Fredholm Determinant

Rui Dong

April 22, 2015

1 DEFINITION OF FREDHOLM DETERMINANT

Suppose if $f(x) \in C[0,1]$, $K(x,y) \in C([0,1] \times [0,1])$, we hope to find out the solution of the following equation:

$$u(x) + \int_0^1 K(x, y) u(y) dy = f(x), \tag{1.1}$$

where $u(x) \in C[0, 1]$. Actually, we can write (1.1) as

$$(\mathbf{I} + \mathbf{K})u(x) = f(x). \tag{1.2}$$

Fredholm solved it by replacing the integral in (1.1) by a Riemann sum over *n* intervals of length *h*. This yields a system of *n* linear equations for the values u_j of *u* at the *n* nodes j/n of the subdivision. Fredholm expressed the solution of these equations as $n \to \infty$. The discretized form of (1.1) is

$$u_i + h \sum K_{ij} u_j = f_i, \quad i = 1, ..., n,$$
 (1.3)

where $f_i = f(ih)$, h = 1/n and $K_{ij} = K(ih, jh)$.Denote by D(h) the determinant of the matrix acting on the vector u in (1.3):

$$D(h) = det(I + hK_{ij}) \tag{1.4}$$

We can write D(h) as a polynomial in h:

$$D(h) = \sum_{m=0}^{n} a_m h^m.$$
 (1.5)

 a_m can be written as Taylor coefficients:

$$a_m = \frac{1}{m!} \left(\frac{d}{dh}\right)^m D(h)|_{h=0} \tag{1.6}$$

In general, we have a rule:

$$\frac{d}{dh}det(C_1,...,C_n) = \sum_l det\left(C_1,...,\frac{d}{dh}C_l,...,C_n\right).$$
(1.7)

And notice that at h = 0, $C_j(0) = E_j$, thus using (1.4) in (1.6), we have

$$D(h) = 1 + h \sum_{i} K_{ij} + \frac{h^2}{2} \sum_{i,j} det \begin{pmatrix} K_{ii} & K_{ij} \\ K_{ji} & K_{jj} \end{pmatrix} + \cdots$$
(1.8)

Fredholm denoted

$$K\begin{pmatrix} x_1 & \cdots & x_k \\ y_1 & \cdots & y_k \end{pmatrix} = det K(x_i, y_j), \quad 1 \le i, j \le k.$$
(1.9)

Now we set h = 1/n, and let *n* tend to ∞ , then we change (1.8) into

$$D = \sum_{0}^{\infty} \frac{1}{k!} \int \cdots \int K \begin{pmatrix} x_1 & \cdots & x_k \\ x_1 & \cdots & x_k \end{pmatrix} dx_1 \cdots dx_k.$$
(1.10)

Definition. D is called the Fredholm determinant of the operator (I + K) acting on the left of (1.2).

Theorem 1. The series (1.10) is convergent.

Proof.

Recall the Hadamard's inequality says that

$$|det(C_1,\cdots,C_k)| \leq \prod_{j=0}^k ||C_j||,$$

where ||C|| denotes the Euclidean length of the vector *C*. Since the kernel *K* is continuous, it is bounded, let's say,

$$|K(x, y)| \le M,$$

for all *x*, *y*, so the length of each column vector of the $k \times k$ matrix (1.9) is less than $M\sqrt{k}$. Thus, according to Hadamard's inequality,

$$|K\left(\begin{array}{ccc} x_1 & \cdots & x_k \\ y_1 & \cdots & y_k \end{array}\right)| \le M^k k^{k/2}.$$

So the *k*th term in series (1.10) is $\leq M^k k^{k/2} / k!$, by Stirling's formula,

$$M^k k^{k/2} / k! \le (Me)^k k^{-k/2}.$$

Therefore,

$$D \leq \sum_{0}^{\infty} (Me)^k k^{-k/2} < +\infty.$$

That is, the Fredholm Determinant is well-defined.

