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Abstract

The term noncommutative geometry requires justi-

fication. After all noncommutativity, as in noncom-

mutativity of matrix multiplication, is an algebraic

property and just how it can be tied up to a new

notion of space and geometry is not immediate.

Mathematicians, physicists, and philosophers have

debated the nature of space for centuries while ex-

panding its meaning and scope. In this talk I shall

follow some of these threads, specially the evolv-

ing relation between geometry and algebra, with a

view towards the modern notion of noncommuta-

tive space at the heart of noncommutative geom-

etry.
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Pythagoras (570 BC-495 BC)

All is Number

This is fine, but let us imagine we are not told

what All means, what is means and what Number

means!

While pythagoreans had a clear view of their mean-

ings, these terms acquired different interpretations

throughout history, and my goal is to highlight their

evolution during this lecture. This idea is very rel-

evant for the evolution of the notion of space is

mathematics.

4



Raphael’s The School of Athens
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For Pythagoreans:

Number: positive integers and rationals.

All: everything! including shapes and figures, mu-

sic, physics and astronomy.

Is: e.g. every length is rational, etc.

The correspondence between the two worlds is achieved

through measurements, introduction of coordinates.

Remark: Introduction of rationals is a very sophis-

ticated idea; the first example of localization in

commutative algebra. Noncommutative localiza-

tions, e.g. Ore extensions, was understood only in

the 20th century!
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Crisis, Creation, Salvation

The slogan All Is Number must be upheld at any

cost; it’s too valuable to be abandoned! This is

usually done by rethinking the meanings of Num-

ber, All, and Is. Aspects of the history of maths

can be understood as unveiling of this struggle.

Galileo: ‘Measure everything that is measurable,

and make measurable everything that is not yet

so’.

An early example:

Crisis: for a = 1, d is not a number!
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Creation: by expanding the number concept,
√

2

eventually became a number, even a real one! Start-

ing with Eudoxus and Euclid, this dream took al-

most 2400 years to be fully realized (Dedekind

1872).



What is Algebra?

“Thesis. Anything which is the object of math-

ematical study (curves and surfaces, maps, sym-

metries, crystals, quantum mechanical quantities

and so on) can be ’coordinatised’ or ’measured’.

However, for such a coordinatisation the ’ordinary’

numbers are by no means adequate. Conversely,

when we meet a new type of object, we are forced

to construct (or to discover) new types of ’quan-

tities’ to coordinatise them. The construction and

the study of the quantities arising in this way is

what characterizes the place of algebra in mathe-

matics (of course, very approximately)”-I. R. Sha-

farevich, Basic Notions of Algebra.
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Example: The Dictionary of Quantum Mechanics.

QM Math
State of system Line in a

Hilbert space
Observable S.a. operator

Simultaneous Commuting
measurement operators

Observable with S.a. operator
value λ w. eigenvalue λ
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Aristotle (384 BC-322 BC)

The importance of Physics

Absolute rest makes sense (Earth). There is abso-

lute space and absolute time. Aristotelian space-

time:

M = E1 × E3

A cartesian product of affine Euclidean spaces.
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• Simultaneity of events make sense.

• It makes sense to say two events took place at

different times at the same place.

• Though utterly wrong (see the next Section on

Galileo), this view of spacetime is the one that

is commonly held by the majority of people even

today!

Warning: E1 6= R. A choice of the origin and

length scale gives an isomorphism E1 ' R.

What is the curvature of the universe? The most

recent WMAP satellite image (2006) of the CMB

(cosmic microwave background radiation) shows

that the the universe is flat (with %2 margin of

error).
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So the spacetime is curved, but the universe is flat!

(Dali, Searching for the 4th dimension, 1979)
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Galileo Galilei (1564-1642)

The importance of Physics for the structure of

spacetime

Principle of Relativity and Equivalence Principle

• Absolute rest is an illusion!

• There is absolute time but no absolute space!

• Galilean relativity in geometric terms: spacetime

is a fiber bundle, not a cartesian product, with base

14



E1 and fiber E3: π :M−→ E1.

A more down to earth view of Galilean relativity:

laws of classical mechanics must be invariant under

the Galilean group of transformations of R4:



Two fundamental discoveries of Galileo

• Principle of Relativity: the (local) geometric struc-

ture of spacetime is defined by a group; laws of

physics must be invariant under the action of this

group. (Only experiment can fix the structure of

this group). This was later absorbed in Felix Klein’s

Erlnagen Program.
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• The Equivalence Principle

gravitational mass = inertial mass

In the hands of Einstein, these two laws eventually

led to the special and general theory of relativity,

respectively.
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René Descartes (1596-1650)

A happy marriage of geometry and algebra!

