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From spectral geometry to noncommutative geometry

I One of the backbones of Alain Connes’ program of
NCG, specially its metric and differential geometric
aspects, is Spectral Geometry and the Correspondence
Principle which relates QM to CM. Both subjects have
their roots in Planck’s derivation of his celebrated
Radiation Law and in Bohr-Sommerfeld Quantization
Rules.
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What is spectral geometry?

I (M, g) = closed Riemannian manifold.

I An elliptic complex

Ω0(M) −→ Ω1(M) −→ · · · −→ Ωn(M).

I Laplacian on forms

4 = (d + d∗)2 : Ωp(M)→ Ωp(M),

has pure point spectrum:

0 ≤ λ1 ≤ λ2 ≤ · · · → ∞
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Laplace spectrum

I (M, g) and (M ′, g ′) are called isospectral if they have
the same Laplace spectrum, counting multiplicities.

I Isometric manifolds are isospectral, but the converse is
not always true (Milnor, Sunada, · · · ).

I Fact: isospectral manifolds have the same Dimension,
volume, total scalar curvature, Betti numbers, and
hence the same Euler characteristic.
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First examples: flat tori and round spheres

I Flat tori: M = Rm/Γ, Γ ⊂ Rm a cocompact lattice;

spec(4) = {4π2||γ||2; γ ∈ Γ∗}

ϕγ(x) = e2πi〈γ,x〉 γ ∈ Γ∗

I Round sphere Sn. Eigenvalues

λ̄k = k(k + n − 1) k = 0, 1, · · · ,

with multiplicity
(n+k

k

)
−
(n+k−2

k−2

)
.

5 / 33



First examples: flat tori and round spheres

I Flat tori: M = Rm/Γ, Γ ⊂ Rm a cocompact lattice;

spec(4) = {4π2||γ||2; γ ∈ Γ∗}

ϕγ(x) = e2πi〈γ,x〉 γ ∈ Γ∗

I Round sphere Sn. Eigenvalues

λ̄k = k(k + n − 1) k = 0, 1, · · · ,

with multiplicity
(n+k

k

)
−
(n+k−2

k−2

)
.

5 / 33



I In particular λ̄1(Sn) = n with eigenfunctions

{x1, · · · , xn+1}

I Eigenspace of λ̄k : Harmonic polynomials of degree k .

I Except for very few cases, no general formulas are
known for eigenvalues.
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Patterns in eigenvalues

I Hard to find any pattern in eigenvalues in general,
except, perhaps, that their growth is determined by the
dimension of the manifold:

λk ∼ Ck
2
m k →∞

I But this is far from obviuos, and clues as to why such a
statment should be true, and what C should be, first
came from from spectroscopy, and in particular attemps
to find the black body radiation formula.
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Figure: Black body spectrum
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Planck’s Radiation Law

I From 1859 (Kirchhoff) till 1900 (Planck) a great effort
went into finding the right formula for spectral energy
density function of a radiating black body.

I Kirchhoff predicted: The total energy emitted by a
black body is independent of the shape of the cavity
and should only depend on its volume.

I Plnack’s formula: ρ(ν,T ) = 8πhν3

c3
1

ehν/kT−1
. But nobody

was happy with his derivation, untill Bose gave a
satisfactory derivation in 1924.

9 / 33



Planck’s Radiation Law

I From 1859 (Kirchhoff) till 1900 (Planck) a great effort
went into finding the right formula for spectral energy
density function of a radiating black body.

I Kirchhoff predicted: The total energy emitted by a
black body is independent of the shape of the cavity
and should only depend on its volume.

I Plnack’s formula: ρ(ν,T ) = 8πhν3

c3
1

ehν/kT−1
. But nobody

was happy with his derivation, untill Bose gave a
satisfactory derivation in 1924.

9 / 33



Planck’s Radiation Law

I From 1859 (Kirchhoff) till 1900 (Planck) a great effort
went into finding the right formula for spectral energy
density function of a radiating black body.

I Kirchhoff predicted: The total energy emitted by a
black body is independent of the shape of the cavity
and should only depend on its volume.

I Plnack’s formula: ρ(ν,T ) = 8πhν3

c3
1

ehν/kT−1
. But nobody

was happy with his derivation, untill Bose gave a
satisfactory derivation in 1924.

