol multiplication rule one can compute the symbol of the square of the Dirac operator. The symbol of D^2 has following homogeneous parts.

$$p_2 = \xi_1^2 + \frac{1}{a(t)^2}\xi_2^2 + \frac{1}{a(t)^2\sin^2(\chi)}\xi_3^2 + \frac{1}{a(t)^2\sin^2(\theta)\sin^2(\chi)}\xi_4^2,$$

$$\begin{split} \rho_{1} &= -\frac{3ia'(t)}{a(t)}\,\xi_{1} - \frac{i}{a(t)^{2}}\left(\gamma^{12}a'(t) + 2\cot(\chi)\right)\,\xi_{2} \\ &- \frac{i}{a(t)^{2}}\left(\gamma^{13}\csc(\chi)a'(t) + \cot(\theta)\csc^{2}(\chi) + \gamma^{23}\cot(\chi)\csc(\chi)\right)\,\xi_{3} \\ &- \frac{i}{a(t)^{2}}\left(\csc(\theta)\csc(\chi)a'(t)\gamma^{14} + \cot(\theta)\csc(\theta)\csc^{2}(\chi)\gamma^{34} + \csc(\theta)\cot(\chi)\csc(\chi)\gamma^{24}\right)\,\xi_{4}, \end{split}$$

$$\begin{split} \rho_{0} &= + \frac{1}{8a(t)^{2}} \left(-12a(t)a''(t) - 6a'(t)^{2} + 3\csc^{2}(\theta)\csc^{2}(\chi) - \cot^{2}(\theta)\csc^{2}(\chi) \right. \\ &+ 4i\cot(\theta)\cot(\chi)\csc(\chi) - 4i\cot(\theta)\cot(\chi)\csc(\chi) - 4\cot^{2}(\chi) + 5\csc^{2}(\chi) + 4 \right) \\ &- \frac{\left(\cot(\theta)\csc(\chi)a'(t)\right)}{2a(t)^{2}}\gamma^{13} - \frac{\left(\cot(\chi)a'(t)\right)}{a(t)^{2}}\gamma^{12} - \frac{\left(\cot(\theta)\cot(\chi)\csc(\chi)\right)}{2a(t)^{2}}\gamma^{23} \end{split}$$

Symbol of the parametrix

Parametrix:
$$(P - \lambda)\tilde{R}(\lambda) = I$$
.

$$\sigma(\tilde{R}(\lambda))=r_0+r_1+r_2+\cdots$$

Recursive formulas:

$$r_n = -r_0 \sum_{|\alpha|+j+2-k=n} (-i)^{|\alpha|} d_{\xi}^{\alpha} p_k \cdot d_x^{\alpha} r_j / \alpha!,$$

where $r_0 = (p_2 - \lambda)^{-1} = (||\xi||^2 - \lambda)^{-1}$. So the summation, for n > 1, will only have the following possible summands.

$$\begin{split} &k = 0, |\alpha| = 0, j = n - 2 & -r_0 \rho_0 r_{n-2} \\ &k = 1, |\alpha| = 0, j = n - 1 & -r_0 \rho_1 r_{n-1} \\ &k = 1, |\alpha| = 0, j = n - 2 & ir_0 \frac{\partial}{\partial \xi_0} p_1 \cdot \frac{\partial}{\partial t} r_{n-2} + ir_0 \frac{\partial}{\partial \xi_1} p_1 \cdot \frac{\partial}{\partial \chi} r_{n-2} + ir_0 \frac{\partial}{\partial \xi_2} p_1 \cdot \frac{\partial}{\partial \theta} r_{n-2} \\ &k = 2, |\alpha| = 1, j = n - 1 & ir_0 \frac{\partial}{\partial \xi_0} p_2 \cdot \frac{\partial}{\partial t} r_{n-1} + ir_0 \frac{\partial}{\partial \xi_1} p_2 \cdot \frac{\partial}{\partial \chi} r_{n-1} + ir_0 \frac{\partial}{\partial \xi_2} p_2 \cdot \frac{\partial}{\partial \theta} r_{n-1} \\ &k = 2, |\alpha| = 2, j = n - 2 & \frac{1}{2} r_0 \frac{\partial^2}{\partial \xi_0^2} p_2 \cdot \frac{\partial^2}{\partial t^2} r_{n-2} + \frac{1}{2} r_0 \frac{\partial^2}{\partial \xi_1^2} p_2 \cdot \frac{\partial^2}{\partial \chi^2} r_{n-2} + \frac{1}{2} r_0 \frac{\partial^2}{\partial \xi_2^2} p_2 \cdot \frac{\partial^2}{\partial \theta} r_{n-2} \end{split}$$

