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Noncommutative pre-complex structures

Initial data: A an ∗-algebra over C, (Ω•(A),d) an

involutive differential calculus over A.

Ω0(A) = A, d(a∗) = (da)∗

Definition: A pre-complex structure on A for the

differential calculus (Ω•(A),d) is a bigraded differ-

ential ∗- algebra Ω(•,•)(A) with differentials (deriva-

tions)

∂ : Ω(p,q)(A) → Ωp+1,q(A),

∂̄ : Ω(p,q)(A) → Ω(p,q+1)(A)

s.t.

Ωn(A) =
⊕

p+q=n

Ω(p,q)(A)
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∂(a)∗ = ∂̄(a∗), d = ∂ + ∂̄

Also, ∗ maps Ω(p,q)(A) to Ω(q,p)(A).

Motivating example: the de Rham complex of an

almost complex manifold.

NC examples: Let L be a real Lie algebra with a

complex structure:

LC = L0 ⊕ L0

Given L → Der(A,A), an action of L by ∗-derivations

on A, then

Ω•A = HomC(Λ•LC,A)

is a differential calculus for A, and

Ω(p,q)A = HomC(ΛpL0 ⊗ ΛqL0,A)



defines a pre-complex structure.

NC torus Aθ: Generators U1, U2 with

U1U2 = e2πiθU2U1

Basic derivations:

δj(Uk) = 2πi δjkUk, j, k = 1,2

define an action of R2 on Aθ. Any τ ∈ C\R defines

a complex structure on Aθ:

R2 ⊗ C = L0 ⊕ L0

with L0 := e1 + τe2.

Holomorphic functions:

O(A) := ker
{
∂̄ : A → Ω(0,1)(A)

}
.



Holomorphic structures on modules

Definition: Let (A, ∂̄) be an algebra with a pre-

complex structure and E a left A-module. A holo-

morphic structure on E with respect to (A, ∂̄) is a

flat ∂̄-connection, i.e. a connection

∇ : E → Ω(0,1)(A)⊗A E

s.t.

F (∇) = ∇2 = 0

If in addition E is a finitely generated projective

A-module, we call the pair (E,∇) a holomorphic

vector bundle.

Since ∇ is a flat connection, we have a complex of
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vector spaces:

E ∇→ Ω(0,1)(A)⊗A E
∇→ Ω(0,2)(A)⊗A E → · · ·

Definition: The zeroth cohomology group of the

above complex is the space of holomorphic sections

of E and denoted by H0(E,∇). It is a left O(A)-

module.



Holomorphic structures on bimodules

Let E be an A-bimodule.

Definition: A bimodule connection on E is a left

connection ∇ : E → Ω1(A) ⊗A E for which there is

a bimodule isomorphism

σ(∇) : E ⊗A Ω1(A) → Ω1(A)⊗A E,

such that

∇(ξa) = ∇(ξ)a + σ(∇) (ξ ⊗ da)

for all ξ ∈ E, a ∈ A.

In particular, this definition applies to the differen-

tial calculus (Ω(0,•)(A), ∂̄) thus giving a notion of

holomorphic structures on bimodules.
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Tensor products of holomorphic vector bundles

Suppose we are given two A-bimodules E1, E2 with

two bimodule connections ∇1,∇2, respectively. Let

σ := (σ1 ⊗ 1) ◦ (1⊗ σ2) : E1 ⊗A E2 ⊗A Ω1(A) →

Ω1(A)⊗A E1 ⊗A E2

Lemma: The map

∇ : E1 ⊗A E2 7→ Ω1(A)⊗A E1 ⊗A E2

defined by

∇ = ∇1 ⊗ 1 + (σ1 ⊗ id)(1⊗∇2)

defines a σ-compatible connection on the A-bimodule

E1 ⊗A E2.
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Note: We would like the flatness condition on holo-

morphic structures to survive under taking this ten-

sor product. This is not the case in higher dimen-

sions in the NC world! A possible way out might

be the use of a more exotic tensor product.