9 / 33



Conjecture of Lorentz and Sommerfeld

I In 1910 H. A. Lorentz gave a series of lectures in
Göttingen under the title “old and new problems of
physics”. Weyl and Hilbert were in attendance. In
particular he mentioned attempts to drive Planck’s
radiation formula in a mathematically satisfactory way
and remarked:

‘It is here that there arises the mathematical problem to
prove that the number of sufficiently high overtones
which lie between ν and ν + dν is independent of the
shape of the enclosure and is simply proportional to its
volume. .......There is no doubt that it holds in general
even for multiply connected spaces’.
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• Hilbert was not very optimistic to see a solution in his
lifetime. But Hermann Weyl settled this conjecture of
Lorentz and Sommerfeld affirmatively within a year and
announced a proof in 1911! All he needed was Hilbert’s
theory of integral equations and his spectral theorem for
compact operators developed by Hilbert and his students in
1900-1910.
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Figure: Hermann Weyl in Göttingen
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Dirichlet eigenvalues and Weyl law

I Let Ω ⊂ R2 be a compact connected domain with a
piecewise smooth boundary.{

∆u = λu

u|∂Ω = 0

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞

〈ui , uj〉 = δij o.n. basis for L2(Ω)

I Eigenvalue Counting Function:

N(λ) = #{λi ≤ λ}
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• Weyl Law for planar domains Ω ⊂ R2 :

N(λ) ∼ Area(Ω)

4π
λ, λ→∞

where N(λ) is the eigenvalue counting function.

• In general, for Ω ⊂ Rn

N(λ) ∼ ωnVol(Ω)

(2π)n
λ

n
2 λ→∞
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I Weyl’s law: One can hear the volume and dimension of
a manifold. We shall see one can hear the volume of
curved noncommutative tori too.

I But the ultimate question is: what else one can hear
about the shape of a manifold, or the shape of a
noncommutative space?

I It is now known that one can hear, among other things,
the total scalar curvature, and, in many cases, lengths
of closed geodesics (as in Selberg trace formula).
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I Years later, in his Gibbs lecture to the American
Mathematical Society (1950) Weyl said:

“I feel that these informations about the proper
oscillations of a membrane, valuable as they are, are
still very incomplete. I have certain conjectures of what
a complete analysis of their asymptotic behaviour
should aim at but, since for more than 35 years I have
made no serious effort to prove them, I think I had
better keep them to myself”.
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First impacts of Weyl’s law: how to quantize

I Consider a classical system (X , h);
X = symplectic manifold, h : X → R, Hamiltonian.
Assume

{x ∈ X ; h(x) ≤ λ}

are compact for all λ (confined system).

I Typical example: X = T ∗M, (M, g) = compact
Riemannian manifold, h = T + V .
T = kinetic energy, V = potential energy.
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I How to quantize this ?

(X , h) (H,H)

No one knows! No functor! But Dirac rules, geometric
quantization, (strict) deformation quantization, etc.
provide some ideas.

I Weyl’s law imposes some constraints that are
universally agreed on. This is an aspect of the
celebrated correspondence principle:
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I H = Hamiltonian, with pure point spectrum

λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞

s.t.
N(λ) ∼ c Volume (h ≤ λ) λ→∞

I Thus: quantized energy levels are approximated by
phase space volumes.
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I Apply this to X = T ∗M, (M, g) = compact
Riemannian manifold, h(q, p) = ||p||2; set

H = L2(M), H = ∆ Laplacian

obtain Weyl’s Law:

N(λ) ∼ c Vol (M)λm/2 (λ→∞)
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Heat kernel asymptotics

I (M, g) = compact Riemannian manifold

∆ = d∗d : L2(M)→ L2(M), Laplacian

∆ = −gµν∂µ∂ν + Aµ∂µ + B

I Weyl’s Law:

N(λ) =
Vol (M)

(4π)m/2Γ(1 + m/2)
λm/2 + o(λm/2)
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Method of proof: bring in the heat kernel

I Heat equation for functions: ∂t +4 = 0

I k(t, x , y) = kernel of e−t4. Asymptotic expansion near
t = 0:

k(t, x , x) ∼ 1

(4πt)m/2
(a0(x ,4)+a1(x ,4)t+a2(x ,∆)t2+· · · ).

