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1. Introduction

This is an elementary introdution to Fredholm operators on a Hilbert space
H. Fredholm operators are named after a Swedish mathematician, Ivar
Fredholm(1866-1927), who studied integral equations. We will introduce
two definitions of a Fredholm operator and prove their equivalance. We will
also discuss briefly the index map defined on the set of Fredholm operators.
Note that results proved in 4154A Functional Analysis by Prof. Khalkhali
may be used without proof.

Definition 1.1: A bounded, linear operator T : H → H is said to be
Fredholm if
1) rangeT ⊆ H is closed
2) dimkerT <∞
3) dimketT ∗ <∞

Notice that for a bounded linear operator T on a Hilbert space H, kerT ∗ =
(ImageT )⊥.
Indeed:
x ∈ kerT ∗
⇔ T ∗x = 0
⇔< T ∗x, y >= 0 for all y ∈ H
⇔< x.Ty >= 0
⇔ x ∈ (ImageT )⊥

A good way to think about these Fredholm operators is as operators that
are ”almost invertible”. This notion of ”almost invertible” will be made pre-
cise later. For now, notice that that operator is almost injective as it has only
a finite dimensional kernal, and almost surjective as kerT ∗ = (ImageT )⊥ is
also finite dimensional.
We will now introduce some algebraic structure on the set of all bounded
linear functionals, L(H) and from here make the above discussion precise.
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2. Bounded Linear Operators as a Banach Algebra

Definition 2.1: A C algebra is a ring A with identity along with a ring
homomorphism f : C→ A such that 1 7→ 1A and f(C) ⊆ Z(A).

Observe that L(H) is a C algebra. We can add and multiply operators,
and have additive inverses. We also have a zero element, the zero map, and
an identity element, the identity map. Also, C sits inside of Z(L(H)) as the
maps that are simply multiplication by a complex scalar.

Definition 2.2: A Banach Algebra B is an algebra over C with identity
which has a norm ‖‖ making it into a Banach space. Further we require
that ‖1‖ = 1 and ‖fg‖ ≤ ‖f‖‖g‖ for all f, g ∈ B.

Indeed, L(H) is a Banach Algebra under the sup norm. We have seen
that the sup norm satisfies the required properties.

Definition 2.3: If U is a Banach Algebra, then an involution on U is a
mapping T → T ∗ such that:
1) T ∗∗ = T
2) (αS + βT )∗ = ᾱS∗ + β̄T ∗

3) (ST )∗ = T ∗S∗

The adjoint map on L(H) satisfies all of these properties as observed in
class.

Definition 2.4: A Banach Algebra with an involution map such that
‖TT ∗‖ = ‖T‖2 is called a C∗ − algebra.
We notice that the adjoint map satisfies this final condition. Now we have
our final algebraic structure on L(H). We can now say that L(H) is a
C∗ − algebra.

Proposition 2.5: The set of all compact operators on H, denoted
K(H), is a closed two-sided ideal in L(H).

Proof :K(H) is closed as it is the closure of the finite rank operators.
We have also seen that if S ∈ L(H) and T ∈ K(H) then ST ∈ K(H) and
TS ∈ K(H). Furthermore, if T is a compact operator, then so is T ∗.
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3. The Calkin Algebra

Now that we have an algebra and a closed ideal it is very natural to
consider the quotient algebra: L(H)/K(H). This quotient algebra is called
the Calkin algebra, and it is again a (C)∗-algebra. We will prove that the
invertible elements of the Calkin algebra are exactly the images of the Fred-
holm operators under the quotient map. This result will show that Fredholm
operators are invertible up to a compact operator exactly.
First, we have to prove a few Lemmas.

Lemma 3.1: The unit ball of a Hilbert space H, (H)1, is compact in
norm topology if and only if H is finite dimensional.

Proof : Suppose that H is finite dimensional. Then H is isometrically
isomorphic to (C)n. Since the unit ball in (C)n is compact, the unit ball in
H is also compact.
Now assume that H is ∞-dimensional. Then there exists an orthonormal
subset {en}∞n=1 ⊂ (H)1.
‖en − em‖ =

√
2 for any n,m ∈ N with n 6= m.

Thus (H)1 cannot be compact.

Lemma 3.2: If H is an ∞-dimensional Hilbert space and T is a com-
pact operator on H, then the range of T contains no closed ∞-dimensional
subspace.

Proof : Let M be a closed subspace in the range of T .
Let PM be the projection map onto M . Then PMT is compact.
Define A : H →M by Af = PMTf .
Then A is bounded and onto. Thus by the open mapping theorem, A is an
open map.
Therefore, A((H)1) contains the open ball in M of radius δ for some small
δ > 0 centered at 0.
Now, since the closed ball of radius δ is contained in the compact set
PMT ((H)1)) we get that M is finite dimensional by Lemma 3.2.

Lemma 3.3: Let H be a Hilbert space, M a closed subspace of H, and
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N a finite dimensional subspace of H. Then the linear space M + N is a
closed subspace of H.

Proof : Omitted. See Lemma 5.16 in 1.

We will now state and prove the main result of this lecture.

Theorem 3.4(Atkinson): If H is a Hilbert space, then T ∈ L(H) is a
Fredholm operator if and only if the image of T in the Calkin algebra is
invertible.

