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Weyl's Law (1911-1915)

Consider the Dirichlet boundary value problem for Q C R?:
Au = Au, u|l02 = 0.

A=—(02+ 6}2,) Laplacian

Eigenvalues:
D<M < <3< 5

Eigenfunctions: {u,},>1 form an o.n. basis for L?()
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Weyl's Law:
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Physics of the Weyl's Law

Laplcian A appears on the right hand side of most famous equations of
both classical and quantum physics:
The Heat equation
Oru = Nu

The wave equation

8fu =c?Au
The Schroedinger equation (for a free particle)

ihoy = Ay

Musical interpretation (the theory of sound):
shows that the eigenfrequencies (pure tones) that a drum with clamped

edge can produce
Vn ~ VAn
. Thus Weyl's law says that one can hear the area of a drum!
Why is this significant?
Introduce the Eigenvalue Counting Function:
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Weyl's Law is equivalent to
N(X) = @)\ +0o(A) A=
41
General statement: Let (M, g) be a closed, oriented, n-dimensional

Riemannain manifold. Let A = d*d be the Laplacian of (M, g). Consider
the eigenvalue problem

Au=Au
It has a discrete set of eigenvalues
O<M< sl -5
Weyl's Law:

N(A) = E}JA+0(A) A = 00
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Complex structure

Fix
T=T1+iT, T >0,

and define
0 = 01 + 702, 0" = 01 + Too.

Define the Hilbert space (analogue of (1, 0)-forms)
HEO 2,
as the completion of the subspace spanned by finite sums > aob,

a,be Ayr.
Connes and Tretkoff consider 7 = |.
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View
0=08+71:Ho —)7‘[(1’0)

as an unbounded operator with the adjoint given by
0" = 01 + Too.
Define the Laplacian

A =070 = 6% + 2116102 + |7[263.
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Conformal perturbation of the metric

To investigate the analogue of the Gauss-Bonnet theorem, vary the
conformal class of the metric by h = h* € A7°: Define a postive linear
functional ¢ : Ag — C by

v(a) = To(ae*h), ac Ay
It is a twisted trace
¢(ba) = p(aci(b))

which is the KMS condition at 8 = 1 for 1PG of automorphisms

ot 1 Ag — Ag, t €R,

o(x) = e'thxe—ith.

In fact
o = Aflt

with the modular operator
A(x) = e "xeh.

Masoud Khalkhali () The Gauss-Bonnet Theorem for the Noncon /21



The perturbed Laplacian

Let H, = completion of Ag w.r.t. (,),, where
<a’ b>‘,0 = cp(b*a), a, be Ap.

Let
Op =0 =01 +70: Hy — HO,

It has a formal adjoint J7, given by
* hy a*
0, = R(e")0

where R(e) is the right multiplication operator by e (R(e")(x) = e”x).
Define the new Laplacian:

N = 0,05« Hy — Hep.

Lemma (Connes-Tretkoff; continues to hold)

N is anti-unitarily equivalent to the positive unbounded operator kAk
acting on Hy, where k = eh/2
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Spectral zeta function

((s) = Z)\ $ = Trace (A'79), Re(s) > 1.

1 [eS)
S = / eft)\tsfldt
r(s) Jo

((s) = r(l) /OOO Trace™ (e &) 5 1 dt,

S

Mellin transform

gives us

where
Trace™ (e72") = Trace (e *2") — Dim Ker(A").

¢ has a moromorphic extension to C\ 1 with a simple pole at s = 1.
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The Gauss-Bonnet theorem

Theorem (Gauss-Bonnet for classical Riemann surface)

Let ¥ = compact connected oriented Riemann surface with metric g.

Then
1 1

() +1= 55 [ R=5x(E)

where ( is the zeta funtion associated to the Laplacian Ay = d*d, and R
is the (scalar) curvature. In particular (0) is a topological invariant; e.g.
is invariant under conformal perturbations of the metric g — efg.

v

Theorem (Gauss-Bonnet for NC torus)

Let k € Ay® be an invertible positive element. Then the value ((0) of the
zeta function ( of the operator /\' ~ k/\k is independent of k.
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Pseudodifferential calculus

Recall: Connes (1980), Baaj (1988).
Differential operators of order n:

P:AY = AF, P=> adisk
J

with a; € A3°, j = (j1, jo) lj| < n.
Operator valued symbols of order n € Z: smooth maps

p:R* — AP
s.t. o o |
16305 (24 0% p(€))I] < c(1+ &)™V,
where 0; = 3%' and p is homogeneous of order n at infinity:

ImA oA, A&2), A oo

exists and is smooth.
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Given a symbol p, define a pseudodifferential operator
P, : A" — Ag°
by
Pua) = @) [ [ e p()aa)dsas

where '
Oés(Un Vm) — els.(n,m) ynym.

