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1 DEFINITION OF FREDHOLM DETERMINANT

Suppose if f (x) 2 C [0,1], K (x, y) 2 C ([0,1]£ [0,1]), we hope to find out the solution of the
following equation:

u(x)+
Z1

0
K (x, y)u(y)d y = f (x), (1.1)

where u(x) 2C [0,1].
Actually, we can write (1.1) as

(I+K)u(x) = f (x). (1.2)

Fredholm solved it by replacing the integral in (1.1) by a Riemann sum over n intervals of
length h. This yields a system of n linear equations for the values u j of u at the n nodes
j /n of the subdivision. Fredholm expressed the solution of these equations as n ! 1.The
discretized form of (1.1) is

ui +h
X

Ki j u j = fi , i = 1, ...,n, (1.3)

where fi = f (i h), h = 1/n and Ki j = K (i h, j h).Denote by D(h) the determinant of the matrix
acting on the vector u in (1.3):

D(h) = det (I +hKi j ) (1.4)

We can write D(h) as a polynomial in h:

D(h) =
nX

m=0
amhm . (1.5)

am can be written as Taylor coefficients:
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am = 1
m!

µ
d

dh

∂m

D(h)|h=0 (1.6)

In general, we have a rule:

d
dh

det (C1, ...,Cn) =
X

l
det

µ
C1, ...,

d
dh

Cl , ...,Cn

∂
. (1.7)

And notice that at h = 0, C j (0) = E j , thus using (1.4) in (1.6), we have

D(h) = 1+h
X

i
Ki j +

h2

2

X

i , j
det

µ
Ki i Ki j

K j i K j j

∂
+·· · (1.8)

Fredholm denoted

K
µ

x1 · · · xk

y1 · · · yk

∂
= detK (xi , y j ), 1 … i , j … k. (1.9)

Now we set h = 1/n, and let n tend to 1, then we change (1.8) into

D =
1X

0

1
k !

Z
· · ·

Z
K

µ
x1 · · · xk

x1 · · · xk

∂
d x1 · · ·d xk . (1.10)

Definition. D is called the Fredholm determinant of the operator (I+K)acting on the left of
(1.2).

Theorem 1. The series (1.10) is convergent.
Proof.
Recall the Hadamard’s inequality says that

|det (C1, · · · ,Ck )|…
kY

j=0
||C j ||,

where ||C || denotes the Euclidean length of the vector C . Since the kernel K is continuous, it
is bounded, let’s say,

|K (x, y)|… M ,

for all x, y, so the length of each column vector of the k £ k matrix (1.9) is less than M
p

k.
Thus, according to Hadamard’s inequality,

|K
µ

x1 · · · xk

y1 · · · yk

∂
|… M k kk/2.

So the kth term in series (1.10)is … M k kk/2/k !, by Stirling’s formula,

M k kk/2/k ! … (Me)k k°k/2.

Therefore,

D …
1X

0
(Me)k k°k/2 <+1.

That is, the Fredholm Determinant is well-defined.
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2 THE INVERSE OF I+K

If we denote

R(x, y) = K (x, y)+
Z

K
µ

x x1

y x1

∂
d x1 +·· · =

1X

0

1
k !

Z
· · ·

Z
K

µ
x x1 · · · xk

y x1 · · · xk

∂
d x1 · · ·d xk ,

(2.1)
and notice that

K
µ

x x1 · · · xk

y x1 · · · xk

∂
= K (x, y)K

µ
x1 · · · xk

x1 · · · xk

∂
°K (x, x1)K

µ
x1 x2 · · · xk

y x2 · · · xk

∂
+·· · , (2.2)

It is obvious that the integrals of the last k terms on the right are all equal. In fact, by inter-
changing in the j th integral the names of the variables x1 and x j , and then performing one
row permutation and j °2 column permutations, we have