Heat Kernel of D^2 in terms of symbols of the parametrix.

Let

$$e_n = \frac{1}{(2\pi)^4} \int_{\mathbb{R}^4} \frac{1}{2\pi i} \int_{\gamma} e^{-t\lambda} r_n(x,\xi,\lambda) d\lambda d\xi$$

= $\frac{1}{2\pi i (2\pi)^4} \sum r_{n,j,\alpha}(x) \int_{\mathbb{R}^4} \xi^{\alpha} \int_{\gamma} e^{-t\lambda} r_0^j d\lambda d\xi$
= $\sum c_{\alpha} \frac{1}{(j-1)!} r_{n,j,\alpha} a(t)^{\alpha_2 + \alpha_3 + \alpha_4 + 3} \sin(\chi)^{\alpha_3 + \alpha_4 + 2} \sin(\theta)^{\alpha_4 + 1}$

Where $c_{\alpha} = \frac{1}{(2\pi)^4} \prod_k \Gamma\left(\frac{\alpha_k+1}{2}\right) \frac{(-1)^{\alpha_k}+1}{2}$.

where

$$a_n = \int_0^{2\pi} \int_0^{\pi} \int_0^{\pi} e_n d\chi d\theta d\phi$$

New term a_{12}

 $a_{12} =$ $\frac{1}{17297280.4(t)^8} \left(3a^{(12)}(t)a(t)^{10} - 1057a^{(6)}(t)^2a(t)^9 - 1747a^{(5)}(t)a^{(7)}(t)a(t)^9 - 970a^{(4)}(t)a^{(8)}(t)a(t)^9 - 970a^{(4)}(t)a^{(6)}(t)a^$ $317a^{(3)}(t)a^{(9)}(t)a(t)^9 - 34a''(t)a^{(10)}(t)a(t)^9 + 21a'(t)a^{(11)}(t)a(t)^9 + 5001a^{(4)}(t)^3a(t)^8 + 2419a''(t)a^{(5)}(t)^2a(t)^8$ $19174_{a}{}^{(3)}(t)a}{}^{(4)}(t)a}{}^{(5)}(t)a}{}^{(5)}(t)a}{}^{(5)}(t)a}{}^{(5)}(t)a}{}^{(6)$ $511a''(t)a^{(3)}(t)a^{(7)}(t)a(t)^{8} - 4175a'(t)a^{(4)}(t)a^{(7)}(t)a(t)^{8} - 745a''(t)^{2}a^{(8)}(t)a(t)^{8} - 2289a'(t)a^{(3)}(t)a^{(8)}(t)a(t)^{8} - 511a''(t)a^{(3)}(t)a$ $828a'(t)a''(t)a^{(9)}(t)a(t)^8 - 62a'(t)^2a^{(10)}(t)a(t)^8 - 13a^{(10)}(t)a(t)^8 + 45480a^{(3)}(t)^4a(t)^7 + 152962a''(t)^2a^{(4)}(t)^2a(t)^7 + 152962a''(t)^2a^{(4)}(t)^2a$ $203971a'(t)a^{(3)}(t)a^{(4)}(t)^{2}a(t)^{7} + 21369a'(t)^{2}a^{(5)}(t)^{2}a(t)^{7} + 1885a^{(5)}(t)^{2}a(t)^{7} + 410230a''(t)a^{(3)}(t)^{2}a^{(4)}(t)a(t)^{7} + 1885a^{(5)}(t)^{2}a(t)^{7} + 1885a^{(5)}(t)^{7} + 1885a^{(5)}(t)^{$ $163832a'(t)a^{(3)}(t)^2a^{(5)}(t)a(t)^7 + 250584a''(t)^2a^{(3)}(t)a^{(5)}(t)a(t)^7 + 244006a'(t)a''(t)a^{(4)}(t)a^{(5)}(t)a(t)^7$ $42440a''(t)^{3}a^{(6)}(t)a(t)^{7} + 163390a'(t)a''(t)a^{(3)}(t)a^{(6)}(t)a(t)^{7} + 35550a'(t)^{2}a^{(4)}(t)a^{(6)}(t)a(t)^{7} + 3094a^{(4)}(t)a^{(6)}(t)a(t)^{7} + 3094a^{(6)}(t)a(t)^{7} + 