This is the same old idea of Pythagoras, only

stated more precisely.

Main idea: break the symmetry of your geometric

(or algebraic, physical,....) object and introduce a

coordinate system!
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Three poignant remarks by Hermann Weyl:

• “The introduction of numbers as coordinates...is

an act of violence...”

In fact by introducing a coordinate, or gauge, one

breaks the symmetry of the object, and only by a

careful act of book keeping via group theory one

can maintain the original symmetry and still work



with coordinates in a meaningful way.

Example: Let S be a set with n elements. An

identification

S ' {1,2, · · · , n}

amounts to a choice of coordinates in S and breaks

the symmetry of S from Sn to the trivial group!

Thus ambiguity is the source of symmetry and we

have an equation

symmetry = invariance = ambiguity = beauty

Evariste Galois was acutely aware of all of this of

course, and that is why he called his theory “theorie

des ambiguite”.



These ideas eventually led to Kelin’s Erlangen pro-

gram; which is nothing but the relativity theory of

mathematics (see F. Klein: Vorlesungen uber die

Entwicklung der Mathematik im 19. Jahrhundert).

2. “Galois theory is the theory of relativity of equa-

tions”



3. “In these days the angel of topology and the

devil of abstract algebra fight for the soul of every

individual discipline of mathematics.”



Riemann’s blueprint

Über die Hypothesen, welche der Geometrie zu

Grunde liegen (1854).

This was directly influenced by Gauss’ 1927 mem-

oir on the theory of surface and specially his The-

orema Egregium.

Riemann’s innovations
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•Mannigfaltigkeit: intrinsically defined n-dimensional

smooth space, without reference to an ambient

space. This even inspired Cantor’s set theory. He

leaves no stones unturned and considers all possi-

bilities for n = 0,1, · · · ,∞.

• Riemannian metric, and distance

∑
gµνdx

µdxν

d(p, q) = inf
∫ 1

0

∑
gµνdx

µdxν

Compare with a modern noncommutative defini-

tion (Connes’ distance formula):

d(p, q) = sup{|f(p)− f(q)|; ||[D, f ]|| ≤ 1},

where D is the Dirac operator.

Remark: Connes’ formula has the advantage that



it can be extended to a noncommutative setting

(spectral triples).

• Riemann curvature tensor

R(X,Y )Z = ∇X∇Y (Z)−∇Y∇X(Z)−∇[X,Y ](Z)



C is for Classical, Commutative, Cookie,....

Riemann’s program, coupled with the progress in

algebraic geometry, set theory and Hilbert-Bourbaki

formalization of mathematics, inspired a notion of

classical space that is still with us: a classical space

is a set of points plus an extra structure, say topol-

ogy, measure, smooth, analytic, algebraic, etc...

But why commutative?
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A fundamental duality

(commutative) algebra = (classical) geometry

Each generation of mathematicians find new incar-

nations of this principle and, to preserve the princi-

ple, push the boundaries by discovering/introducing

new concepts on either side of this equation.

On a physiological level this is perhaps related to a

division in human brain: one computes and manip-

ulates symbols with the left hemispheric side of the

brain and one visualizes things with the right brain.

Computations evolve in time and has a temporal

character while visualization is instant and imme-

diate.
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“The great pleasure and feeling in my right brain

is more than my left brain can find the words to

tell you.” - Roger Sperry, Nobel Laureate (Medicine

1981; “for his discoveries concerning the functional

specialization of the cerebral hemispheres”).



“The main theme to emerge... is that there appear

to be two modes of thinking, verbal and nonverbal,

represented rather separately in left and right hemi-

spheres respectively and that our education system,

as well as science in general, tends to neglect the

nonverbal form of intellect. What it comes down

to is that modern society discriminates against the

right hemisphere”.-Roger Sperry (1973).



Gelfand-Naimark Theorem (1943)

A perfect duality between a category of spaces

and a category of commutative algebras.

{commutative C∗ − algebras} '

{compact Hausdorff spaces}op

Together with the series of papers on ‘Rings of

Operators I-IV” (later to be named von Neumann
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algebra by J. Dixmier) by von Neumann and Mur-

ray, they form the two pillars of noncommutative

geometry.

