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So here I am, in the middle way, having had twenty years-
Twenty years largely wasted, the years of l’entre deux guerres
Trying to use words, and every attempt
Is a wholly new start, and a different kind of failure
Because one has only learnt to get the better of words
For the thing one no longer has to say, or the way in which
One is no longer disposed to say it. And so each venture
Is a new beginning, a raid on the inarticulate,
With shabby equipment always deteriorating
In the general mess of imprecision of feeling,
Undisciplined squads of emotion. And what there is to conquer
By strength and submission, has already been discovered
Once or twice, or several times, by men whom one cannot hope
To emulate-but there is no competition-
There is only the fight to recover what has been lost
And found and lost again and again: and now, under conditions
That seem unpropitious. But perhaps neither gain nor loss.
For us, there is only the trying. The rest is not our business.
T.S. Eliot, Four Quartets

Classical spaces

Most areas of mathematics and its applications deal with the notion of space
either as a primary object of study, or as an organizational tool to codify
information in a suggestive manner, amenable to geometric intuition. For
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example in topology or differential geometry one studies a multi dimensional
space from a topological or metric stand point, e.g. counting its holes of
a given dimension, or measuring its curvature and so on. Similarly in gen-
eral relativity and high energy physics spacetime together with classical or
quantum fields defined over it is the primary object of study. On the other
hand linear spaces of functions, spaces of sections of a vector bundle, and in
general nonlinear spaces of functions between two manifolds are devices that
help us to gain information about the domain and target spaces. Similarly
when a computer scientist talks about a hypercube he or she just uses the
language of n-dimensional cartesian geometry to codify bits of information.

We have come a long way, starting with Euclid’s simple, but far reaching,
ideas of space and geometry in dimensions 1, 2 and 3, to accept modern no-
tions of n-dimensional or even infinite dimensional spaces, non-Euclidean and
Riemannian spaces and so forth as a natural playground for our geometric
intuition .

We take these generalized notions of space for granted and, even worse,
often forget that earlier generations of mathematicians had to surmount great
psychological, social, and- not the least!, mathematical barriers to introduce
these notions and to work with them. Motivations to do this came, as usual,
from within mathematics as well its applications, e.g. to physics. Great
minds of the 19th century mathematics, Gauss, Riemann, Poincare, Klein,
just to name a few, were behind such drastic change of attitude and per-
spective with respect to the notion of space. On a technical level Cantor’s
discovery of set theory and formalist approach of Hilbert and, much later,
Bourbaki played an important role and provided the necessary tools to make
this paradigm shift possible.

And then one should not forget the impetus from physics. Starting with
Gallileo and Newton, if not Aristotle!, physicists and natural philosophers
have often marvelled on the nature of space and time. After all physical
reality takes place in space and time. The revolution brought in by the special
theory of relativity of Einstein, its ultimate geometrization by Minkowski,
and the general theory of relativity puts the idea of space in the center of
large areas of fundamental physics.

Nowadays we refer to these types of spaces as classical spaces: a set of
points endowed with some extra structure, perhaps a topology or a smooth
or metric structure, or a measure and so on. But this is only half of the story.
There is an alternative algebraic way to describe a classical space which is
very relevant to our story and pointed the way to the future development of
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the concept of space.

A fundamental duality

An important and old theme in mathematics is the algebra-geometry corre-
spondence. This is an old idea, as old as mathematics itself, but it is the
case that each generation of mathematicians find new incarnations of this
principle and, to preserve the principle, push the boundaries by discovering
new concepts and notions on either side of the equation algebra = geometry.

On a physiological level this is perhaps related to a division in human
brain: one computes and manipulates symbols with the left hemispheric side
of the brain and one visualizes things with the right brain. computations
evolve in time and has a temporal character while visualization is instant
and immediate. It was for good reason that Hamilton, one of the creators of
modern algebraic methods, called his abstract approach to algebra, e.g. to
complex numbers and quaternions, the science of pure time.

In modern terms, the algebra↔ geometry correspondence, in its simplest
form, means that the information about a (classical) space can be encoded
in the (commutative) algebra of functions on that space. The words classical
and commutative are meant to represent the same idea here. Great dual-
ity theorems of mathematics, like the Gelfand-Naimark theorem, Hilbert’s
Nullstellensatz, and similar theorems, teach us that one can look at a clas-
sical space from two distinct, but equivalent, points of view: algebraic or
geometric. Thus, for example, one learns that the information about a, say,
compact Hausdorff space, is totally encoded in the algebra of continuous com-
plex valued functions on that space (the theorem of Gelfand and Naimark).
Algebras that appear this way are commutative C∗-algebras. This is a re-
markable theorem since it tells us that any natural construction that involves
compact spaces and continuous maps between has a purely algebraic refor-
mulation and vice-versa any statement about commutative C∗-algebras and
C∗-algebraic maps between them has a purely topological meaning.

There is however, and this is a very important point, a vast array of non-
commutative C∗-algebras that naturally appear, say, in harmonic analysis
(as completions of group algebras of noncommutative groups), in differential
geometry (as noncommutative algebras attached to foliations), in quantum
mechanics (properly formulated using bounded instead of unbounded opera-
tors), and in general as algebras of bounded operators on Hilbert space. Non-
commutative geometry extends the above mentioned duality between com-
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mutative algebras and spaces by dealing with a not necessarily commutative
algebra, say a C∗-algebra, as the algebra of ‘functions on a noncommutative
space’.