I ai (x ,4), Seeley-De Witt-Gilkey coefficients.
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I Theorem: ai (x ,4) are universal polynomials in
curvature tensor R and its covariant derivatives:

a0(x ,4) = 1

a1(x ,4) =
1

6
S(x) scalar curvature

a2(x ,4) =
1

360
(2|R(x)|2 − 2|Ric(x)|2 + 5|S(x)|2)

a3(x ,4) = · · · · · ·
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Heat trace asymptotics

Compute Trace(e−t4) in two ways:

Spectral Sum = Geometric Sum.

∑
e−tλi =

∫
M

k(t, x , x)dvolx ∼ (4πt)
−m

2

∞∑
j=0

aj t
j (t → 0).

Hence

aj =

∫
M

aj(x ,4)dvolx ,

are manifestly spectral invariants:

a0 =

∫
M

dvolx = Vol(M), =⇒ Weyl’s law

a1 =
1

6

∫
M

S(x)dvolx , total scalar curvature
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Tauberian theory and a0 = 1, implies Weyl’s law:

N(λ) ∼ Vol (M)

(4π)m/2Γ(1 + m/2)
λm/2 λ→∞,

where
N(λ) = #{λi ≤ λ}

is the eigenvalue counting function.
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Simplest example: flat tori
I Γ ⊂ Rm a cocompact lattice; M = Rm/Γ

spec(4) = {4π2||γ∗||2; γ∗ ∈ Γ∗}
I Then:

K (t, x , y) =
1

(4πt)m/2

∑
γ∈Γ

e−4π2||x−y+γ||2/4t

I Poisson summation formula =⇒∑
γ∗∈Γ∗

e−4π2||γ∗||2t =
Vol(M)

(4πt)m/2

∑
γ∈Γ

e−4π2||γ||2/4t

I And from this we obtain the asymptotic expansion of
the heat trace near t = 0

Tre−t∆ ∼ Vol(M)

(4πt)m/2
(t → 0)
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Application 1: heat equation proof of the Atiyah-Singer
index theorem

I Dirac operator

D : C∞(S+)→ C∞(S−)

McKean-Singer formula:

Index(D) = Tr(e−tD
∗D)− Tr(e−tDD∗

), ∀t > 0

Heat trace asymptotics =⇒

Index(D) =

∫
M

an(x)dx ,

where an(x) = a+
n (x)− a−n (x),m = 2n, can be explicitly

computed and recovers the A-S integrand (The simplest
proof is due to Getzler).
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Application 2: meromorphic extension of spectral zeta
functions

ζ4(s) :=
∑
λj 6=0

λ−sj , Re(s) >
m

2

Mellin transform + asymptotic expansion:

λ−s =
1

Γ(s)

∫ ∞
0

e−tts−1 dt Re(s) > 0

ζ4(s) =
1

Γ(s)

∫ ∞
0

(Trace(e−t4)− Dim Ker4)ts−1 dt

=
1

Γ(s)
{
∫ c

0
· · ·+

∫ ∞
c
· · · }

The second term defines an entire function, while the first
term has a meromorphic extension to C with simple poles
within the set
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m

2
− j , j = 0, 1, · · ·

Also: 0 is always a regular point.

Simplest example: For M = S1 with round metric, we have

ζ4(s) = 2ζ(2s) Riemann zeta function
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Scalar curvature

The spectral invariants ai in the heat asymptotic expansion

Trace(e−t4) ∼ (4πt)
−m

2

∞∑
j=0

aj t
j (t → 0)

are related to residues of spectral zeta function by

Ress=αζ4(s) = (4π)−
m
2

am
2
−α

Γ(α)
, α =

m

2
− j > 0

Focusing on subleading pole s = m
2 − 1 and using

a1 = 1
6

∫
M S(x)dvolx , we obtain a formula for scalar

curvature density as follows:
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Let ζf (s) := Tr (f4−s), f ∈ C∞(M).

Res ζf (s)|s=m
2
−1 =

(4π)−m/2

Γ(m/2− 1)

∫
M

fS(x)dvolx , m ≥ 3

ζf (s)|s=0 =
1

4π

∫
M

fS(x)dvolx − Tr(fP) m = 2

log det(4) = −ζ ′(0), Ray-Singer regularized determinant
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