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Introduction. Let X and Y be vector spaces and T : X → Y a linear operator. We
know that T is an isomorphism if and only if ker(T ) = {0} and im(T ) = Y , that is,
coker(T ) := Y/im(T ) = {0}. Equivalently, T is an isomorphism if and only if dim ker(T ) = 0
and dim coker(T ) = 0. We see that the “closeness” of T to becoming an isomorphism
is related to the subspaces ker(T ) and coker(T ). Fredholm operators can be viewed as
operators “close” to being isomorphisms.

Definition. Let T : X → Y be a bounded linear operator between Hilbert spaces. T is
Fredholm if dim ker(T ) <∞ and dim coker(T ) <∞. The index of T is the integer

index(T ) = dim ker(T )− dim coker(T ).

Remark. Any linear isomorphism is Fredholm with index 0 and any linear operator between
finite dimensional spaces is Fredholm.

Proposition 1. Let T : X → Y be Fredholm. Then the image of T is closed in Y and

index(T ) = dim ker(T )− dim ker(T ∗).

Proof. Since dim ker(T ) <∞, then ker(T ) is a finite dimensional subspace of X, and hence
closed. Then we may assume without loss of generality that ker(T ) = {0} as we can restrict
T to ker(T )⊥. Since dim coker(T ) < ∞, there exists a finite dimensional subspace V ⊆ Y
such that Y = im(T ) ⊕ V . As V is finite dimensional, V is closed so Y = V ⊕ V ⊥. Let
π : Y → V ⊥ be the orthogonal projection operator.

Define G = πT : X → V ⊥. Note that G is continuous as π and T are continuous. As Y =
im(T )⊕ V , then im(T ) ∩ V = {0}. Then for x ∈ ker(G), πT (x) = 0 so T (x) ∈ ker(π) = V .
Then Tx ∈ im(T ) ∩ V = {0}. Thus G is injective. Let y ∈ V ⊥ ⊆ Y . Then there exists
unique vectors y1 ∈ im(T ), y2 ∈ V such that y = y1 + y2. As y1 ∈ im(T ), then there exists
x ∈ X such that T (x) = y1. Note that as y1 = y− y2 where y ∈ V ⊥, y2 ∈ V , then π(y1) = y.
Thus G(x) = πT (x) = π(y1) = y. Hence G is an isomorphism. Then by the open mapping
theorem, G is an open map so G−1 : V ⊥ → X is continuous.

Let {xn}∞n=1 be a sequence in X such that {T (xn)}∞n=1 converges in Y , say to y ∈ Y . Then
limn→∞G(xn) = π(y) exists in V ⊥. Then x := limn→∞ xn = G−1π(y) exists in X. Thus
T (xn)→ T (x) ∈ im(T ) so the image of T is closed.

As im(T ) is closed, we have Y = im(T )⊕ im(T )⊥. As im(T )⊥ = ker(T ∗), we have coker(T ) =
Y/im(T ) ∼= ker(T ∗). Thus dim coker(T ) = dim ker(T ∗). �

Example. Let S : `2 → `2 be the left shift operator, that is, S(x1, x2, ...) = (x2, x3, ...). Then
we see that dim ker(S) = 1 and it is easy to see that S is surjective so dim coker(S) = 0. Thus
index(S) = 1. Also, S∗ : `2 → `2 is the right shift operator which is injective and its image
has codimension 1 so index(S∗) = −1. Furthermore, index(Sk) = k and index((S∗)k) = −k
for all k ≥ 0.
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Lemma 2. If K : X → Y is a finite rank operator, then there exists {φn}k
n=1 ⊆ X and

{ψn}k
n=1 ⊆ Y such that

a) Kx = ∑k
n=1 〈x, φn〉ψn for all x ∈ X.

b) K∗y = ∑k
n=1 〈y, ψn〉φn for all y ∈ Y . In particular, K∗ is finite rank.

For the c) and d), suppose further that X = Y .
c) dim ker(I +K) <∞.
d) dim coker(I +K) <∞.