3094a^{(6)}(t)a^{(6)}(t)a(t)^{7} + 3094a^{(6)}(t)a^{(6)$ $34351a'(t)a''(t)^2a^{(7)}(t)a(t)^7 + 19733a'(t)^2a^{(3)}(t)a^{(7)}(t)a(t)^7 + 1625a^{(3)}(t)a^{(7)}(t)a(t)^7 + 6784a'(t)^2a''(t)a^{(8)}(t)a(t)^7 + 6784a'(t)^2a^{(1)}(t)a(t)^7 + 6784a'(t)a(t)^7 + 6784a'(t)a(t)^7 + 6784a'(t)a(t)^7 + 6784a'(t)a(t)$ $520a''(t)a^{(8)}(t)a(t)^7 + 308a'(t)^3a^{(9)}(t)a(t)^7 + 52a'(t)a^{(9)}(t)a(t)^7 - 2056720a'(t)a''(t)a^{(3)}(t)a^{(3)}a(t)^6$ $1790580a''(t)^{3}a^{(3)}(t)^{2}a(t)^{6} - 900272a'(t)^{2}a''(t)a^{(4)}(t)^{2}a(t)^{6} - 31889a''(t)a^{(4)}(t)^{2}a(t)^{6} - 643407a''(t)^{4}a^{(4)}(t)a(t)^{6}$ $1251548a'(t)^{2}a^{(3)}(t)^{2}a^{(4)}(t)a(t)^{6} - 43758a^{(3)}(t)^{2}a^{(4)}(t)a(t)^{6} - 4452042a'(t)a''(t)^{2}a^{(3)}(t)a^{(4)}(t)a(t)^{6}$ $836214a'(t)a''(t)^{3}a^{(5)}(t)a(t)^{6} - 1400104a'(t)^{2}a''(t)a^{(3)}(t)a^{(5)}(t)a(t)^{6} - 48620a''(t)a^{(3)}(t)a^{(5)}(t)a(t)^{6} - 48620a''(t)a^{(3)}(t)a^{(5)}(t)a(t)^{6} - 48620a''(t)a^{(3)}(t)a^{(5)}(t)a(t)^{6} - 48620a''(t)a^{(5)}(t)a^{(5)}(t)a(t)^{6} - 48620a''(t)a^{(5)}(t)$ $181966a'(t)^{3}a^{(4)}(t)a^{(5)}(t)a(t)^{6} - 18018a'(t)a^{(4)}(t)a^{(5)}(t)a(t)^{6} - 319996a'(t)^{2}a''(t)^{2}a^{(6)}(t)a(t)^{6} - 11011a''(t)^{2}a^{(6)}(t)a(t)^{6} - 11011a''(t)^{6} - 110$ $115062a'(t)^{3}a^{(3)}(t)a^{(6)}(t)a(t)^{6} - 11154a'(t)a^{(3)}(t)a^{(6)}(t)a(t)^{6} - 42764a'(t)^{3}a''(t)a^{(7)}(t)a(t)^{6} - 4004a'(t)a''(t)a^{(7)}(t)a(t)^{6} - 4004a'(t)a''(t$ $1649a'(t)^{4}a^{(8)}(t)a(t)^{6} - 286a'(t)^{2}a^{(8)}(t)a(t)^{6} + 460769a''(t)^{6}a(t)^{5} + 1661518a'(t)^{3}a^{(3)}(t)^{3}a(t)^{5} + 83486a'(t)a^{(3)}(t)^{3}a(t)^{5} + 83486a'(t)a^{(3)}(t)^{3} + 83486a'(t)a^{$ $13383328a'(t)^{2}a''(t)^{2}a(3)(t)^{2}a(t)^{5} + 222092a''(t)^{2}a(3)(t)^{2}a(t)^{5} + 342883a'(t)^{4}a^{(4)}(t)^{2}a(t)^{5} + 36218a'(t)^{2}a(4)(t)^{2}a(t)^{5} + 36218a'(t)^{2}a(t)^{5} + 36218a$ $7922361a'(t)a''(t)^{4}a^{(3)}(t)a(t)^{5} + 6367314a'(t)^{2}a''(t)^{3}a^{(4)}(t)a(t)^{5} + 109330a''(t)^{3}a^{(4)}(t)a(t)^{5} + 100330a''(t)^{3}a^{(4)}(t)a(t)^{5} + 100330a''(t)^{3}a^{(4)}(t)a(t)^{3} + 10030a''(t)^{3} + 1000a''(t)a($