Proof : Suppose that the image of T is invertible in the Calkin algebra.
Then there exists A ∈ L(H) and K ∈ K(H) such that AT = I +K.
Let f ∈ ker(I +K) then (I +K)f = 0.
⇒ If = −Kf ⇒ Kf = −f
So, f ∈ rangeK.
Thus, kerT ⊂ kerAT = ker(I +K) ⊂ rangeK
So, by Lemma 3.2 the dimension of kerT <∞ as rangeK contains no closed
∞ dimensional subspace (kerT is closed as it is a kernal).
Now, since T ∗ is also invertible in the Calkin algebra, dimkerT ∗ < ∞ by
symmetry.

Next, we need to show that rangeT is closed in H.
We know that the finite rank operators are dense in the compact operators,
so there exists F , a finite rank operator, such that ‖K − F‖ < 1

2 .

Claim:T is bounded below on kerF .

Let f ∈ kerF .
‖ATf‖ = ‖f +Kf‖ = ‖f +Kf − Ff‖ = ‖f − (Kf − Ff)‖
≥ ‖f‖ − ‖Kf − Ff‖ ≥ ‖f‖ − ‖K − F‖‖f‖ ≥ ‖f‖ − 1

2‖f‖ = ‖f‖
2

Thus, ‖f‖2 ≤ ‖ATf‖ ≤ ‖A‖‖Tf‖
⇒ ‖f‖

2‖A‖ ≤ ‖Tf‖
So, T is bounded below on kerF and we have proved the claim.

Claim: T (kerF ) is a closed subspace of H.

Let {Tfn}∞n=1 be a Cauchy sequence in T (kerF ).
Then ‖fn − fm‖ ≤ 2‖A‖‖Tfn − Tfm‖



5

⇒ {fn} is Cauchy.
So, if f = lim fn then Tf = limTfn is in T (kerF ).
Therefore, T (kerF ) is closed to compelte the proof of the claim.

Now, since F is a finite rank operator, we have that (ker(F )perp is finite
dimensional.
So, rangeT = T (kerF )+T ((kerF )perp) is a closed subspace of H by Lemma
3.3.
Thus, T is a Fredholm operator.

Now, assume that T is Fredholm operator. We will show that it is in-
vertible up to a finite rank operator, and thus up to a compact operator.
Define T0 : (kerT )perp → rangeT by T0f = Tf .

Claim: T0 is a bijection.

First we will show that it is surjective.
Let g ∈ rangeT then there exists f ∈ H such that Tf = g.
If f ∈ (kerT )perp then we are done.
If f /∈ (kerT )perp then T (f) = 0. In this case g = 0 and T (0) = 0 so T0 is
surjective.

Now we will show that it is injective. If T0f = T0g for f, g ∈ (kerT )perp.
Then, T0(f − g) = 0⇒ f − g = 0 so T0 is injective.
Thus, T0 is bijective and so it has an inverse.

Now, define S : H → H by Sf = T−10 f if f ∈ rangeT , and Sf = 0 if
f ∈ (rangeT )perp.
S is bounded since it is bounded on rangeT as it is equal to T−10 there and
zero otherwise.
So, ST = I−P1 and TS = I−P2 where P1 is the projection map onto kerT
and P2is the projection map onto (rangeT )perp = kerT ∗.
Since dimkerT <∞P1 is a finite rank operator and thus is compact. Simi-
larly as dimkerT ∗ <∞P2 is finite rank and thus compact.
So, the image of S is the inverse of the image of T is the Calkin algebra.
Therefore, T is invertible in the Calkin algebra as required.
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There are a couple interesting things to note in this proof. First, we only
used the fact that T had a one sided inverse in the first direction. Then,
in the second direction we proved that T was invertible up to a finite rank
operator instead of a compact operator.

4. Examples

Example 4.1
If T is an invertible operator, then T is a Fredholm operator.
This is clear, as if T is invertible then certainly the image of T in the Calkin
algebra is invertible.
Or, we can see this using the original definition:
dimkerT = 0, dimkerT ∗ = 0, and rangeT = H is closed.

Example 4.2
Let T be the right shift operator. T (a1, a2, ...) = (0, a1, a2, ...). Then T is
Fredholm. Indeed, rangeT = {(0, a1, a2, ...)} is closed, dimkerT = 1, and
T ∗ is the left shift operator, so dimkerT ∗ = 1. Thus T is Fredholm.

Example 4.3
If T is a bounded linear operator, and K is compact then T +K is a Fred-
holm operator.

5. Some additional results

We will state a few additional results without proof. The proofs can
be found in the referenced text 1. These are the next steps after the given
introduction to Fredholm operators.

Definition 5.1: Denote the set of all Fredholm operators on H by F (H).
Then we define the map i : F (H) → (Z) by i(T ) = dimkerT − dimkerT ∗.
We call i the index map. Also define Fn = {T ∈ F (H)|i(T ) = n}.

Proposition 5.2: F0 is invariant under compact pertubation.
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Proposotion 5.3 i(T +K) = i(T ) for T ∈ F (H) and K ∈ K(H).

This following Theorem is a very famous result with many different for-
mulations. This is the formulation in terms of functional analysis.

Theorem 5.4(Fredholm Alternative): If λ is a nonzero element of σ(K),
then λ is an eigenvalue of K with finite multiplicity and λ̄ is an eigenvalue
of K∗ with the same multiplicity. Moreover, the generalized eigenspace Eλ
for λ is finite dimensional and has the same dimension as the generalized
eigenspace for K∗ with λ̄.

6. Bibliography
1. Ronald G. Douglas, Banach Algebra Techniques in Operator Theory Sec-
ond Edition, 1998 Springer-Verlag New York, Inc.