The quantum Hopf fibration

S1 ↪→ S3
q ↪→ S2

q

A quantum homogeneous space:

A(S2
q ) → A(S3

q ) → A(S1)

S3
q = SUq(2), 0 < q ≤ 1

A(SUq(2)):= ∗-algebra generated by a and c, with

relations

UU∗ = U∗U = 1

U =

[
a −qc∗

c a∗

]

Hopf algebra structure on A(SUq(2)):

∆U = U ⊗ U
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S(U) = U∗

ε(U) =

[
1 0
0 1

]

The quantum enveloping algebra Uq(su(2)): It is

the Hopf dual of SUq(2). Generators: K, K−1, E, F

Hopf pairing:

Uq(su(2))⊗A(SUq(2)) → C

〈K, a〉 = q−1/2, 〈K−1, a〉 = q1/2

〈K, a∗〉 = q1/2, 〈K−1, a∗〉 = q−1/2

〈E, c〉 = 1, 〈F, c∗〉 = −q−1

Left and right actions (infinitesimal symmetries):

Uq(su(2))⊗A(SUq(2)) → A(SUq(2)),



(X, f) 7→ X.f.

A(SUq(2))⊗ Uq(su(2)) → A(SUq(2)),

(f, X) 7→ f/X

Uniquely fixed by:

〈X, Y .f〉 = 〈XY, f〉 , 〈X, f/Y 〉 = 〈Y X, f〉 ,

These right and left actions are mutually commut-

ing.



The quantum projective line

There is a quantum principal U(1)-bundle:

ρ : A(SUq(2)) 7→ A(SUq(2))⊗A(U(1))

ρ = (id⊗π) ◦∆

π : A(SUq(2)) → A(U(1)),

where

π

[
a −qc∗

c a∗

]
=

[
z 0
0 z∗

]
is a surjective Hopf algebra homomorphism, so that

A(U(1)) becomes a quantum subgroup of SUq(2).

Coinvariants: A subalgebra of A(SUq(2)):

A(S2
q ) := {a ∈ A(SUq(2)); ρ(a) = a⊗ 1}
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The coordinate algebra of the Podleś sphere S2
q

= the underlying topological space of the quantum

projective line CP1
q .



The canonical line bundles on CP1
q

The action of the group-like element K =⇒ a de-

composition:

A(SUq(2)) =
⊕
n∈Z

Ln

where,

Ln := {f ∈ A(SUq(2)) : K.f = qn/2f}

Notice:

A(S2
q ) = L0, L∗n ⊂ L−n, LnLm ⊂ Ln+m

Ln: A(S2
q )-bimodule; finite projective as a left mod-

ule; analogues of canonical line bundles O(n) on

CP1 of degree (monopole charge) −n.
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A covariant differential calculus for SUq(2)

Left covariant calculus: (A,Ω, H)

• Ω =
⊕

i≥0 Ωi is a DGA with Ω0 = A

• Ω is a left DG H-comodule algebra, i.e. there

is a morphism of DGA’s

ρ : Ω −→ H ⊗Ω

s.t. Ω is a left DG H-comodule under ρ.

Example (Woronowicz): Let H = A(SUq(2)) and

Ωi = A(SUq(2))⊗
∧i{ω+, ω−, ωz} 0 ≤ i ≤ 3
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⊕ ∧i{ω+, ω−, ωz} = The q-Grassmann algebra:

ω+ ∧ ω+ = ω− ∧ ω− = ωz ∧ ωz = 0

ω− ∧ ω+ + q−2ω+ ∧ ω− = 0

ωz ∧ ω− + q4ω− ∧ ωz = 0,

ωz ∧ ω+ + q−4ω+ ∧ ωz = 0.

unique top form: ω− ∧ ω+ ∧ ωz.

differential d : A(SUq(2)) → Ω1(SUq(2)) :

df = (X+.f)ω+ + (X−.f)ω− + (Xz.f)ωz,

where

Xz =
1−K4

1− q−2
, X− = q−1/2FK

X+ = q1/2EK



The holomorphic calculus on CP1
q

The ‘cotangent bundle’

Ω1(S2
q ) : L−2ω− ⊕ L2ω+

The differential d:

df = (X−.f)ω− + (X+.f)ω+

where X− = q−1/2F and X+ = q1/2E.

Break d into a holomorphic and an anti-holomorphic

part, d = ∂̄ + ∂, with:

∂̄f = (X−.f)ω−, ∂f =
(
X+.f

)
ω+

The above shows that:

Ω1(S2
q ) = Ω(0,1)(S2

q )⊕Ω(1,0)(S2
q )
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where

Ω(0,1)(S2
q ) ' L−2 ' ∂̄(A(S2

q )),

Ω(1,0)(S2
q ) ' L+2 ' ∂(A(S2

q ))

These modules are not free.