Check on round sphere S^4

For a(t) = sin(t) we have

$$a_{12}(\text{sphere}) = \frac{10331 \sin^3(t)}{8648640}.$$

Hence

$$\int_0^{\pi} a_{12}(\text{spher})dt = \frac{4}{3} \frac{10331}{8648640} = \frac{10331}{6486480}.$$

Which agrees with the direct computation done in Connes-Chamseddine.

Rationality of heat coefficients

Theorem (Fathizadeh, Ghorbanpour, K.) The terms a_{2n} in the expansion of the spectral action for the Robertson-Walker metric with scale factor a(t) is of the form

$$\frac{1}{a(t)^{2n-3}} Q_{2n}\left(a(t), a'(t), \dots, a^{(2n)}(t)\right),$$

where Q_{2n} is a polynomial with *rational* coefficients.

By direct computation in Hopf coordinates, we found the vector fields which respectively form bases for left and right invariant vector fields on SU(2):

$$\begin{split} X_1^L &= \frac{\partial}{\partial \phi_1} + \frac{\partial}{\partial \phi_2}, \\ X_2^L &= \sin(\phi_1 + \phi_2) \frac{\partial}{\partial \eta} + \cot(\eta) \cos(\phi_1 + \phi_2) \frac{\partial}{\partial \phi_1} - \\ &\tan(\eta) \cos(\phi_1 + \phi_2) \frac{\partial}{\partial \phi_2}, \\ X_3^L &= \cos(\phi_1 + \phi_2) \frac{\partial}{\partial \eta} - \cot(\eta) \sin(\phi_1 + \phi_2) \frac{\partial}{\partial \phi_1} + \\ &\tan(\eta) \sin(\phi_1 + \phi_2) \frac{\partial}{\partial \phi_2}, \end{split}$$

and X_1^R, X_2^R, X_3^R . One checks that these vector fields are Killing vector fields for the Robertson-Walker metrics on the four dimensional space.

▶ Recall: regularized determinants. Given a sequence

$$0 < \lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$$
 spec(Δ)

How one defines $\prod \lambda_i = \det \Delta$?

▶ Recall: regularized determinants. Given a sequence

$$0 < \lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$$
 spec(Δ)

How one defines $\prod \lambda_i = \det \Delta$?

Define the spectral zeta function:

$$\zeta_{\Delta}(s) = \sum rac{1}{\lambda_i^s}, \qquad {\it Re}(s) \gg 0$$

Assume: $\zeta_{\Delta}(s)$ has meromorphic extension to \mathbb{C} and is regular at 0.

