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Recall that in the class we always consider the self-adjoint operators defined
on the whole space H. But actually there are many operators(for example
unbounded operators) cannot defined on the whole space. So today we mainly
concentrate on the symmetry operator B defined on a dense subset D(B).

Definition 1 If B is a linear map : D(B)→ H and satisfy:

< Bu, v >=< u,Bv >

for all u, v in D(B) where D(B) is a dense set of H Then we call B is a
symmetric operator.

Notice that when D(B) = H, then we know B is bounded by Hellinger-Toeplitz
theorem.

Definition 2 D(B) is a dense subset of H and B is a linear operator defined
on D(B), then the adjoint operator B∗ is the operator whose domain is D(B∗),
consists of all v in H, satisfy ∃z such that < Bu, v >=< u, z > for ∀u ∈
D(B),we denote z = B∗v. Since D(B) is dense so ∀v there can be only one z,
and B is called self-adjoint if D(B∗) = D(B) and B∗ = B.

Note that it’s obviously that B∗ ⊇ B.

Remark 1 Note that not all the symmetry operator B is self-adjoint since we
may have D(B∗) 6= D(B). And even there are some symmetry operators which
doesn’t have self-adjoint extension. But we will prove that there’s a large num-
ber of symmetry operators have self-adjoint extension. And the method due to
Friedrichs.

Remark 2 The closure B of B is defined by setting Bu = w for all u,w satis-
fying

(w, v) = (u,Bv)

for all v in D(B).
Let H = L2(R),define B = i ddx on D(B) = C1

0=all once differentiable functions

whose support is a compact subset of R. Then B is symmetric and B is self-
adjoint.
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Remark 3 Let H = L2(0,∞), define B = i ddx on D(B) = C1
0=all once differ-

entiable functions whose support is a compact subset of (0.∞).
Then B is symmetric, but B has no self-adjoint extensions.

Remark 4 Let H = L2(0, 1),define B = i ddx on D(B) = C1
0=continuously

differential functions on [0, 1] that vanish at x = 0 and x = 1.
Then B is symmetric, B is not self-adjoint operator, but B has self-adjoint
extensions.
Let α be any complex number 6= 1 but of absolute value 1:| α |= 1.Define Aα to
be the operator i ddx acting on all C1 functions that satisfy the boundary condition

u(1) = αu(0)

Then Aα is an extension of B and we can show that it is self-adjoint.

The next theorem determines when a symmetry operator is a self-adjoint oper-
ator.

Theorem 1 A symmetry operator T is self-adjoint if and only if all non-real
complex numbers belong to its resolvent set.

Proof 1 If T is self-adjoint,we first show that the image of T − zI is a closed
subspace of H,then for u ∈ Im(T − zI),which is:

Tv − zv = u

so:
< Tv, v > −z < v, v >=< u, v >

Since T is symmetric operator,< Tv, v > is real,so the imaginary part on the
left side is −Im(z)‖v‖2, | Im(z) | ‖v‖2 ≤ ‖u‖‖v‖ so:

‖v‖ ≤ 1

| Imz |
‖u‖

let {un}∞n=1 → u, un ∈ Im(T − zI) with

Tvn − zvn = un

So we have ‖vn− vm‖ ≤ 1
|Imz|‖un − um‖,so {vn} → v we will show that v ∈ D.

To see this we take the limit of the above relations as n → ∞. The right side
tends to u,and the second term on the left tend to −zv. Therefore the first term
Tvn tends to a limit,call it r:

r − zv = u

∀w ∈ D,we have:
< Tvn, w >=< vn, Tw >

So:
< r,w >=< v, Tw >

2



By the definition of the self-adjointness,this shows that v ∈ D and Tv = r,so
u ∈ Im(T − zI),so Im(T − zI) is closed.
If the range of T − zI were not H,there ∃k where:

< Tv − zv, k >=< Tv, k > − < v, z̄k >= 0

for all v ∈ D. By the definition of self-adjointness, we have k ∈ D, and Tk = z̄k.
But then < k, Tk >= z < k, k > is not real, contradict to T is symmetric
operator.
Thus Im(T−zI) = H, and it’s obviously that it is injective: since if Tv−zv = 0,
so by

‖v‖ ≤ 1

| Imz |
‖u‖ = 0

contradict.
The converse,if z is non real, then z and z̄ ∈ C − σ(T )
We first show that ((T − z)−1)∗ = (T − z̄)−1
∀f, g ∈ H

