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1 DEFINITION OF FREDHOLM DETERMINANT
Suppose if f(x) € C[0,1], K(x,y) € C([0,1] x [0,1]), we hope to find out the solution of the
following equation:

1
u(x)+f0 Kx,y)u(y)dy = f(x), (1.1)

where u(x) € C[0,1].
Actually, we can write (1.1) as
I+K)u(x) = f(x). (1.2)

Fredholm solved it by replacing the integral in (1.1) by a Riemann sum over n intervals of
length h. This yields a system of n linear equations for the values u; of u at the n nodes
j/n of the subdivision. Fredholm expressed the solution of these equations as n — oco.The
discretized form of (1.1) is

u,-+hZK,-juj=f,~, i=1,..,n, (1.3)

where f; = f(ih), h=1/nand K;; = K(ih, jh).Denote by D(h) the determinant of the matrix
acting on the vector u in (1.3):
D(h) = det(I + hK;;) (1.4)

We can write D(h) as a polynomial in h:

D(h) =) amh™. (1.5)
m=0

am, can be written as Taylor coefficients:



1(d\"
am=—,(—) D=0 (1.6)
m.

In general, we have a rule:

d d
—det(Cy,...,Cy) =) det|Cyq,....—Cy,...,Cy . 1.7
25, det(C n);e(ldhz n) (1.7)

And notice that at 2 =0, C;(0) = E;, thus using (1.4) in (1.6), we have

h? Kii Kij
D) =1+h) K;j+— det( e )+ (1.8)
2K 2% Kji Kjj
Fredholm denoted
Xy - Xk .
K =detK(x;,vi), 1<i,j<k. 1.9
(Jq J’k) ot /
Now we set i = 1/n, and let n tend to oo, then we change (1.8) into
© 1 X1 o Xk )
D=) —[|---| K dxy---dxp. 1.10
] B G LR a1

Definition. D is called the Fredholm determinant of the operator (I + K)acting on the left of
(1.2).

Theorem 1. The series (1.10) is convergent.
Proof.
Recall the Hadamard’s inequality says that

k
|det(Cy,---,Co)l < [T 1IC;lI,
j=0
where ||C|| denotes the Euclidean length of the vector C. Since the kernel K is continuous, it

is bounded, let’s say,
IK(x, )< M,

for all x, y, so the length of each column vector of the k x k matrix (1.9) is less than MV'k.
Thus, according to Hadamard’s inequality;,

|K( Xy e xk)|sMkkk/2‘
Yo Yk

So the kth term in series (1.10)is < M*kk/2/ k!, by Stirling’s formula,
M KM k< (Me)* kR,
Therefore,

(oo}
D<) (Me)* k™2 < +oo.
0

That is, the Fredholm Determinant is well-defined.



2 THE INVERSE OF I+ K

If we denote

X X1 1 X x
R(x,y) =K(x, )+fK( )dx+ _ _ffK(
’ g Yo : %’ ! y xi
and notice that
X X1 X )zK(x,y)K( X1 X )—K(x,xl)K( X1 X2
y xn Xk X1 Xk VX2

Xk
X )dxl---dxk,
@2.1)
Yk )+ 2.2)
Xk

It is obvious that the integrals of the last k terms on the right are all equal. In fact, by inter-
changing in the jth integral the names of the variables x; and x;, and then performing one

row permutation and j —2 column permutations, we have

(_1)ff..-fK(x,xj)K( X2 X Yk )dxl“'dxk
y o x Xj-1  Xj+1 Xk
:(—l)jf---fK(x,xl)K( XX 1 k )dxl---dxk
Yy Xj Xji-1 Xj+1 Xk
:(—l)j“fme(x,xl)K( X X & )dx1~--dxk 2.3)
y x]' x]'_l x]'+1 Xk
=(—1)j+1(—1)jZf---fK(x,xl)K( x X Xk )dxl"‘dxk
y X2 Xj Xj+1 Xk
=(—1)f~~f1<(x,x1)1<( 1 x & )dx1~~-dxk
y X Xk
therefore,
ffK( X X Xk )dxl...dxk
Yy x1 Xk
=K(x,y)f--~f1<( " & )dxlmdxk 2.4)
X1 Xk
—kf---[K(x,xl)K( S Tk )dxl---dxk
y X2 Xk
Divide it by k! and sum. According to (2.1) of R(x, y) and (1.10) of D, we have
R(x,y) =K(x,y)D—fK(x,xl)R(xl,y)dxl,
or, we can write it as
R(x,y)+[K(x,z)R(z,y)dz—DK(x,y):0 (2.5)



If we expand the determinants in (2.1) according to the first column instead of the first row,
the we have an analogous identity as

R(x,y)+fK(t,y)R(x, dt—DK(x,y)=0 (2.6)
Now we can compute the inverse of (I + K) now.
Theorem 2. Let K be a continuous kernel, and suppose D # 0. Then the operator (I +K)

is invertible, and the inverse is (I— D™'R).
Proof. According to (2.5) and eqref15,

R+KR-DK=0.