▶ Recall: regularized determinants. Given a sequence

$$0 < \lambda_1 \leq \lambda_2 \leq \cdots \rightarrow \infty$$
 spec (Δ)

How one defines $\prod \lambda_i = \det \Delta$?

Define the spectral zeta function:

$$\zeta_{\Delta}(s) = \sum rac{1}{\lambda_i^s}, \qquad {\it Re}(s) \gg 0$$

Assume: $\zeta_{\Delta}(s)$ has meromorphic extension to \mathbb{C} and is regular at 0.

Zeta regularized determinant:

$$\prod \lambda_i := e^{-\zeta'_{\Delta}(0)} = \det \Delta$$

Holomorphic determinants?

• Example: For Riemann zeta function, $\zeta'(0) = -\log \sqrt{2\pi}$. Hence

$$1\cdot 2\cdot 3\cdots = \sqrt{2\pi}.$$

Holomorphic determinants?

• Example: For Riemann zeta function, $\zeta'(0) = -\log \sqrt{2\pi}$. Hence

$$1\cdot 2\cdot 3\cdots = \sqrt{2\pi}.$$

► Usually Δ = D*D. The determinant map D → √detD*D is not holomorphic. How to define a holomorphic regularized determinant? This is much harder!

Holomorphic determinants?

• Example: For Riemann zeta function, $\zeta'(0) = -\log \sqrt{2\pi}$. Hence

$$1\cdot 2\cdot 3\cdots = \sqrt{2\pi}.$$

► Usually Δ = D*D. The determinant map D → √detD*D is not holomorphic. How to define a holomorphic regularized determinant? This is much harder!

 Quillen's approach: based on determinant line bundle and its curvature, aka holomorphic anomaly.

Space of Fredholm operators

The Space of Fredholm operators is one of the gifts of operator algebra theory to geometry, topology, and physics:

$$F = \operatorname{Fred}(H_0, H_1) = \{T : H_0 \to H_1; \ T \text{ is Fredholm}\}$$

► Atiyah-Jänich: K₀(X) = [X, F]. So F is a classifying space for K-theory.

The determinant line bundle

• Let $\lambda = \wedge^{max}$ denote the top exterior power functor.

The determinant line bundle

• Let $\lambda = \wedge^{max}$ denote the top exterior power functor.

► Theorem (Quillen) 1) There is a holomorphic line bundle DET → F s.t.

$$(DET)_T = \lambda (KerT)^* \otimes \lambda (KerT^*)$$

The determinant line bundle

• Let $\lambda = \wedge^{max}$ denote the top exterior power functor.

► Theorem (Quillen) 1) There is a holomorphic line bundle DET → F s.t.

$$(DET)_{T} = \lambda (KerT)^{*} \otimes \lambda (KerT^{*})$$

2) There map
$$\sigma: F_0 \rightarrow DET$$

$$\sigma(T) = \begin{cases} 1 & T & invertible \\ 0 & otherwise \end{cases}$$

is a holomorphic section of DET over F_0 .

Cauchy-Riemann operators on $\mathcal{A}_{ heta}$

Families of spectral triples

$$\mathcal{A}_{ heta}, \quad \mathcal{H}_0 \oplus \mathcal{H}^{0,1}, \quad \left(\begin{array}{cc} 0 & \bar{\partial}^* + \alpha^* \\ \bar{\partial} + \alpha & 0 \end{array} \right),$$
 with $\alpha \in \mathcal{A}_{ heta}, \ \bar{\partial} = \delta_1 + \tau \delta_2.$

• Let $\mathcal{A} =$ space of elliptic operators $D = \overline{\partial} + \alpha$.