2-forms: Let ω = ω− ∧ ω+. We have ωf = fω, for

all f ∈ A(S2
q ).

Ω2(S2
q ) := ωA(S2

q ) = A(S2
q )ω

Proposition: The 2D differential calculus on the

sphere S2
q is given by:

Ω•(S2
q ) = A(S2

q )⊕
(
L−2 ⊕ L+2

)
⊕A(S2

q )ω+ ∧ ω−

with the exterior differential d = ∂̄ + ∂:

f 7→ (q−1/2F.f, q1/2E.f)



(x, y) 7→ q−1/2(E.x− q−1F.y)

for f ∈ A(S2
q ), (x, y) ∈ L−2 ⊕ L+2.



Holomorphic functions on CP1
q

∂̄ : A(CP1
q ) → Ω(0,1)(CP1

q )

We shall use the q-number notation:

[s] = [s]q :=
qs − q−s

q − q−1

Proposition: There are no non-trivial holomorphic

polynomial functions on CP1
q .

Proof:

∂̄f = 0 iff F.f = 0. Write f in PBW-basis {amckc∗l}

of A(SUq(2)),

f =
∑

k,l≥0

fkl al−kckc∗l,

where a−m := a∗m. The monomials al−kckc∗l are

the only K-invariant elements in the PBW-basis.
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The vanishing of F.f implies the following relations

between fkl with 0 ≤ l < k:

fklq
−l[k] = fk+1,l+1q−k−1[l + 1]

the solutions of which are given by

fkl =
[k − 1][k − 2] · · · [k − l]qkqk−1 · · · qk−l+1

[l]!ql−1ql−2 · · · q0
f̃k−l

= q(k−l+1)l
[
k − 1

l

]
q

f̃k−l

where f̃k−l are arbitrary. Clearly, the only polyno-

mial solution is when fkl = 0 for (k, l) 6= (0,0).

2

The above expression for fkl shows that in any rea-

sonable smooth closure of A(CP1
q ) there are non-

trivial elements in the kernel of ∂̄. In fact, we have



Proposition (failure of GAGA): For any N > 0, the

series f(N) defined by

f(N) =
∞∑

l=0

q(N+1)l
[
N + l − 1

l

]
q

a∗NcN+lc∗l

has coefficients of exponential decay and satisfies

∂̄f(N) = 0.

Proof: With the usual estimates q−n−1[n]−1 < 1

and qn[n− 1] < q we obtain∣∣∣∣∣∣q(N+1)l
[
N + l − 1

l

]
q

∣∣∣∣∣∣ < ql

which gives a sequence of exponential decay. The

vanishing of ∂̄f(N) follows from the last proof since

the coefficients of f(N) coincide with the fkl with

N = k − l. 2



Example: For N = 1 we have

f(1) =
∞∑

l=0

q2la∗cl+1c∗l.

These holomorphic functions f(N) are in the C∗-

algebra C(CP1
q ) ' K ⊕ C1. In fact the C∗-norm of

the generators a and c of C(SUq(2)) is less than

one since a∗a + c∗c = 1. It follows that

‖f(N)‖ <
1

1− q
.

Proposition The algebra O(CP1
q ) is isomorphic to

the polynomial algebra C[x].

proof: We have

f(N)f(N ′) = qNN ′
f(N+N ′).

In fact f(N) is proportional to a∗N , and (up to

scaling) it is the unique solution to ∂̄f with that



property. Thus, because f(N)f(N ′) is proportional

to a∗(N+N ′), it should be a complex multiple of

f(N+N ′). By comparing the terms corresponding

to l = 0 on both sides, we get qNN ′
.

Now x 7→ f(1) gives the desired isomorphism be-

tween C[x] and O(CP1
q ). 2

Notice that for q = 1 the series defining fN do

not converge unless N = 0 which yield the con-

stant functions as the only holomorphic functions

on CP1
q=1.



Holomorphic vector bundles on CP1
q

The ‘line bundle’ Ln is represented by a projection

pn in M|n|+1(A(S2
q )). So we have a Grassmannian

connection on Ln = (A(S2
q ))

|n|+1pn.

Equivalently, a connection is defined by a covariant

splitting

Ω1(SUq(2)) = Ω1
ver(SUq(2))⊕Ω1

hor(SUq(2))

Let: ωz to be vertical, and ω± to be horizontal.