2 The Inverse of $\mathbf{I} + \mathbf{K}$

If we denote

$$R(x,y) = K(x,y) + \int K\begin{pmatrix} x & x_1 \\ y & x_1 \end{pmatrix} dx_1 + \dots = \sum_{0}^{\infty} \frac{1}{k!} \int \dots \int K\begin{pmatrix} x & x_1 & \dots & x_k \\ y & x_1 & \dots & x_k \end{pmatrix} dx_1 \dots dx_k,$$
(2.1)

and notice that

$$K\begin{pmatrix} x & x_1 & \cdots & x_k \\ y & x_1 & \cdots & x_k \end{pmatrix} = K(x, y)K\begin{pmatrix} x_1 & \cdots & x_k \\ x_1 & \cdots & x_k \end{pmatrix} - K(x, x_1)K\begin{pmatrix} x_1 & x_2 & \cdots & x_k \\ y & x_2 & \cdots & x_k \end{pmatrix} + \cdots,$$
(2.2)

It is obvious that the integrals of the last k terms on the right are all equal. In fact, by interchanging in the *j*th integral the names of the variables x_1 and x_j , and then performing one row permutation and j - 2 column permutations, we have

$$(-1)^{j} \int \cdots \int K(x, x_{j}) K \begin{pmatrix} x_{1} & x_{2} & x_{j} & \cdots & x_{k} \\ y & x_{1} & \cdots & x_{j-1} & x_{j+1} & \cdots & x_{k} \end{pmatrix} dx_{1} \cdots dx_{k}$$

$$= (-1)^{j} \int \cdots \int K(x, x_{1}) K \begin{pmatrix} x_{j} & x_{2} & x_{1} & \cdots & x_{k} \\ y & x_{j} & \cdots & x_{j-1} & x_{j+1} & \cdots & x_{k} \end{pmatrix} dx_{1} \cdots dx_{k}$$

$$= (-1)^{j+1} \int \cdots \int K(x, x_{1}) K \begin{pmatrix} x_{1} & x_{2} & x_{j} & \cdots & x_{k} \\ y & x_{j} & \cdots & x_{j-1} & x_{j+1} & \cdots & x_{k} \end{pmatrix} dx_{1} \cdots dx_{k}$$

$$= (-1)^{j+1} (-1)^{j-2} \int \cdots \int K(x, x_{1}) K \begin{pmatrix} x_{1} & x_{2} & x_{j} & \cdots & x_{k} \\ y & x_{2} & \cdots & x_{j} & x_{j+1} & \cdots & x_{k} \end{pmatrix} dx_{1} \cdots dx_{k}$$

$$= (-1) \int \cdots \int K(x, x_{1}) K \begin{pmatrix} x_{1} & x_{2} & \cdots & x_{k} \\ y & x_{2} & \cdots & x_{j} & x_{j+1} & \cdots & x_{k} \end{pmatrix} dx_{1} \cdots dx_{k}$$

therefore,

$$\int \cdots \int K \begin{pmatrix} x & x_1 & \cdots & x_k \\ y & x_1 & \cdots & x_k \end{pmatrix} dx_1 \cdots dx_k$$

= $K(x, y) \int \cdots \int K \begin{pmatrix} x_1 & \cdots & x_k \\ x_1 & \cdots & x_k \end{pmatrix} dx_1 \cdots dx_k$
- $k \int \cdots \int K(x, x_1) K \begin{pmatrix} x_1 & x_2 & \cdots & x_k \\ y & x_2 & \cdots & x_k \end{pmatrix} dx_1 \cdots dx_k$ (2.4)

Divide it by k! and sum. According to (2.1) of R(x, y) and (1.10) of D, we have

$$R(x, y) = K(x, y)D - \int K(x, x_1)R(x_1, y)dx_1,$$

or, we can write it as

$$R(x, y) + \int K(x, z)R(z, y)dz - DK(x, y) = 0$$
(2.5)

3

If we expand the determinants in (2.1) according to the first column instead of the first row, the we have an analogous identity as

$$R(x, y) + \int K(t, y)R(x, t)dt - DK(x, y) = 0$$
(2.6)

Now we can compute the inverse of (I + K) now.