Cauchy-Riemann operators on $\mathcal{A}_{ heta}$

Families of spectral triples

with

$$\mathcal{A}_{\theta}, \quad \mathcal{H}_{0} \oplus \mathcal{H}^{0,1}, \quad \left(\begin{array}{cc} 0 & \bar{\partial}^{*} + \alpha^{*} \\ \bar{\partial} + \alpha & 0 \end{array}\right),$$
$$\alpha \in \mathcal{A}_{\theta}, \ \bar{\partial} = \delta_{1} + \tau \delta_{2}.$$

• Let $\mathcal{A} =$ space of elliptic operators $D = \overline{\partial} + \alpha$.

 \blacktriangleright Pull back DET to a holomorphic line bundle $\mathcal{L} \rightarrow \mathcal{A}$ with

$$\mathcal{L}_D = \lambda (\mathit{KerD})^* \otimes \lambda (\mathit{KerD}^*).$$

From det section to det function

• If \mathcal{L} admits a canonical global holomorphic frame *s*, then

 $\sigma(D) = \det(D)s$

defines a holomorphic determinant function det(D). A canonical frame is defined once we have a canonical flat holomorphic connection.

Quillen's metric on \mathcal{L}

Define a metric on L, using regularized determinants. Over operators with Index(D) = 0, let

 $||\sigma||^2 = \exp(-\zeta'_{\Delta}(0)) = \det\Delta, \quad \Delta = D^*D.$

▶ Prop: This defines a smooth Hermitian metric on *L*.

Quillen's metric on $\boldsymbol{\mathcal{L}}$

▶ Define a metric on *L*, using regularized determinants. Over operators with *Index*(*D*) = 0, let

 $||\sigma||^2 = \exp(-\zeta'_{\Delta}(0)) = \det\Delta, \quad \Delta = D^*D.$

▶ Prop: This defines a smooth Hermitian metric on *L*.

A Hermitian metric on a holomorphic line bundle has a unique compatible connection. Its curvature can be computed from

 $\bar{\partial}\partial \log ||s||^2,$

where s is any local holomorphic frame.

Connes' pseudodifferential calculus

- To compute this curvature term we need a powerful pseudodifferential calculus, including logarithmic pseudos.
- Symbols of order m: smooth maps $\sigma: \mathbb{R}^2 \to A^\infty_{\theta}$ with

$$||\delta^{(i_1,i_2)}\partial^{(j_1,j_2)}\sigma(\xi)|| \le c(1+|\xi|)^{m-j_1-j_2}.$$

The space of symbols of order *m* is denoted by $S^m(\mathcal{A}_{\theta})$.

Connes' pseudodifferential calculus

- To compute this curvature term we need a powerful pseudodifferential calculus, including logarithmic pseudos.
- Symbols of order m: smooth maps $\sigma: \mathbb{R}^2 \to A^{\infty}_{\theta}$ with

$$||\delta^{(i_1,i_2)}\partial^{(j_1,j_2)}\sigma(\xi)|| \leq c(1+|\xi|)^{m-j_1-j_2}.$$

The space of symbols of order *m* is denoted by $S^m(\mathcal{A}_{\theta})$.

• To a symbol σ of order *m*, one associates an operator

$$P_{\sigma}(\mathbf{a}) = \int \int e^{-i\mathbf{s}\cdot\xi} \sigma(\xi) \alpha_{\mathbf{s}}(\mathbf{a}) \, d\mathbf{s} \, d\xi.$$

The operator $P_{\sigma} : A_{\theta} \to A_{\theta}$ is said to be a pseudodifferential operator of order *m*.

Classical symbols

• Classical symbol of order $\alpha \in \mathbb{C}$:

$$\sigma \sim \sum_{j=0}^{\infty} \sigma_{\alpha-j} \quad \text{ord } \sigma_{\alpha-j} = \alpha - j.$$
$$\sigma(\xi) = \sum_{j=0}^{N} \chi(\xi) \sigma_{\alpha-j}(\xi) + \sigma^{N}(\xi) \quad \xi \in \mathbb{R}^{2}.$$

• We denote the set of classical symbols of order α by $S^{\alpha}_{cl}(\mathcal{A}_{\theta})$ and the associated classical pseudodifferential operators by $\Psi^{\alpha}_{cl}(\mathcal{A}_{\theta})$.