Now let E = Ln. We have:

∇φ =
(
X+.φ

)
ω+ + (X−.φ)ω−

= q−n−2ω+

(
X+.φ

)
+ q−n+2ω− (X−.φ)
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Split ∇ into holomorphic and anti-holomorphic parts:

∇ = ∇∂ +∇∂̄

with

∇∂φ = q−n−2ω+

(
X+.φ

)
∇∂̄φ = q−n+2ω− (X−.φ)

Definition: The standard holomorphic structure on

Ln is given by

∇ := ∇∂̄ = q−n+2ω− (X−.−)

the anti-holomorphic part of ∇.

Theorem (failure of GAGA for canonical bundles):

With notation as above,

1. For n positive, H0(Ln,∇) is an O(CP1
q )-module



of rank 1.

2. For n negative, H0(Ln,∇) is an O(CP1
q )-module

of rank |n|+ 1. 2

Remark: These spaces are certainly not finite di-

mensional since O(CP1
q ) is not finite dimensional. If

we restrict to polynomial sections, then we obatin

finite dimensional vector spaces whose dimensions

are equal to the classical case.

We next study the tensor product of two noncom-

mutative holomorphic line bundles.

Proposition: For any integer n there is a ‘twisted

flip’ isomorphism

Φ(n) : Ln ⊗A(CP1
q )

Ω(0,1) ∼−→ Ω(0,1) ⊗A(CP1
q )
Ln



as A(CP1
q )-bimodules.

Proof: Ω(0,1) is generated (as a A(CP1
q )-module)

by a2ω−, acω− and c2ω−. Define

Φ(n)(φ1 ⊗ a2ω− + φ2 ⊗ acω− + φ3 ⊗ c2ω−)

= q−n
(
a2ω− ⊗ φ̃1 + acω− ⊗ φ̃2 + c2ω− ⊗ φ̃3

)
with φ̃1 satisfying φ1a2 = a2φ̃1 as elements of

A(SUq(2)) and similarly for φ̃2, φ̃3.

Proposition: The holomorphic structure ∇ on Ln

is a bimodule connection with σ(∇) = Φ(n), i.e. it

satisfies the left Leibniz rule and the twisted right

Leibniz rule:

∇(ξf) = ∇(ξ)f + Φ(n)(ξ ⊗ ∂̄f)

for all ξ ∈ Ln, f ∈ A(CP1
q )).



So now we can consider the tensor product of these

holomorphic line bundles (Lni,∇ni), i = 1,2.

Proposition: The tensor product connection

∇n1 ⊗ 1 + (Φ(n1)
⊗ 1)(1⊗∇n2)

coincides with the standard holomorphic structure

on Ln1 ⊗A(CP1
q )
Ln2 when identified with Ln1+n2

.



The quantum homogeneous coordinate ring

Classical situation: X a projective variety and L a

very ample line bundle on X. The homogeneous

coordinate ring of (X, L) is the graded algebra

RL =
⊕
n≥0

H0(X, L⊗n)

For the quantum projective line CP1
q , using the line

bundles Ln, we define

R :=
⊕
n≥0

H0(L−n,∇)

Where now we consider only the algebraic sections,

and hence the n-th component has dimension n+1.

Notice that thanks to the twisting maps φ(n), R is

an algebra. What is the structure of this algebra?
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Describe L−n: right A(S2
q )-module basis:

a−n−µcµ, µ = 0,1, · · · , n

Describe H0(L−n,∇): {a−n−µcµ} form a basis over

C

R is generated by a, c in degree one with one rela-

tion

ac = qca

which is one of the defining relation of the quantum

group SUq(2)

Corollary: The homogeneous coordinate ring of

CP1
q is isomorphic to the coordinate ring of the

quantum plane.
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Twisted positivity

An approach to NC complex geometry suggested

by Alain Connes [Book, 1994]: Let A be an ∗-

algebra, A Hochschild 2m-cocycle ϕ ∈ Z2m(A,A∗)

is called positive if

〈ω, η〉 :=
∫
ϕ

ωη∗

is a positive sesquilinear form on ΩmA. Let

Z2m
+ (A,A∗) ⊂ Z2m(A,A∗)

denote the set of positive 2m-Hochschild cocycles

on A. It is a convex cone.