Proof. a) As K is finite rank, dim im(K) < ∞ so let {ψn}k
n=1 be an orthonormal basis for

im(K). Then for x ∈ X,

Kx =
k∑

n=1
〈Kx,ψn〉ψn =

k∑
n=1
〈x,K∗ψn〉ψn =

k∑
n=1
〈x, φn〉ψn

where φn = K∗ψn.
b) Extend {ψn}k

n=1 to an orthonormal Hilbert basis {ψn}k
n=1 ∪ {ϕi}i∈I . Then for y ∈ Y ,

y = ∑k
n=1 〈y, ψn〉ψn +∑

i∈I 〈y, ϕi〉ϕi. Thus for x ∈ X〈
K∗y −

k∑
n=1
〈y, ψn〉φn, x

〉
=
〈
K∗

(
y −

k∑
n=1
〈y, ψn〉ψn

)
, x

〉

=
〈

k∑
n=1
〈y, ψn〉ψn +

∑
i∈I

〈y, ϕi〉ϕi −
k∑

n=1
〈y, ψn〉ψn, Kx

〉

=
〈∑

i∈I

〈y, ϕi〉ϕi,
k∑

n=1
〈x, φn〉ψn

〉
= 0.

Thus K∗y = ∑k
n=1 〈y, ψn〉φn.

c) We have ker(I + K) = {x ∈ X|Kx = −x} ⊆ im(K), which is finite dimensional. Thus
dim ker(I +K) <∞.
d) For x ∈ ker(K), x = (I +K)x so ker(K) ⊆ im(I +K). For x, y ∈ X, with 〈x, φi〉 = 0 for
all i, we have 〈Kx, y〉 = 〈x,K∗y〉 = 〈x,∑n

i=1 〈y, ψi〉φi〉 = 0 so Kx = 0. Thus {φ1, ..., φk}⊥ ⊆
ker(K). Then X = ker(K) + span({φi}k

i=1) as span({φi}k
i=1) = im(K∗) and X = im(K∗) ⊕

im(K∗)⊥. Thus dim(X/ ker(K)) <∞. Since ker(K) ⊆ im(I +K), then dim coker(I +K) =
dim(X/im(I +K)) <∞. �

Theorem 3. (Atkinson) A bounded operator T : X → Y between Hilbert spaces is Fredholm
if and only if there exists a bounded operator A : Y → X such that AT − I and TA− I are
both compact. Furthermore, we may choose A so that AF − I and FA − I are both finite
rank operators.

Proof. (⇒) Suppose T : X → Y is Fredholm. Then T : ker(T )⊥ → im(T ) is an isomorphism
between Hilbert spaces. Let T̃ be the inverse of this map. Note that T̃ is continuous by
the open mapping theorem. As im(T ) is closed in Y , let P : Y → im(T ) be the orthogonal
projection map. Note that PT = T . Let A = T̃P . Let x = x1 + x2 ∈ X where x1 ∈ ker(T )
and x2 ∈ ker(T )⊥. Then

(AT − I)(x) = T̃PT (x)− x = T̃ T (x)− x = T̃ T (x2)− x = x2 − x = −x1 = −Q(x)
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where Q : X → ker(T ) is the orthogonal projection onto ker(T ). Let y = y1 + y2 ∈ Y where
y1 ∈ im(T ) and y2 ∈ im(T )⊥. Then

(TA− I)(y) = T T̃P (y)− y = T T̃ (y1)− y = y1 − y = −(I − P )(y).
Note that I −P is the orthogonal projection onto im(T )⊥ = coker(T ). Since T is Fredholm,
dim ker(T ) <∞ and dim coker(T ) <∞ so Q and I−P are finite rank projections and hence
compact. Thus AT − I and TA− I are compact.
(⇐) Proof 1: Let A : Y → X be such that AT − I = K1 and TA − I = K2 are both
compact. Then AT = I + K1 and TA = I + K2. Then by Question 4 on Assignment 3,
dim ker(AT ) < ∞ and dim coker(TA) < ∞. As ker(T ) ⊆ ker(AT ) and im(T ) ⊇ im(TA),
then dim ker(T ) <∞ and dim coker(T ) <∞ so T is Fredholm.
Proof 2: For the converse, we will assume the approximation property that Hilbert spaces
have: a bounded operator K : X → Y is compact if and only if there exists finite rank
operators Kn : X → Y such that ‖K −Kn‖ → 0 as n→∞ (see Proposition 16.7 in [D]).
We first show we can choose A so that AT − I and TA − I are finite rank operators. Let
G = AT − I, a compact operator. Choose a finite rank approximation G1 to G such that
G = G1 + E where ‖E‖ < 1. Then I − E is invertible. Let AL : Y → X be the operator
AL = (I + E)−1A. As AT = I +G = I + E +G1, then

ALT = (I + E)−1AT = (I + E)−1(I + E +G1)