A cutoff integral

▶ Any pseudo P_σ of order < -2 is trace-class with

$$\operatorname{Tr}(P_{\sigma}) = \varphi_0\left(\int_{\mathbb{R}^2} \sigma(\xi) d\xi\right).$$

A cutoff integral

▶ Any pseudo P_σ of order < -2 is trace-class with

$$\operatorname{Tr}(P_{\sigma}) = \varphi_0\left(\int_{\mathbb{R}^2} \sigma(\xi) d\xi\right).$$

▶ For $\operatorname{ord}(P) \ge -2$ the integral is divergent, but, assuming P is classical, and of non-integral order, one has an asymptotic expansion as $R \to \infty$

$$\int_{B(R)} \sigma(\xi) d\xi \sim \sum_{j=0,\alpha-j+2\neq 0}^{\infty} \alpha_j(\sigma) R^{\alpha-j+2} + \beta(\sigma) \log R + c(\sigma),$$

where $\beta(\sigma) = \int_{|\xi|=1} \sigma_{-2}(\xi) d\xi$ = Wodzicki residue of *P* (Fathizadeh).

The Kontsevich-Vishik trace

The cut-off integral of a symbol σ ∈ S^α_{cl}(A_θ) is defined to be the constant term in the above asymptotic expansion, and we denote it by f σ(ξ)dξ.

The Kontsevich-Vishik trace

- The cut-off integral of a symbol σ ∈ S^α_{cl}(A_θ) is defined to be the constant term in the above asymptotic expansion, and we denote it by f σ(ξ)dξ.
- The canonical trace of a classical pseudo P ∈ Ψ^α_{cl}(A_θ) of non-integral order α is defined as

$$\operatorname{TR}(P) := \varphi_0\left(\int \sigma_P(\xi)d\xi\right).$$

The Kontsevich-Vishik trace

- The cut-off integral of a symbol σ ∈ S^α_{cl}(A_θ) is defined to be the constant term in the above asymptotic expansion, and we denote it by f σ(ξ)dξ.
- The canonical trace of a classical pseudo P ∈ Ψ^α_{cl}(A_θ) of non-integral order α is defined as

$$\operatorname{TR}(P) := \varphi_0\left(\int \sigma_P(\xi)d\xi\right).$$

NC residue in terms of TR:

$$\operatorname{Res}_{z=0}\operatorname{TR}(AQ^{-z}) = \frac{1}{q}\operatorname{Res}(A).$$

Logarithmic symbols

Derivatives of a classical holomorphic family of symbols like σ(AQ^{-z}) is not classical anymore. So we introduce the Log-polyhomogeneous symbols:

$$\sigma(\xi)\sim \sum_{j\geq 0}\sum_{l=0}^\infty \sigma_{lpha-j,l}(\xi)\log^l|\xi|\quad |\xi|>0,$$

with $\sigma_{\alpha-j,l}$ positively homogeneous in ξ of degree $\alpha-j$.

Logarithmic symbols

Derivatives of a classical holomorphic family of symbols like σ(AQ^{-z}) is not classical anymore. So we introduce the Log-polyhomogeneous symbols:

$$\sigma(\xi)\sim \sum_{j\geq 0}\sum_{l=0}^\infty \sigma_{lpha-j,l}(\xi)\log^l|\xi|\quad |\xi|>0,$$

with $\sigma_{\alpha-j,l}$ positively homogeneous in ξ of degree $\alpha-j$.

Example: log Q where Q ∈ Ψ^q_{cl}(A_θ) is a positive elliptic pseudodifferential operator of order q > 0.

Logarithmic symbols

 Derivatives of a classical holomorphic family of symbols like σ(AQ^{-z}) is not classical anymore. So we introduce the Log-polyhomogeneous symbols:

$$\sigma(\xi)\sim \sum_{j\geq 0}\sum_{l=0}^\infty \sigma_{lpha-j,l}(\xi)\log^l|\xi|\quad |\xi|>0,$$

with $\sigma_{\alpha-j,l}$ positively homogeneous in ξ of degree $\alpha-j$.