The Gelfand-Naimark result suggests: noncommu-

tative C∗-algebras can be regarded as (coordinate

rings) of noncommutative topological spaces. Why

is this a good idea? Apriori, we have no reason to

believe that there is anything deep going on here.

Only experience, hard results, and good applica-

tions can tell!



Example: The noncommutative torus

Heisenberg’s canonical commutation relations

pq − qp =
h

2πi
1

No bounded operator realization. Weyl’s integrated

form of CCR: Let

Ut = eitp and Vs = eisq

Then

VsUt = e2πi}stUtVs,

Let Aθ = universal C∗-algebra generated by uni-

taries U and V such that:

V U = e2πiθUV

Example: The quantum sphere

quantum sphere S2
q : Generators a, a∗ and b. rela-



tions

aa∗+ q−4b2 = 1, a∗a+ b2 = 1,

ab = q−2ba, a∗b = q2ba∗.

S2
q is a NC homogeneous space for the quantum

group SUq(2).

• Topological K-theory extends to noncommuta-

tive C∗-algebras, even Banach algebras and the

Bott periodicity theorem is valid in this general-

ity. Its proof becomes rather simpler even!

• Algebraic topology: fundamental groups of spaces,

G = π1(M), are noncommutative in general. The

group algebra of G, and its completion A = C∗(G),



is in some sense a replacement of the classifying

space of G. The Baum-Connes map

µ : K∗(BG)→ K∗(C∗(G)

is an equivariant index map. Surjectivity of this

map implies the Novikov conjecture (the homotopy

invariance of higher signatures) for the group G.

Tools like K-theory, K-homology, and KK-theory

play an important role in its proof. Injectivity of µ

implies idempotent conjectures for group algebras.



Serre-Swan Theorem

The category of vector bundles on a compact Haus-

dorff space X is equivalent to the category of finite

projective modules over C(X).

E ←→ Γ(E)

Serre-Swan Theorem suggest: finite projective mod-

ules over A can be regarded as noncommutative

vector bundles.

Finite projective A-modules correspond to idempo-

22



tents

e ∈Mn(A), e2 = e.

Let P (A) = isomorphism classes of finite projec-

tive A-modules. It is a monoid. Let G(P (A))=

Grotendieck group of P (A). Define

K0(A) = G(P (A))

Then

K0(X) = K0(C(X))

A noncommutative example. Hopf line bundle on

the quantum sphere S2
q : Generators a, a∗ and b.

relations

aa∗+ q−4b2 = 1, a∗a+ b2 = 1,

ab = q−2ba, a∗b = q2ba∗.



The quantum analogue of the Dirac (or Hopf)

monopole line bundle over S2 is given by the fol-

lowing idempotent in M2(S2
q ):

eq =
1

2

[
1 + q−2b qa

q−1a∗ 1− b

]
.



Example: A finite projective module over the Non-

commutative Torus Aθ. Generators U and V . Re-

lation

V U = e2πiθUV

Let E = S(R) = Schwartz space of rapidly decreas-

ing functions on R. It is an Aθ module via:

(Uf)(x) = f(x− θ), (V f)(x) = e2πixf(x).

E is finite projective.
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From bad quotients to noncommutative

spaces

There are more things in

heaven and earth, Horatio,

Than are dreamt of in your

philosophy.

(Hamlet Act 1, scene 5)

Let T = R/Z be the circle. A Z-action on T (rota-

tion by θ):

Z× T→ T, (n, x) 7→ x+ nθ

Note: the orbit space of T ←→ space of leaves of

the Kronecker foliation of T2
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For θ =irrational, the action is ergodic, and we

have a bad quotient.

Replace T/ ∼ by a noncommutative algebra:

C(T)Z ; C(T) o Z

Why is this a reasonable procedure?

Answer: when the action is free and proper the

classical quotient and the NC quotient are Morita

equivalent:

C(X/G) ∼ C(X) oG

General idea:

quotient data ; groupoid ; groupoid algebra



Example: Identify n points:

• • • · · · · · · •

Classical quotient: one (fat) point.

NC quotient: Mn(C).

This is the way Heisenberg discovered the matrix

mechanics formulation of QM.

Some noncommutative spaces:

• Space of leaves of a foliation (M,F)

• The unitary dual of a noncompact (Lie) group

G→ C∗(G)

It is the NC geometer’s version of the ‘classifying

space’ BG of G.