Theorem 2. Let *K* be a continuous kernel, and suppose $D \neq 0$. Then the operator $(\mathbf{I} + \mathbf{K})$ is invertible, and the inverse is $(\mathbf{I} - D^{-1}\mathbf{R})$. *Proof.* According to (2.5) and eqref15,

$$\mathbf{R} + \mathbf{K}\mathbf{R} - D\mathbf{K} = \mathbf{0}.$$

$$\mathbf{R} + \mathbf{R}\mathbf{K} - D\mathbf{K} = \mathbf{0}.$$
(2.7)

Namely,

$$(\mathbf{I} + \mathbf{K})(\mathbf{I} - D^{-1}\mathbf{R}) = \mathbf{I}.$$

(\mathbf{I} - D^{-1}\mathbf{R})(\mathbf{I} + \mathbf{K}) = \mathbf{I}. (2.8)

Actually we can prove the inverse is also true. Let λ denote a complex parameter. If we replace *K* by λK in (1.10), we have

$$D(\lambda) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \int \cdots \int K \begin{pmatrix} x_1 & \cdots & x_k \\ x_1 & \cdots & x_k \end{pmatrix} dx_1 \cdots dx_k.$$
(2.9)

Similarly, we can define $R(x, y, \lambda)$ as

$$R(x, y, \lambda) = \sum_{k=0}^{\infty} \frac{\lambda^{k+1}}{k!} \int \cdots \int K \begin{pmatrix} x & x_1 & \cdots & x_k \\ y & x_1 & \cdots & x_k \end{pmatrix} dx_1 \cdots dx_k.$$
(2.10)

It is obvious to see that both $D(\lambda)$ and $R(x, y, \lambda)$ are entire analytic functions of λ .

Lemma 3. Suppose that $D(\lambda)$ has a zero of order m at $\lambda = 1$. Then there is a value of x such that $R(x, x, \lambda)$ has a zero of order < m at $\lambda = 1$. *Proof.* According to (2.10),

$$\int R(x,x,\lambda)dx = \sum_{k=0}^{\infty} \frac{\lambda^{k+1}}{k!} \int \cdots \int K \begin{pmatrix} x & x_1 & \cdots & x_k \\ x & x_1 & \cdots & x_k \end{pmatrix} dx dx_1 \cdots dx_k.$$

Notice that the right side is equal to the derivative of (2.9) with respect to λ and times λ , hence,

$$\int R(x,x,\lambda)dx \equiv \lambda \frac{d}{d\lambda} D(\lambda).$$

1	I	
	t	

Since $R(x, x, \lambda)$ is entire analytic, we can write $R(x, x, \lambda)$ as

$$R(x, x, \lambda) = \sum_{k=0}^{\infty} a_k(x)(\lambda - 1)^k.$$

If the order of $D(\lambda)$ at $\lambda = 1$ is *m*, then the order of the right side at $\lambda = 1$ is m - 1. So the order of the left at $\lambda = 1$ is also equal to m - 1, which means that

$$\int a_{m-1}(x)dx \neq 0.$$

Hence there must be some x_0 such that $a_{m-1}(x_0) \neq 0$. Then we proved that for some value of x, the order of $R(x, x, \lambda)$ at $\lambda = 1$ is less than m.

Now we can prove the inverse of *Theorem 2*.

Theorem 4. Let *K* be a continuous kernel such that D = 0; then the operator $\mathbf{I} + \mathbf{K}$ has a nontrivial null-space and so is not invertible.