2.7)
R+RK- DK =0.
Namely,
I+KI-D 'R =1 0.8)
I-D'RI+K) =1 '
O

Actually we can prove the inverse is also true. Let A denote a complex parameter. If we replace
K by AK in (1.10), we have

D) = Z 0 f f ( k)dxl - d Xk 2.9)

Similarly, we can define R(x, y, 1) as

oo k+1
R(x,y,A) = f f ( T % )dxlmdxk. (2.10)
k 0 y X3 - Xk

It is obvious to see that both D(1) and R(x, y, A) are entire analytic functions of A.

Lemma 3. Suppose that D(A) has a zero of order m at A = 1. Then there is a value of x such
that R(x, x,A) has a zero oforder < mat A =1.
Proof. According to (2.10),

oo k+1
fR(x,x,/l)dx f f (x = Tk dxdxy---dxg.

=0 X X1 v Xk

Notice that the right side is equal to the derivative of (2.9) with respect to A and times A,
hence,

d
fR(x, x,A)dx = AﬁD(A).



Since R(x, x, A) is entire analytic, we can write R(x, x, 1) as

Rx,x,A) = Y ap(x)(A-DF.
k=0

If the order of D(A) at A = 1 is m, then the order of the right side at A = 1 is m — 1. So the order
of the left at A = 1 is also equal to m — 1, which means that

fam_l(x)dx #0.

Hence there must be some xj such that a,,—; (xp) # 0. Then we proved that for some value of
x, the order of R(x, x,A) at A = 1 is less than m. O

Now we can prove the inverse of Theorem 2.

Theorem 4. Let K be a continuous kernel such that D = 0; then the operator I + K has a
nontrivial null-space and so is not invertible.

Proof. Denote by [ the largest number such that R(x, y,A) has a zero of order / at 1 = 1 for
every x and y. According to Lemma 3, | < m. So we can write

R(x, p,A) = g(x, (A-1)!+ oA - 1)H*! 2.11)
By our definition of [, g(x, y) # 0. According to (2.6),

R(x,y, 1) +f/lK(x, DR(t, y,\)dt=AK(x,y)D(A), (2.12)
where A # 1. Divide both sides by (1 —1)! and let A — 1, then we have

g(x,y)+[K(x, Ng(t,y)dt=0. (2.13)

Since g # 0, there exists some yy such that g(x, yp) #Z 0.
Denote u(x) = g(x, yp). Hence

u(X)+[K(x,y)u(y)dy:0. (2.14)
That is, u(x) is inside the nullspace of I + K. O

To sum up, we have that the Fredholm determinant D # 0 iff the operator I + K is invertible.

Corollary 5. The complex number k is an eigenvalue of the integral operator Kiff A = —1/k is
a zero of D(A).

Proof. Since the determinant of I+ Kis D(1) = 0, the determinant of I + AK is D(1), according
to Theorem 2 and Theomrem 4, D(1) = 0 iff there exists some u(x) such that Ku(x) = —u(x),
we replace K by AK, then D(1) =0 © AKu(x) = —u(x) © Ku(x) = -1/ Au(x). O



3 THE MULTIPLICATIVE PROPERTY OF THE FREDHOLM DETERMINANT

Now we can present Fredholm’s extension of the multiplicative property of determinants to
operators. Here we denote the determinant of I+ K by Dg, I+H by Dy, and the inverse of
I+KbyI- DI_(IRK, the kernel of Rx by Rk (x, y).

Theorem 6. Let H and K be integral operators with continuous kernels, and set (I+ H) (I+K) =I+L.
Then
D; =DyDkg. (3.1)

Proof. We should notice that

I+H)(I+K)=I+H+K+HK=I+1L,
=>H+K+HK=L.

therefore the kernel of L is
Firstly, we prove this when Dk # 0, Dy # 0.