(°1) j
Z

· · ·
Z

K (x, x j )K
µ

x1 x2 x j · · · xk

y x1 · · · x j°1 x j+1 · · · xk

∂
d x1 · · ·d xk

= (°1) j
Z

· · ·
Z

K (x, x1)K
µ

x j x2 x1 · · · xk

y x j · · · x j°1 x j+1 · · · xk

∂
d x1 · · ·d xk

= (°1) j+1
Z

· · ·
Z

K (x, x1)K
µ

x1 x2 x j · · · xk

y x j · · · x j°1 x j+1 · · · xk

∂
d x1 · · ·d xk

= (°1) j+1(°1) j°2
Z

· · ·
Z

K (x, x1)K
µ

x1 x2 x j · · · xk

y x2 · · · x j x j+1 · · · xk

∂
d x1 · · ·d xk

= (°1)
Z

· · ·
Z

K (x, x1)K
µ

x1 x2 · · · xk

y x2 · · · xk

∂
d x1 · · ·d xk

(2.3)

therefore,

Z
· · ·

Z
K

µ
x x1 · · · xk

y x1 · · · xk

∂
d x1 · · ·d xk

= K (x, y)
Z

· · ·
Z

K
µ

x1 · · · xk

x1 · · · xk

∂
d x1 · · ·d xk

°k
Z

· · ·
Z

K (x, x1)K
µ

x1 x2 · · · xk

y x2 · · · xk

∂
d x1 · · ·d xk

(2.4)

Divide it by k ! and sum. According to (2.1) of R(x, y) and (1.10) of D , we have

R(x, y) = K (x, y)D °
Z

K (x, x1)R(x1, y)d x1,

or, we can write it as

R(x, y)+
Z

K (x, z)R(z, y)d z °DK (x, y) = 0 (2.5)
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If we expand the determinants in (2.1) according to the first column instead of the first row,
the we have an analogous identity as

R(x, y)+
Z

K (t , y)R(x, t )d t °DK (x, y) = 0 (2.6)

Now we can compute the inverse of (I+K) now.

Theorem 2. Let K be a continuous kernel, and suppose D 6= 0. Then the operator (I + K)
is invertible, and the inverse is (I°D°1R).
Proof. According to (2.5) and eqref15,

R+KR°DK = 0.

R+RK°DK = 0.
(2.7)

Namely,

(I+K)(I°D°1R) = I.

(I°D°1R)(I+K) = I.
(2.8)

⇤

Actually we can prove the inverse is also true. Let∏denote a complex parameter. If we replace
K by ∏K in (1.10), we have

D(∏) =
1X

k=0

∏k

k !

Z
· · ·

Z
K

µ
x1 · · · xk

x1 · · · xk

∂
d x1 · · ·d xk . (2.9)

Similarly, we can define R(x, y,∏) as

R(x, y,∏) =
1X

k=0

∏k+1

k !

Z
· · ·

Z
K

µ
x x1 · · · xk

y x1 · · · xk

∂
d x1 · · ·d xk . (2.10)

It is obvious to see that both D(∏) and R(x, y,∏) are entire analytic functions of ∏.

Lemma 3. Suppose that D(∏) has a zero of order m at ∏ = 1. Then there is a value of x such
that R(x, x,∏) has a zero of order < m at ∏= 1.
Proof. According to (2.10),

Z
R(x, x,∏)d x =

1X

k=0

∏k+1

k !

Z
· · ·

Z
K

µ
x x1 · · · xk

x x1 · · · xk

∂
d xd x1 · · ·d xk .

Notice that the right side is equal to the derivative of (2.9) with respect to ∏ and times ∏,
hence, Z

R(x, x,∏)d x ¥∏
d

d∏
D(∏).
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Since R(x, x,∏) is entire analytic, we can write R(x, x,∏) as

R(x, x,∏) =
1X

k=0
ak (x)(∏°1)k .

If the order of D(∏) at ∏= 1 is m, then the order of the right side at ∏= 1 is m°1. So the order
of the left at ∏= 1 is also equal to m °1, which means that

Z
am°1(x)d x 6= 0.

Hence there must be some x0 such that am°1(x0) 6= 0. Then we proved that for some value of
x, the order of R(x, x,∏) at ∏= 1 is less than m. ⇤

Now we can prove the inverse of Theorem 2.