Proof. Denote by *l* the largest number such that $R(x, y, \lambda)$ has a zero of order *l* at $\lambda = 1$ for every *x* and *y*. According to *Lemma 3*, *l* < *m*. So we can write

$$R(x, y, \lambda) = g(x, y)(\lambda - 1)^{l} + O(\lambda - 1)^{l+1}$$
(2.11)

By our definition of l, $g(x, y) \neq 0$. According to (2.6),

$$R(x, y, \lambda) + \int \lambda K(x, t) R(t, y, \lambda) dt = \lambda K(x, y) D(\lambda), \qquad (2.12)$$

where $\lambda \neq 1$. Divide both sides by $(\lambda - 1)^{l}$ and let $\lambda \rightarrow 1$, then we have

$$g(x, y) + \int K(x, t)g(t, y)dt = 0.$$
 (2.13)

Since $g \neq 0$, there exists some y_0 such that $g(x, y_0) \neq 0$. Denote $u(x) = g(x, y_0)$. Hence

$$u(x) + \int K(x, y)u(y)dy = 0.$$
 (2.14)

That is, u(x) is inside the nullspace of I + K.

To sum up, we have that the Fredholm determinant $D \neq 0$ iff the operator I + K is invertible.

Corollary 5. The complex number *k* is an eigenvalue of the integral operator **K** iff $\lambda = -1/k$ is a zero of $D(\lambda)$.

Proof. Since the determinant of $\mathbf{I} + \mathbf{K}$ is D(1) = 0, the determinant of $\mathbf{I} + \lambda \mathbf{K}$ is $D(\lambda)$, according to *Theorem 2* and *Theomrem 4*, D(1) = 0 iff there exists some u(x) such that $\mathbf{K}u(x) = -u(x)$, we replace K by λK , then $D(\lambda) = 0 \Leftrightarrow \lambda \mathbf{K}u(x) = -u(x) \Leftrightarrow \mathbf{K}u(x) = -1/\lambda u(x)$.

3 The Multiplicative Property of the Fredholm Determinant

Now we can present Fredholm's extension of the multiplicative property of determinants to operators. Here we denote the determinant of $\mathbf{I} + \mathbf{K}$ by D_K , $\mathbf{I} + \mathbf{H}$ by D_H , and the inverse of $\mathbf{I} + \mathbf{K}$ by $\mathbf{I} - D_K^{-1} \mathbf{R}_K$, the kernel of \mathbf{R}_K by $R_K(x, y)$.

Theorem 6. Let **H** and **K** be integral operators with continuous kernels, and set (I + H)(I + K) = I + L. Then

$$D_L = D_H D_K. \tag{3.1}$$

Proof. We should notice that

$$(\mathbf{I} + \mathbf{H})(\mathbf{I} + \mathbf{K}) = \mathbf{I} + \mathbf{H} + \mathbf{K} + \mathbf{H}\mathbf{K} = \mathbf{I} + \mathbf{L},$$

 $\Rightarrow \mathbf{H} + \mathbf{K} + \mathbf{H}\mathbf{K} = \mathbf{L}.$

therefore the kernel of **L** is Firstly, we prove this when $D_K \neq 0$, $D_H \neq 0$.

$$L(x, y) = K(x, y) + H(x, y) + \int H(x, t)K(t, y)dt$$
(3.2)

We define

$$\delta D_K = \delta \frac{d}{d\epsilon} D_{K+\epsilon\delta K}|_{\epsilon=0}$$
(3.3)

First we calculate the variation of the determinant (1.9). According to (1.7)

$$\delta K \begin{pmatrix} x_1 & \cdots & x_k \\ x_1 & \cdots & x_k \end{pmatrix} = \sum_{\ell} det K_{\ell}, \tag{3.4}$$

where the ℓ th column of K_{ℓ} is $\delta K(x_i, y_{\ell})$. Expand set K_{ℓ} with respect to the ℓ th column:

$$\delta K \begin{pmatrix} x_1 & \cdots & x_k \\ x_1 & \cdots & x_k \end{pmatrix} = \sum_{m,\ell} (-1)^{m+\ell} K \begin{pmatrix} x_1 & \cdots & (x_m) & \cdots & x_k \\ x_1 & \cdots & (x_\ell) & \cdots & x_k \end{pmatrix} \delta K(x_m, x_\ell), \quad (3.5)$$

where the parentheses indicate that the ℓ th column and the *m*th row are to be omitted.Now we integrate (3.5)over the *k*-dimensional unit cube. We separate the sum into two parts as following:

When $\ell = m$, we notice that all k terms with $\ell = m$ are equal, denoting $x_{\ell} = x_m = x$, relabelling the remaining variables as $x_1, \dots x_{k-1}$, hence when $\ell = m$, the sum of the integral is

$$k \int \cdots \int K \begin{pmatrix} x_1 & \cdots & x_{k-1} \\ x_1 & \cdots & x_{k-1} \end{pmatrix} dx_1 \cdots dx_{k-1} \int \delta K(x, x) dx.$$
(3.6)

When $\ell \neq m$, relabel $x_m = x, x_\ell = y$, and the remaining variables as x_1, \dots, x_{k-2} . Then each term is equal to

$$(-1)^{\ell+m}(-1)^{\ell-1+m-2}\int\cdots\int K\left(\begin{array}{ccc} y & x_1 & \cdots & x_{k-2} \\ x & x_1 & \cdots & x_{k-2} \end{array}\right)\delta K(x,y)dx_1\cdots dx_{k-2}dxdy,$$

hence all the k(k-1) terms are equal, and the sum is

$$-k(k-1)\int\cdots\int K\left(\begin{array}{ccc} y & x_1 & \cdots & x_{k-2} \\ x & x_1 & \cdots & x_{k-2} \end{array}\right)\delta K(x,y)dx_1\cdots dx_{k-2}dxdy.$$
(3.7)

According to (1.10) and (2.1), if we get the sum of (3.6) and (3.7) divided by k!, the sum of (3.6) is

$$D_K \int \delta K(x,x) dx,$$

and the sum of (3.7) is

$$-\int\int R_K(y,x)\delta K(x,y)dxdy.$$

Plus them together, we get

$$\delta D_K = D_K \int \delta K(x, x) dx - \int \int R_K(y, x) \delta K(x, y) dx dy.$$

Assume that $D_K \neq 0$, we get

$$\frac{\delta D_K}{D_K} = \delta \log D_K = \int \delta K(x, x) dx - D_K^{-1} \int \int R_K(y, x) \delta K(x, y) dx dy.$$
(3.8)

Since

$$\delta K(x, y) - D_K^{-1} \int R(y, x) \delta K(x, y) dx = (\mathbf{I} - D_K^{-1} \mathbf{R}_K) \delta K(x, y),$$

hence,

$$\delta \log D_K = \int (\mathbf{I} - D_K^{-1} \mathbf{R}_K) \delta K(x, y)|_{x=y} dx$$

=
$$\int (\mathbf{I} + \mathbf{K})^{-1} \delta K(x, y)|_{x=y} dx.$$
 (3.9)

Similarly, if we regard the right part of (3.8) as the applications of the transpose of $\mathbf{I} - D_K^{-1} \mathbf{R}_K$ to the function $\delta K(x, \cdot)$, then we have

$$\delta \log D_K = \int \left(\mathbf{I} + \mathbf{K}' \right)^{-1} \delta K(x, y) |_{x=y} dx, \qquad (3.10)$$

where \mathbf{K}' represents the transpose of \mathbf{K} .

According to (3.2),

$$L(x, y) = K(x, y) + H(x, y) + \int H(x, t)K(t, y)dt,$$

hence

$$\delta L(x, y)$$

$$=\delta K(x, y) + \delta H(x, y) + \int \delta H(x, t) K(t, y) dt + \int H(x, t) \delta K(t, y) dt$$

$$=(\delta K(x, y) + \int H(x, t) \delta K(t, y) dt) + (\delta H(x, y) + \int \delta H(x, t) K(t, y) dt)$$

$$=(\mathbf{I} + \mathbf{H}) \delta K(x, y) + (\mathbf{I} + \mathbf{K}') \delta H(x, y)$$
(3.11)