= I + (I + E)−1G1 = I +KL

where KL is a finite rank operator as G1 is a finite rank operator. Similarly, there exists a
bounded operator AR : Y → X and a finite rank operator KR such that TAR = I +KR. We
have ALTAR = (I +KL)AR = AR +KLAR and ALTAR = AL + ALKR. Thus

AL − AR = ALKR −KLAR = S,

a finite rank operator as KL and KR are finite rank. Then TAL = T (AR +S) = TAR +TS =
I + KR + TS so TAL − I = KR − TS, a finite rank operator. Thus ALT − I and TAL − I
are finite rank.
We may now assume that A is chosen such that AT−I = G1 and TA−I = G2 are finite rank.
We see that ker(T ) ⊆ ker(AT ) = ker(I + G1) and im(T ) ⊇ im(TA) = im(I + G2). By the
previous lemma, dim ker(I + G1) < ∞ and dim coker(I + G2) < ∞. Thus dim ker(T ) < ∞
and dim coker(T ) <∞ so T is Fredholm. �

Corollary 4. If T : X → Y is Fredholm, then T ∗ is Fredholm and index(T ∗) = −index(T ).

Proof. Choose A : Y → X such that AT − I and TA − I are compact. Then (AT − I)∗ =
T ∗A∗ − I and (TA − I)∗ = A∗T ∗ − I are compact so T ∗ is Fredholm. As index(T ) =
dim ker(T )− dim ker(T ∗), then index(T ∗) = dim ker(T ∗)− dim ker(T ) = −index(T ). �

Lemma 5. A bounded operator T : X → Y is Fredholm if and only if there exists orthogonal
decompositions X = X1 ⊕X2 and Y = Y1 ⊕ Y2 such that

a) X1 and Y1 are closed subspaces.

b) X2 and Y2 are finite dimensional subspaces.
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c) T has the block diagonal form

T =
(
T11 T12

T21 T22

)
: X1 ⊕X2 → Y1 ⊕ Y2

where Tij : Xj → Yi, and T11 : X1 → Y1 is a bounded invertible operator.

Furthermore, given this decomposition, index(T ) = dim(X2)− dim(Y2).

Proof. (⇒) Suppose T is Fredholm. Let X1 = ker(T )⊥, X2 = ker(T ), Y1 = im(T ), and

Y2 = im(T )⊥. We note that a) and b) are satisfied. We have T =
(
T11 0
0 0

)
where T11 =

T |X1 : ker(T )⊥ → im(T ) is invertible. Also, index(T ) = dim ker(T ) − dim coker(T ) =
dim(X2)− dim(Y2).

(⇐) Let A =
(
T−1

11 0
0 0

)
: Y → X. Then

AT =
(
T−1

11 0
0 0

)(
T11 T12

T21 T22

)
=
(
I T−1

11 T12

0 0

)
=
(
I 0
0 I

)
+
(

0 T−1
11 T12

0 −I

)
.

As T12 : X2 → Y1 and X2 is finite dimensional, T12 is finite rank so T−1
11 T12 is finite rank.

Similarly, −I : Y2 → Y2 is finite rank. Thus AT − I is finite rank. Similarly, TA− I is finite
rank, so T is Fredholm.

Note that (x1, x2) ∈ ker(T ), x1 ∈ X1, x2 ∈ X2, if and only if T11x1 + T12x2 = 0 and
T21x1 + T22x2 = 0 if and only if x1 = −T−1

11 T12x2 and (−T21T
−1
11 T12 + T22)x2 = 0. Let

D = (T22 − T21T
−1
11 T12) : X2 → Y2. Then the map ker(D)→ ker(T ) sending

x2 7→
(
−T−1

11 T12x2

x2

)

is a linear isomorphism, as ker(D) and ker(T ) are finite dimensional and the map is injective.
Thus ker(T ) ∼= ker(D). Similarly, as

T ∗ =
(
T ∗11 T ∗21
T ∗12 T ∗22

)
: Y1 ⊕ Y2 → X1 ⊕X2,

we have ker(T ∗) ∼= ker(D∗). Thus index(T ) = index(D). As D is a linear operator between
finite dimensional Hilbert spaces, then by rank nullity, we have index(D) = dim(X2) −
dim(Y2). �

Proposition 6. Let T : X → Y, S : Y → Z be Fredholm and K : X → Y be compact. Then

a) The set of Fredholm operators form an open subset of bounded operators. Moreover, if
E : X → Y is a bounded operator with ‖E‖ sufficiently small, then index(T ) = index(T +E).