Theorem 4. Let K be a continuous kernel such that D = 0; then the operator I + K has a
nontrivial null-space and so is not invertible.

Proof. Denote by l the largest number such that R(x, y,∏) has a zero of order l at ∏ = 1 for
every x and y. According to Lemma 3, l < m. So we can write

R(x, y,∏) = g (x, y)(∏°1)l +O(∏°1)l+1 (2.11)

By our definition of l , g (x, y) 6¥ 0. According to (2.6),

R(x, y,∏)+
Z
∏K (x, t )R(t , y,∏)d t =∏K (x, y)D(∏), (2.12)

where ∏ 6= 1. Divide both sides by (∏°1)l and let ∏! 1, then we have

g (x, y)+
Z

K (x, t )g (t , y)d t = 0. (2.13)

Since g 6¥ 0, there exists some y0 such that g (x, y0) 6¥ 0.
Denote u(x) = g (x, y0). Hence

u(x)+
Z

K (x, y)u(y)d y = 0. (2.14)

That is, u(x) is inside the nullspace of I+K. ⇤

To sum up, we have that the Fredholm determinant D 6= 0 iff the operator I+K is invertible.

Corollary 5. The complex number k is an eigenvalue of the integral operator K iff ∏=°1/k is
a zero of D(∏).

Proof. Since the determinant of I+K is D(1) = 0, the determinant of I+∏K is D(∏), according
to Theorem 2 and Theomrem 4, D(1) = 0 iff there exists some u(x) such that Ku(x) = °u(x),
we replace K by ∏K , then D(∏) = 0 , ∏Ku(x) =°u(x) , Ku(x) =°1/∏u(x). ⇤
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3 THE MULTIPLICATIVE PROPERTY OF THE FREDHOLM DETERMINANT

Now we can present Fredholm’s extension of the multiplicative property of determinants to
operators. Here we denote the determinant of I+K by DK , I+H by DH , and the inverse of
I+K by I°D°1

K RK , the kernel of RK by RK (x, y).

Theorem 6. Let H and K be integral operators with continuous kernels, and set (I+H)(I+K) = I+L.
Then

DL = DH DK . (3.1)

Proof. We should notice that

(I+H)(I+K) = I+H+K+HK = I+L,

) H+K+HK = L.

therefore the kernel of L is
Firstly, we prove this when DK 6= 0,DH 6= 0.

L(x, y) = K (x, y)+H(x, y)+
Z

H(x, t )K (t , y)d t (3.2)

We define

±DK = ±
d

d≤
DK+≤±K |≤=0 (3.3)

First we calculate the variation of the determinant (1.9). According to (1.7)

±K
µ

x1 · · · xk

x1 · · · xk

∂
=

X

`

detK`, (3.4)

where the `th column of K` is ±K (xi , y`). Expand set K` with respect to the `th column:

±K
µ

x1 · · · xk

x1 · · · xk

∂
=

X

m,`
(°1)m+`K

µ
x1 · · · (xm) · · · xk

x1 · · · (x`) · · · xk

∂
±K (xm , x`), (3.5)

where the parentheses indicate that the `th column and the mth row are to be omitted.Now
we integrate (3.5)over the k°dimensional unit cube. We separate the sum into two parts as
following:

When ` = m, we notice that all k terms with ` = m are equal, denoting x` = xm = x, rela-
belling the remaining variables as x1, · · ·xk°1, hence when `= m, the sum of the integral is

k
Z

· · ·
Z

K
µ

x1 · · · xk°1

x1 · · · xk°1

∂
d x1 · · ·d xk°1

Z
±K (x, x)d x. (3.6)

6



When ` 6= m, relabel xm = x, x` = y , and the remaining variables as x1, · · · , xk°2. Then each
term is equal to

(°1)`+m(°1)`°1+m°2
Z

· · ·
Z

K
µ

y x1 · · · xk°2

x x1 · · · xk°2

∂
±K (x, y)d x1 · · ·d xk°2d xd y,

hence all the k(k °1) terms are equal, and the sum is

°k(k °1)
Z

· · ·
Z

K
µ

y x1 · · · xk°2

x x1 · · · xk°2

∂
±K (x, y)d x1 · · ·d xk°2d xd y. (3.7)

According to (1.10) and (2.1), if we get the sum of (3.6) and (3.7) divided by k !, the sum of (3.6)
is

DK

Z
±K (x, x)d x,

and the sum of (3.7) is

°
ZZ

RK (y, x)±K (x, y)d xd y.