< (T − z)−1f, g >=< f, (T − z̄)−1g >

let (T − z)−1f = x ∈ DT, (T − z̄)−1g = y ∈ D(T ),then we have

< x, (T − z̄)y >=< (T − z)x, y >

And this is true since T is symmetric.
Next we will prove T is self-adjoint.
To prove it is self adjoint,we will show D(T ∗) ⊆ D(T ) and T ∗ = T .
let v ∈ D(T ∗), T ∗v = w,and by the definition we have,

∀x ∈ D(T ), < Tx, v >=< x,w >=⇒ < (T − z)x, v >=< x,w − z̄v >

Since (T − z)−1 is surjective onto D(T ),so ∃f and x = (T − z)−1f
then

< f, v >=< (T − z)−1f, w − z̄v >=< f, (T − z̄)−1(w − z̄v) >

And this is holds ∀x ∈ D(T ) so its hold for all f ∈ H.
So we have v = (T − z̄)−1(w − z̄v)
Since Im(T − z̄)−1 = D(T ),so v ∈ D(T ) and

(T − z̄)v = w − z̄v =⇒ Tv = w = T ∗v

Then we will introduce a method of extension by Friedrichs.

Definition 3 A symmetric operator L defined on a dense subspace D of a
Hilbert space H is semibounded if

∃c,∀u ∈ D, c‖u‖2≤ < u,Lu >
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Remark 5 We can always assume that c = 1 by replacing L by L− (c− 1)I.

we can define on D a new inner product:

< v,w >L=< v,Lw >

and new norm(we call L-norm):

‖u‖ =< u,Lu >
1
2

so we have
‖u‖ ≤ ‖u‖L

Under (D, ‖u‖L) we can complete it and we denote its completion by HL, by
the above inequality,we have if we have a Cauchy sequence in L-norm,then it is
also a sequence in norm, so it has a limit in H,thus we can define a map from
HL to H.

Lemma 1 This map is injective.

Proof 2 Let {un}∞n=1, un ∈ D is a Cauchy sequence in L-norm, and un → uL

in L-norm and denote un → u in norm
we have ∀v ∈ D

< un, v >L=< un, Lv >

so:
< uL, v >L=< u,Lv >

Thus,uL is determined by u. Since D is a dense subspace, so uL is determined
by u.

Thus we can embedding HL into H,and we canregard HL as a subspace of H
and D ⊂ HL. Now we will define the Freidrichs Extension of L, as LF .
For fix g ∈ H,define lg(v) =< v, g >,lg is a bounded linear functional and
| lg(v) |≤ ‖v‖‖g‖ so | lg(v) |≤ ‖v‖L‖g‖,so lg is bounded linear functional on HL

By Rieze Representation Theorem,∃w ∈ HL

lg(v) =< v, g >=< v,w >L

we define all of the w as DF , so lg is determined by w, so g is defined by w,
which means that there is a function LF : DF → H and denote LF (w) = g
Thus < v,w >L=< v,LFw >,∀w ∈ DF , v ∈ HL.
We will see LF is an extension of L.
For g = Lu, u ∈ D we have

lg(v) =< v, g >=< v,Lu >=< v, u >L=< v,LF (u) >,∀v ∈ D

so Lu = LFu and we have D ⊂ DF ⊂ HL
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Theorem 2 LF is a self-adjoint extension of L on DF .

Proof 3 Firstly we will prove LF is symmetric on DF .Since:

< v,w >L=< v,LFw >=< w, v >L=< w,LF v >

We know that w is determined by g, so LF is an invertible operator. And we
denote it as M : H → DF .
Let LFw = g ⇒Mg = w we know M is also a symmetric operator.
By Hellinger-Toeplitz Theorem,M is a bounded operator,so M is self-adjoint.
Then we have every non-real complex number belong to the resolvant set of
M ,and

z−1 −M−1 = z−1(M − zI)M−1

so z−1 belongs to the resolvant set of M−1 = LF ,so every non-real complex
number belongs to the resolvant set of LF ,so by thm1 we have LF is self-adjoint
operator.

Example 1 Let H = L2(0, 1) and T = − d2

dx2 + q,where q is some continuous
function on [0, 1] and D(L) = C2

0 (0, 1),we have L is a symmetry operator and

‖u‖2L =< u,Lu >=

∫
(ux)2 + qu2dx ≥ c‖u‖2

where c = minq,so we can assume that c = 1.
And we also have every function in HL is continuous on the closed interval [0, 1]
and vanish at the endpoints.
Since ∀u ∈ C2

0 ,we have every a, b ∈ [0, 1]

| u(b)− u(a) |=|
∫ b

a

uxdx |≤
√
b− a(

∫ b

a

u2xdx)
1
2 ≤
√
b− a‖u‖L

It follows that a Cauchy sequence in the L-norm converges uniformly,and that
the limit in HL is zero at the endpoints and is continuous.
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