b) T +K is Fredholm and index(T ) = index(T +K).

c) ST is Fredholm and index(ST ) = index(S) + index(T ).
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Proof. a) We decompose X, Y, and T as in the previous lemma. Decompose

E =
(
E11 E12

E21 E22

)
and choose ‖E‖ sufficiently small such that ‖E11‖ is sufficiently small to guarantee that
T11 +E11 is still invertible. We can do this as the set of invertible operators form an open set.
Then T + E is Fredholm by the previous lemma and index(T + E) = dim(X2)− dim(Y2) =
index(T ).
b) Since T is Fredholm, let A : Y → X be a bounded operator such that G1 = AT − I and
G2 = TA−I are compact. Then A(T +K)−I = G1 +AK and (T +K)A−I = G2 +KA are
compact, since the set of compact operators is a two-sided ideal. Thus T + K is Fredholm.
By a), the function f : R → Z sending t 7→ index(T + tK) is a continuous locally constant
function, where Z has the discrete topology, and hence constant. Thus index(T + K) =
f(1) = f(0) = index(T ).
c) Let A : Y → X,B : Z → Y be bounded operators such that K1 = AT − I,K2 =
TA− I, L1 = BS − I and L2 = SB − I are compact. Then

STAB − I = S(K2 + I)B − I = SK2B + SB − I = SK2B + L2

is compact, as set of compact operators form a two-sided ideal. Similarly, ABST − I is
compact, so ST is Fredholm.
Let X1 = ker(T )⊥, X2 = ker(T ), Y1 = im(T ) = T (H1) and Y2 = im(T )⊥ = ker(T ∗). Then T
decomposes into

T =
(
T̃ 0
0 0

)
: X1 ⊕X2 → Y1 ⊕ Y2

where T̃ = T |X1 : X1 → Y1 is invertible. Let Z1 = S(Y1) and Z2 = Z⊥1 = S(Y1)⊥. Note
that Z1 = S(Y1) = SQ(Y1) where Q : Y → Y1 is orthogonal projection onto Y1. Since
Y1 is closed and Y2 is finite dimensional, then Q is Fredholm. Then SQ is Fredholm so
Z1 = im(SQ) = SQ(Y ) is closed in Z and is of finite codimension. Then we can write S in
the block form

S =
(
S11 S12

S21 S22

)
: Y1 ⊕ Y2 → Z1 ⊕ Z2.

Since R =
(

0 S12

S21 S22

)
: Y → Z is a finite rank operator, as S21 and S22 map into Z2

and S12 has domain Y2, RT : X → Z is finite rank. Then index(S − R) = index(S) and
index(ST −RT ) = index(ST ) as R and RT are compact. Hence without loss of generality,

we may take S −R instead of S, that is, assume S has the form S =
(
S̃ 0
0 0

)
. Hence

ST =
(
S̃T̃ 0
0 0

)
: X1 ⊕X2 → Z1 ⊕ Z2.

Note that ker(S) = ker(S̃)⊕ Y2 and im(S) = S(Y1) = S̃(Y1) = Z1, so S̃ is surjective. Then
coker(S̃) = {0}. We have

index(S) = dim ker(S)− dim coker(S)
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= dim ker(S̃)⊕ Y2 − dimZ/Z1

= index(S̃) + dim(Y2)− dim(Z2)
Similarly, as T̃ is surjective,

index(ST ) = index(S̃T̃ ) + dim(X2)− dim(Z2).
Recall that we have

index(T ) = dim(X2)− dim(Y2).
Thus

index(ST )− index(S)− index(T ) = index(S̃T̃ )− index(S̃).
As T̃ is invertible, im(S̃) ∼= im(S̃T̃ ) and ker(S̃) ∼= ker(S̃T̃ ). Thus index(S̃T̃ )− index(S̃) = 0
so index(ST ) = index(S) + index(T ). �

Fredholm Operators and Spectral Theory. As Fredholm operators can be thought of
as being “almost” invertible, it is natural to ask about the relationship between Fredholm
operators and the spectrum of an operator.

Definition. The essential (or Fredholm) spectrum of a bounded operator T : X → X is
σess(T ) = {λ ∈ C|λ− T is not a Fredholm operator}.

Much can be said about the essential spectrum, such as the fact that it is nonempty, compact,
σess(T ) = σess(T ∗), and if σess(T ) = {0}, then σ(T ) is at most countable with 0 as the only
possible accumulation point. I invite the reader to see Section 7.5 in [AA] for more details.
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