Plus them together, we get

±DK = DK

Z
±K (x, x)d x °

ZZ
RK (y, x)±K (x, y)d xd y.

Assume that DK 6= 0,we get

±DK

DK
= ± logDK =

Z
±K (x, x)d x °D°1

K

ZZ
RK (y, x)±K (x, y)d xd y. (3.8)

Since

±K (x, y)°D°1
K

Z
R(y, x)±K (x, y)d x = (I°D°1

K RK )±K (x, y),

hence,

± logDK =
Z

(I°D°1
K RK )±K (x, y)|x=y d x

=
Z

(I+K)°1±K (x, y)|x=y d x.
(3.9)

Similarly, if we regard the right part of (3.8) as the applications of the transpose of I°D°1
K RK to

the function ±K (x, ·), then we have

± logDK =
Z

(I+K0)°1±K (x, y)|x=y d x, (3.10)

where K0 represents the transpose of K.

According to (3.2),

L(x, y) = K (x, y)+H(x, y)+
Z

H(x, t )K (t , y)d t ,
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hence

±L(x, y)

=±K (x, y)+±H(x, y)+
Z
±H(x, t )K (t , y)d t +

Z
H(x, t )±K (t , y)d t

=(±K (x, y)+
Z

H(x, t )±K (t , y)d t )+ (±H(x, y)+
Z
±H(x, t )K (t , y)d t )

=(I+H)±K (x, y)+ (I+K0)±H(x, y)

(3.11)

By (3.8),

± logDL

=
Z
±L(x, x)d x °D°1

L

ZZ
RL(y, x)±L(x, y)d xd y

=
Z

((I+H)±K (x, y)|x=y + (I+K0)±H(x, y)|x=y )d x °D°1
L

ZZ
RL(y, x)((I+H)±K (x, y)+ (I+K0)±H(x, y))d xd y

=(
Z

((I+H)±K (x, y)|x=y d x °D°1
L

ZZ
RL(y, x)((I+H)±K (x, y)d xd y)

+ (
Z

(I+K0)±H(x, y)|x=y )d x °D°1
L

ZZ
RL(y, x)(I+K0)±H(x, y))d xd y)

=
Z

(I°D°1
L RL)(I+H)±K (x, y)|x=y d x +

Z
(I°D°1

L R0
L)(I+K0)±H(x, y)|x=y d x

=
Z

((I+L)°1)(I+H)±K (x, y)|x=y d x +
Z

((I+L0)°1)(I+K0)±H(x, y)|x=y d x

(3.12)

Recalled that (I+L) = (I+H)(I+K), hence force,

(I+L)°1 = (I+K)°1(I+H)°1,

(I+L0)°1 = (I+H0)°1(I+K0)°1.

Now we can write down ± logDL as

± logDL =
Z

(I+K)°1±K (x, y)|x=y d x +
Z

(I+H0)°1±H(x, y)|x=y d x (3.13)

That is ,
± logDL = ± logDK +± logDH . (3.14)

We can deform K and H into 0 so that DK 6= 0 and DH 6= 0 during this deformation. For
instance, set K (t ) = ∏(t )K , H(t ) = ∏(t )H , where the complex-valued function ∏(t ) avoids all
the zero points of DK (∏) and DH (∏). By (3.14),

d
d t

£
logDL(t ) ° log(DK (t )DH(t ))

§
= 0. (3.15)

Since L(0) = K (0) = H(0) = 0, and D0 = I , we deduce that

logDL = log(DK DH ).

8



Therefore,
DL = DK DH . (3.16)

When DH = 0, I+H is not surjective, and when DK = 0, I+K is not injective. In either case,
(I+H)(I+K) is not invertible, so DL = 0.

⇤
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