► Example: log Q where Q ∈ Ψ^q_{cl}(A_θ) is a positive elliptic pseudodifferential operator of order q > 0.

$$\operatorname{res}(A) = \int_{|\xi|=1} \sigma_{-2,0}(\xi) d\xi.$$

Variations of LogDet and the curvature form

▶ Recall: for our canonical holomorphic section σ ,

$$\|\sigma\|^2 = e^{-\zeta'_{\Delta_\alpha}(0)}$$

Variations of LogDet and the curvature form

▶ Recall: for our canonical holomorphic section σ ,

$$\|\sigma\|^2 = e^{-\zeta'_{\Delta_\alpha}(0)}$$

• Consider a holomorphic family of Cauchy-Riemann operators $D_w = \bar{\partial} + \alpha_w$. Want to compute

$$\bar{\partial}\partial \log \|\sigma\|^2 = \delta_{\bar{w}}\delta_w\zeta'_{\Delta}(0) = \delta_{\bar{w}}\delta_w\frac{d}{dz}\mathrm{TR}(\Delta^{-z})|_{z=0}.$$

The second variation of logDet

Prop 1: For a holomorphic family of Cauchy-Riemann operators D_w, the second variation of ζ'(0) is given by :

$$\delta_{\bar{w}}\delta_w\zeta'(0) = rac{1}{2}\varphi_0\left(\delta_w D\delta_{\bar{w}} \mathrm{res}(\log\Delta D^{-1})
ight).$$

The second variation of logDet

Prop 1: For a holomorphic family of Cauchy-Riemann operators D_w, the second variation of ζ'(0) is given by :

$$\delta_{\bar{w}}\delta_{w}\zeta'(0) = \frac{1}{2}\varphi_{0}\left(\delta_{w}D\delta_{\bar{w}}\mathrm{res}(\log\Delta D^{-1})\right).$$

• Prop 2: The residue density of $\log \Delta D^{-1}$:

$$\sigma_{-2,0}(\log \Delta D^{-1}) = \frac{(\alpha + \alpha^*)\xi_1 + (\bar{\tau}\alpha + \tau\alpha^*)\xi_2}{(\xi_1^2 + 2\Re(\tau)\xi_1\xi_2 + |\tau|^2\xi_2^2)(\xi_1 + \tau\xi_2)}$$

$$-\log\left(\frac{\xi_1^2+2\Re(\tau)\xi_1\xi_2+|\tau|^2\xi_2^2}{|\xi|^2}\right)\frac{\alpha}{\xi_1+\tau\xi_2},$$

and

$$\delta_{\bar{w}} \operatorname{res}(\log(\Delta)D^{-1}) = \frac{1}{2\pi\Im(\tau)}(\delta_w D)^*.$$

Curvature of the determinant line bundle

 Theorem (A. Fathi, A. Ghorbanpour, MK.): The curvature of the determinant line bundle for the noncommutative two torus is given by

$$\delta_{\bar{w}}\delta_w\zeta'(0)=\frac{1}{4\pi\Im(\tau)}\varphi_0\left(\delta_w D(\delta_w D)^*\right).$$

Remark: For θ = 0 this reduces to Quillen's theorem (for elliptic curves).

A holomorphic determinant à la Quillen

Modify the metric to get a flat connection:

$$||s||_{f}^{2} = e^{||D-D_{0}||^{2}}||s||^{2}$$

A holomorphic determinant à la Quillen

Modify the metric to get a flat connection:

$$||s||_{f}^{2} = e^{||D-D_{0}||^{2}}||s||^{2}$$

 Get a flat holomorphic global section. This gives a holomorphic determinant function

$$det(D, D_0) : \mathcal{A} \to \mathbb{C}$$

It satisfies

$$|det(D, D_0)|^2 = e^{||D - D_0||^2} det_{\zeta}(D^*D)$$

Summary of my 3 lectures

Summary of my 3 lectures