For pseudodifferential operators P, Q, with symbols o(P) =

7(PQ) ~ 3 5 105 (OB 5 4/ (6),
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Elliptic Symbols: A symbol p(§) of order n is called elliptic if p(£) is
invertible for £ # 0, and, for |£| large enough,

(&)Y < (1 + [~

Example:
A =67 + 2116182 + |7]%63

is an elliptic operator with an elliptic symbol

o(A) = & +2n&& + |76,
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Computing ¢(0)

Recall: ) ~

¢(s) = r(s)/o (Trace(e ™2)5~1 — 1)dt,
1 = Dim Ker(4).
Cauchy integral formula:

’ 1
—tA —tA( A/ -1
= — A" — A1) dA
¢ 2mi /c e )

gives the asymptotic expansion as t — 0F:

oo
Trace(e t*) ~ t71 Z Bon(A)t".
0
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It follows that:

¢(0) = Bo(&),

== /RQ/ 7o(ba(€, \))dAdE

where
(bO(éa >‘) + bl(é-a )‘) + b2(§7 )‘) + - )U(A/ -
bj(&, A)is a symbol of order —2 — j.
Can assume \ = —1:

Masoud Khalkhali () The Gauss-Bonnet Theorem for the Noncon

A) ~ 1



o(A"+1)=o0(kDAk+1)=(a2+ 1)+ a1+ ao

where
a = k2§% + 2m k26160 + \7’|2k2£§

a = (2/(51(/() + 27‘1/(52(/())614—
(271 kb1 (k) + 2|7)? ko (k))én
a0 = k02(k) + 2711 kd102(k) + |7|2kd5 (k).

Using the calculus for symbols:
by = (32 + 1)71

by = —(boalbo + 8,-(b0)<5,-(ag)b0)
by = —(boaobo + braibg + 8,‘([)0)5,'(31)[)0
+a,‘(b1)(5i(32)b0 + (1/2)8,‘8](1)0)(5,‘(5](32)bo).
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Integrating by(&, —1) over the plane

Pass to these cordinates:

T .
& =rcosf —r—sinf
T2

52:Lsin9

T2

where 6 ranges from 0 to 27 and r ranges from 0 to oc.

After integrating f02” e df we have terms such as

471 r3b3 k252 (k)o1(k),
2r3b3 k261 (k) bod1 (k),
—2r°ba k261 (k) b3 k251 (k),
where
bo = (1+ r2k?)1
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Lemma (Connes-Tretkoff)

For p € A® and every non-negative integer m:

oo k2m+2 m 1
du =D,
/0 (k2u+ 1)m 1P (k2y + 1) @
where
Dm = Lm(4),

A = the modular automorphism,

& xm 1
Lm(u) = /O (x + 1)™*1 (xu + 1) dx =

(_1)m(u_ 1)7(m+1) /ogu i 1)_/+1 ; )J)
j=1

(modified logarithm).
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Lemma

Let k be an invertible positive element of Ag°. Then the value ((0) of the
zeta function C of the operator N\ ~ k/Ak is given by

271'|7'|2

T2

27
=—

¢(0)+1 (F(A)(01(k))or(k)) +

p(F(A)(32(K))d2(k))+

21T 27T

——@(F(A)(01(k))02(k)) + ——=(F(A)(02(k))d1(k)),

T2 72

where p(x) = To(xk=2), 9 is the unique trace on Ag, A is the modular
automorphism, and

f(u) = éu—l/Z — % + L1(u) = 2(1 + M) Lo(u) + (1 + uM?)2L3(u).

(L is the modified logarithm.)
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Theorem (Gauss-Bonnet for NC torus)

Let k € Ay® be an invertible positive element. Then the value ((0) of the
zeta function  of the operator /\' ~ k/\k is independent of k.

Proof.

e(f(A)(5;(k))dj(k)) =0 forj =1,2,
@(f(A)(01(k))02(k)) = —p(f(A)(62(k))o1(k)).
Therefore

27 2 |7|?
=@

¢(0)+1 (F(A)(01(k))or(k)) +

p(f(A)(32(K))d2(k))+

() G1(R)3(0) + T F(A) E(K)(K)

=0

A,
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