By (3.8),

$$\delta \log D_L$$

$$= \int \delta L(x,x) dx - D_{L}^{-1} \int \int R_{L}(y,x) \delta L(x,y) dx dy$$

$$= \int ((\mathbf{I} + \mathbf{H}) \delta K(x,y)|_{x=y} + (\mathbf{I} + \mathbf{K}') \delta H(x,y)|_{x=y}) dx - D_{L}^{-1} \int \int R_{L}(y,x) ((\mathbf{I} + \mathbf{H}) \delta K(x,y) + (\mathbf{I} + \mathbf{K}') \delta H(x,y)) dx dy$$

$$= (\int ((\mathbf{I} + \mathbf{H}) \delta K(x,y)|_{x=y} dx - D_{L}^{-1} \int \int R_{L}(y,x) ((\mathbf{I} + \mathbf{H}) \delta K(x,y) dx dy)$$

$$+ (\int (\mathbf{I} + \mathbf{K}') \delta H(x,y)|_{x=y}) dx - D_{L}^{-1} \int \int R_{L}(y,x) (\mathbf{I} + \mathbf{K}') \delta H(x,y) dx dy)$$

$$= \int (\mathbf{I} - D_{L}^{-1} \mathbf{R}_{L}) (\mathbf{I} + \mathbf{H}) \delta K(x,y)|_{x=y} dx + \int (\mathbf{I} - D_{L}^{-1} \mathbf{R}'_{L}) (\mathbf{I} + \mathbf{K}') \delta H(x,y)|_{x=y} dx$$

$$= \int ((\mathbf{I} + \mathbf{L})^{-1}) (\mathbf{I} + \mathbf{H}) \delta K(x,y)|_{x=y} dx + \int ((\mathbf{I} + \mathbf{L}')^{-1}) (\mathbf{I} + \mathbf{K}') \delta H(x,y)|_{x=y} dx$$

(3.12)

Recalled that (I + L) = (I + H)(I + K), hence force,

$$(\mathbf{I} + \mathbf{L})^{-1} = (\mathbf{I} + \mathbf{K})^{-1}(\mathbf{I} + \mathbf{H})^{-1},$$

 $(\mathbf{I} + \mathbf{L}')^{-1} = (\mathbf{I} + \mathbf{H}')^{-1}(\mathbf{I} + \mathbf{K}')^{-1}.$

Now we can write down $\delta \log D_L$ as

$$\delta \log D_L = \int (\mathbf{I} + \mathbf{K})^{-1} \delta K(x, y)|_{x=y} dx + \int (\mathbf{I} + \mathbf{H}')^{-1} \delta H(x, y)|_{x=y} dx$$
(3.13)

That is ,

$$\delta \log D_L = \delta \log D_K + \delta \log D_H. \tag{3.14}$$

We can deform *K* and *H* into 0 so that $D_K \neq 0$ and $D_H \neq 0$ during this deformation. For instance, set $K(t) = \lambda(t)K$, $H(t) = \lambda(t)H$, where the complex-valued function $\lambda(t)$ avoids all the zero points of $D_K(\lambda)$ and $D_H(\lambda)$. By (3.14),

$$\frac{d}{dt} \left[\log D_{L(t)} - \log(D_{K(t)} D_{H(t)}) \right] = 0.$$
(3.15)

Since L(0) = K(0) = H(0) = 0, and $D_0 = I$, we deduce that

$$\log D_L = \log(D_K D_H).$$

Therefore,

$$D_L = D_K D_H. aga{3.16}$$

When $D_H = 0$, $\mathbf{I} + \mathbf{H}$ is not surjective, and when $D_K = 0$, $\mathbf{I} + \mathbf{K}$ is not injective. In either case, $(\mathbf{I} + \mathbf{H})(\mathbf{I} + \mathbf{K})$ is not invertible, so $D_L = 0$.

REFERENCES

[1] Peter Lax, Functional Analysis, Wiley-Interscience; 1 edition, April 4, 2002.

[2] Fredholm, I. Sur une classe d' équations fonctionnelles, Acta Math., 27 (1903): 365-390.