If G is abelian, by Fourier analysis,

C∗(G) ' C0(Ĝ)

• The space of Penrose tilings.



What is Noncommutative Geometry?

..........In mathematics each object (or subject) can

be looked at in two different ways:

Geometric or Algebraic

Geometry

= C∞(M)

Algebra

Classical Geometry = Commutative Algebra
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Fundamental duality theorems like Gelfand-Naimark,

Serre-Swan, or Hilbert’s Nullstellensatz, among oth-

ers, suggest an equivalence or duality between spaces

and commutative algebras.

26



But Alain Connes, in his Noncommutative Geom-

etry, has taught us that there is a far more fasci-

nating world of noncommutative spaces that have

a rich geometry and topology waiting to be ex-

plored. Noncommutative Geometry (NCG) builds

on this idea of duality between algebra and geome-

try and vastly extends it by treating special classes

of noncommutative algebras as the algebra of co-
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ordinates of a noncommutative space.



A paradigm to bear in mind throughout noncom-

mutative geometry is the classical inclusions

smooth ⊂ continuous ⊂ measurable

which reflects in inclusions of algebras

C∞(M) ⊂ C(M) ⊂ L∞(M)

This permeates throughout NCG: in the NC world

one studies a noncommutative space from a

• measure theoretic point of view (von Neumann

algebras)

• continuous topological point of view (C*- alge-

bras)

• differentiable point of view (smooth algebras)

• algebraic geometric point of view (abstract asso-

ciative algebras, abelian or triangulated categories)
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commutative noncommutative
measure space von Neumann algebra
compact space C∗-algebra
vector bundle projective module
complex variable operator
real variable s.a. operator
infinitesimal compact operator
range of a function spectrum
K-theory K-theory
vector field derivation
integral trace
closed current cyclic cocycle
de Rham complex Hochschild homology
de Rham cohomology cyclic homology
Chern character NC character
Chern-Weil theory NC Chern-Weil thoery
elliptic operator K-cycle
spinc manifold spectral triple
index theorem local index formula
group quantum group
symmetry action of QG
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From spectral geometry to spectral triples

and noncommutative manifolds

Spectral triple (A,H,D)

• π : A→ L(H) a representation of A,

• D : H → H, s.a. unbounded operator,

[D, π(a)] is bounded,

• compact resolvent: (D + λ)−1 is compact.

• dimension axiom

|D|−n ∈ L(1,∞)(H)

By definition, a positive bounded operator T ∈

L(1,∞)(H) if

N∑
1

λn = O(LogN)

Example: (C∞(S1), −i ddx, L
2(S1)).
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Eigenvalues: n ∈ Z

|D|−1 ∈ L(1,∞)(H)

In general, for any compact spin Riemannian mani-

fold M with Dirac operator D, one gets an spectral

triple

(C∞(M), D, L2(S)).

But there are many noncommutative examples!

The Dixmier trace

Trω : L(1,∞)(H)→ C

measures the Log divergence of the satnadard trace

(a kind of regularization of the trace).

Noncommutative Volume: the equality∫
−P := Resz=0 Trace(P |D|−z)



defines a trace on the algebra generated by A,

[D,A], and |D|z, z ∈ C. In the commutative case,

Weyl’s Law on the asymptotic distribution of eigen-

values is equivalent to∫
−1 ∼

∫
M

dvol.



Before finishing my talk, I would like to recall a

famous pronouncement of David Hilbert.

In his only radio address in 1931, a rare event for a

mathematician even today, he took to task certain

pessimistic ideological undercurrents of his time.

At the end of his speech, With characteristic opti-

mism he said:
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Wir müssen wissen Wir werden wissen

I guess there is no need to remind ourselves what

Gödel proved in that same year! His Incomplete-

ness Theorem shattered Hilbert’s hopes for fully

formalizing mathematics.

Perhaps poets know better, and we should turn to

them, for ultimate wisdom.
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So I would like to finish my talk by quoting T. S.

Eliot (1888 - 1965), that astute observer of hu-

man condition. These 4 lines from the 4th quar-

tet capture the essence of our journey, the saga

of numbers and figures, their dance and struggle,

their cooperation and competition, and the evolu-

tion of their meaning in time, from Pythagoras to

Connes and beyond.
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“We shall never cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time”.

(Little Gidding; Four Quartet)
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