Let M= 2-dimensional compact oriented manifold,

A = C∞(M), and define a 2-current C on M by

C(f0df1df2) =
−1

2πi

∫
f0df1df2
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Let

C ⊂ C2(A,A∗)

denote the Hochschild class representing the cur-

rent C. It is an affine subspace of C2(A,A∗).

Theorem (Connes; Book, 1994): There is a 1-1

correspondence between conformal structures on

M and the extreme points of Z2
+ ∩ C defined by

g 7→ ϕg, where

ϕg(f
0, f1, f2) =

−1

πi

∫
M

f0∂f1∂̄f2

How can we extend all this to our CP1
q ? There are

no interesting 2-dimensional Hochschild classes on

A(S2
q ) (dimension drop in quantization), but there

are interesting twisted cocycles. In general Let σ :



A → A be an automorphism of A. Twisted n-

cochains on (A, σ):

ϕ : A⊗(n+1) → C

ϕ(a0, · · · , an) = ϕ(σ(a0), · · · , σ(an))

Twisted Hochschild coboundary

bσ : Cn
σ(A) → Cn+1

σ (A)

bσϕ(a0, · · · , an+1) =

n∑
i=0

(−1)iϕ(a0, · · · , aiai+1, · · · , an+1)

+(−1)n+1ϕ(σ(an+1)an, a0, · · · , an).

Let h : A(SUq(2)) → C denote the normalized Haar

state of SUq(2). It is a positive twisted trace:

h(xy) = h(σ(y)x)



where σ : SUq(2) → SUq(2) is the modular auto-

morphism

σ(x) = K−2 � x � K2.

Notice that, restricted to S2
q , it induces an auto-

morphism σ : A(S2
q ) → A(S2

q ), given by σ(x) =

x � K2.

Define
∫

: Ω2(S2
q ) → C by∫

xω+ ∧ ω− = h(x)

Let ϕ : A(Sq)⊗3 → C be defined by

ϕ(a0, a1, a2) =
∫

a0∂̄a1∂a2

Claim: ϕ is a twisted positive Hochschild 2-cocycle

on A(S2
q ):

bσϕ = 0



∫
a0∂a1(a0∂a1)∗ ≥ 0

for all a0, a1 ∈ A(S2
q ).

Writing ∂a1 = yω+, we have (∂a1)∗ = ω−y∗ =

y∗ω−, and∫
a0∂a1(a0∂a1)∗ =

∫
a0yω+y∗ω−(a0)∗

= h(a0yy∗(a0)∗) = h((a0y)(a0y)∗) ≥ 0.

Another surprise: The above twisted cocycle ϕ is

trivial (though it is the Hochschild class of a non-

trivial twisted cyclic 2-cocycle on A(S2
q )). There is

a non-trivial twisted Hochschild 2-cocycle on A(S2
q ),

which seems to have nothing to do with our com-

plex structure.



Open problems

• Uniqueness of the holomorphic structure on Ln:

The holomorphic structure on the line bundle O(n)

on the Riemann sphere is unique. Is this true in the

q-deformed case as well?

Any connection on Ln can be written as ∇+A with

A ∈ Hom(Lm,Ω(0,1) ⊗A(CP1
q )
Lm)

Now, since

Ω(0,1) ⊗A(CP1
q )
Ln ' Ln ⊗A(CP1

q )
Ω(0,1)

as A(CP1
q )-bimodules via the flip isomorphism, the

connection one-form A can in fact be considered

as an element of

EndA(CP1
q )

(Ln)⊗A(CP1
q )

Ω(0,1) ' Ω(0,1)
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Now ∇ and ∇ + A are (gauge) equivalent iff for

some g ∈ C∞(CP1
q )
×

g−1∂̄g = A

After identifying Ω(0,1) with L−2ω−, and writing

A = φω− for φ a section of L−2, this equation is

equivalent to

F.g = gφ (1)

The following surjectivity result should play a cen-

tral role in establishing that for a given φ ∈ L−2

there always exists a g ∈ C∞(CP1
q ) solving (1),

and hence in the uniqueness result for holomor-

phic structures on line bundles over CP1
q :

Lemma The map F : L0 → L−2 is surjective.

• Birkhoff-Grothendieck type theorem:



For every holomorphic vector bundle E on CP1 we

have

E ' O(n1)⊕ · · · ⊕ O(nk)

where the integers n1, · · · , nk are unique up to per-

mutation.

Is there a NC analogue? Note that we have a

topological classification of vector bundles over S2
q

in terms of monopole charge, as in the classical

case.