L(x,y) :K(x,y)+H(x,y)+fH(x, NK(t,y)dt (3.2)

We define
d
8Dk = 6— Diseskle=o 3.3)
de

First we calculate the variation of the determinant (1.9). According to (1.7)

X1 o Xk
0K =) detKy, 3.4
[0 R paen =

where the ¢th column of Ky is § K(x;, y¢). Expand set K, with respect to the ¢th column:

6K =) (="K 8K (Xm, X0), 3.5
(x1 xk) 2D (x1 ey 0K G, 35)

where the parentheses indicate that the ¢th column and the mth row are to be omitted.Now
we integrate (3.5)over the k—dimensional unit cube. We separate the sum into two parts as
following:

When ¢ = m, we notice that all k terms with ¢ = m are equal, denoting x, = x;;, = x, rela-
belling the remaining variables as xy, - - - x¢—1, hence when ¢ = m, the sum of the integral is

’CffK( o e )dxl...dxk_lde(x,x)dx. (3.6)
, e

Xk-1



When ¢ # m, relabel x,, = x,x, = y, and the remaining variables as xi,---, xx_». Then each
term is equal to

(_1)[+m(_1)[1+m2f,.‘/K( i ii . iz:i )6K(x’y)dxl...dxk_2dxdy’

hence all the k(k — 1) terms are equal, and the sum is

_k(k_l)f...fK( Yo e )EK(x,y)dxl---dxk_zdxdy. (3.7
X X1 Xk—2

According to (1.10) and (2.1), if we get the sum of (3.6) and (3.7) divided by k!, the sum of (3.6)
is

DKfM((x,x)dx,

and the sum of (3.7) is
—ffRK(y,x)5K(x,y)dxdy.

Plus them together, we get

6DK=DKf6K(x,x)dx—ffRK(y,x)(SK(x,y)dxdy.

Assume that Dk # 0,we get

6D
D—K =§logDk = f 5K (x, x)dx - D! f f Ri(y, Y)8K (x, y)dxdy. (3.8)
K
Since
6K(x,y)—Dl}lfR(y,x)ﬁK(x,y)dx: (I—Dl}lRK)M((x,y),
hence,

slogDg = f (I- D' RKISK(x, ¥)|x=ydx
(3.9)
:f(I+K)_15K(x,y)|x:ydx.

Similarly, if we regard the right part of (3.8) as the applications of the transpose of I —DI_<l Rgto
the function 6 K (x,), then we have

6logDK=f(I+K’)_15K(x,y)|x:ydx, (3.10)
where K’ represents the transpose of K.

According to (3.2),
Lix,y)=K(x,y)+H(x,y) +/H(x, NK(t, ydt,



hence

O0L(x,y)

:6K(x,y)+5H(x,y)+f5H(x, t)K(t,y)dt+fH(x, NOK(t,y)dt
(3.11)
=(6K(x,y) + f H(x, 6K (t,y)dt) + (S H(x, y) + f SH(x, )K(t,y)d1)

=I+H)6K(x,y)+T+K)6H(x,y)

By (3.8),

6logDy,
:[6L(x,x)dx—DzlffRL(y,x)é‘L(x,y)dxdy
=f((1+H)6K(x,y)|x:y+(1+K’)6H(x,y)|x:y)dx—D;lffRL(y,x)((1+H)5K(x,y)+(I+K’)6H(x,y))dxdy
:([((1+H)5K(x,y)|x:ydx—D;lffRL(y,x)((nH)aK(x,y)dxdy)

+(f (1+K’)6H(x,y)|x:y)dx—D;1ffRL(y,x)(1+K’)6H(x,y))dxdy)
= f (I- D;'R) A+ H)SK(x, y)|x=ydx + f (I- D;'R')A+K)GH(x, p)lx=ydx

:/((I + 1) YA+ H)SK (X, y)|x=ydx + f((l +L) HA+K)SH(x, y)ly=ydx

(3.12)
Recalled that I+ L) = (I+ H)(I + K), hence force,

I+ '=a+K'a+m,

I+ '=a+H)'a+K) .
Now we can write down 6log Dy as

510gDL:f(1+1<)-161<(x,y)|x:ydx+f(1+H’)‘15H(x,y)|x:ydx (3.13)

That s,

0logDy =6logDk +0logDp. (3.14)

We can deform K and H into 0 so that Dg # 0 and Dy # 0 during this deformation. For
instance, set K(t) = A(t)K, H(t) = A(t) H, where the complex-valued function A(f) avoids all
the zero points of Dk (1) and Dg(A). By (3.14),

d
a [lOgDL(t) —IOg(DK(t)DH(t))] =0. (3.15)
Since L(0) = K(0) = H(0) =0, and Dy = I, we deduce that

logD; =log(DkxDp).



Therefore,
Dy = DxDy. (3.16)

When Dy =0, I+H is not surjective, and when Dk = 0, I + K is not injective. In either case,
(I+H)(I+K) is not invertible, so D; = 0.

]
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