Alain Connes’ vision of space

Once again we are at the threshold of a paradigm shift in our geometric
intuition. The new notion of space, called a noncommutative space, and
the mathematics that goes with it, called noncommutative geometry is the
brainchild of one man, Alain Connes, who is responsible for all the major
results in this theory.

From a measure theoretic perspective, von Neumann algebras provide the
noncommutative analogue of Borel measure theory, while C∗-algebras furnish
one with the right notion of a noncommutative locally compact space. Non-
commutative analogues of smooth manifolds in full generality have yet to be
discovered but at the moment we know what should be at least a noncom-
mutative spin Riemannian manifold with its natural Dirac operator. This
is captured by the concept of a spectral triple. In fact a major idea in the
theory is to first formulate classical notions and theorems in spectral and
Hilbertian terms, and then pass to the noncommutative case. For example
Weyl’s law on the asymptotic behavior of eigenvalues of Laplacian of a com-
pact manifold allows one to define the dimension and volume of a manifold
in noncommutative terms and to generalize it to noncommutative geometry.

The passage from a classical space to a noncommutative space is remark-
ably similar to what was done in quantum mechanics by Heisenberg in 1925.
From a mathematical point of view, transition from classical mechanics to
quantum mechanics amounts to passing from the commutative algebra of
classical observables to the noncommutative algebra of quantum mechanical
observables. Recall that in classical mechanics an observable (e.g. energy,
position, momentum, etc.) is a function on a manifold called the phase space
of the system. Immediately after Heisenbergs work, ensuing papers by Dirac
and Born-Heisenberg-Jordan , made it clear that a quantum mechanical ob-
servable is a (selfadjoint) operator on a Hilbert space called the state space
of the system. Thus the commutative algebra of functions on a space is re-
placed by the noncommutative algebra of operators on a Hilbert space. A
little more than fifty years after these developments, Alain Connes realized
that a similar procedure can in fact be applied, with great benefit, to areas
of mathematics where the classical notions of space looses its applicability
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and pertinence and can be replaced by a new idea of space, represented by a
noncommutative algebra.

It is extremely important to realize that this is not a game of generaliza-
tion for the sake of generalization. Finding the right concepts and theories
is very hard here and totally new phenomena appears that have no classical
counterparts. In fact what makes the whole project of noncommutative ge-
ometry a viable and extremely important enterprize are the following three
fundamental points, already emphasized in Connes’ book, “Noncommutative
Geometry”:

• There is a vast repertoire of noncommutative spaces and there are very
general methods to construct them. For example, consider a bad quotient
of a nice and smooth space by an equivalence relation. Typically the quo-
tient space is not even Hausdorff and has very bad singularities so that it is
beyond the reach of classical geometry and topology. Orbit spaces of group
actions and the space of leaves of a foliation are examples of this situation. In
algebraic topology one replaces such bad quotients by homotopy quotients,
by using the general idea of a classifying space. This is however not good
enough and not general enough as the classifying space is only a homotopy
construction and does see any of the smooth structure. A key observation of
Connes is that in all these situations one can attach a nice noncommutative
space, a C∗ or von Neumann algebra that captures most of the information
hidden in these quotients. The general construction starts by first replacing
the equivalence relation by a groupoid and then considering the groupoid
algebra, a generalization of the group algebra.

• The possibility of extending many of the tools of classical geometry and
topology that are used to probe classical spaces to this noncommutative
realm. Of all the topological invariants of spaces, topological K-theory of
Atiyah and Hirzebruch and it most important theorem, Bott periodicity the-
orem, has the most natural and straightforward extension to the noncommu-
tative world. Using the duality theorem of Serre-Swan on the correspondence
between the geometric concept of a vector bundle and algebraic notion of a
finitely generated projective module, one easily extends the topological K-
functor to the class of noncommutative Banach algebras. With this extension
in fact the proof of Bott periodicity becomes easier! It is much harder to find
the right noncommutative analogue of de Rham cohomology and Chern-Weil
theory. This was achieved by Connes in 1981 and the resulting theory is
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called cyclic cohomology. Another big result of recent years is the local in-
dex formula of Connes and Moscovici. This result is a vast extension of the
classical Atiyah-Singer index theorem to the noncommutative setup.

• Applications. Even if we wanted to restrict ourselves just to classical spaces,
methods of noncommutative geometry would still be very relevant and useful.
For example the most natural and general proofs of the Novikov conjecture
on the homotopy invariance of higher signatures of non-simply connected
manifolds use the machinery of noncommutative geometry. The relevant
noncommutative space here is the (completion of the) group ring of the fun-
damental group of the manifold. For another example, we mention a recent
proof of the gap labelling conjecture about the spectrum of a Schrodinger
operator associated to a quasicrystal that makes use of Connes’ index the-
orem for foliations. We also mention the geometrization of the standard
Salam-Weinberg-Glashow model of elementary particles over a noncommu-
tative spacetime as its basic ingredient due to Connes and Connes-Lott. This
is simply impossible over a classical space.

Moving to more recent applications, we mention the approach by Connes
to Riemann hypothesis, the spectral realization of zeros of zeta from the
noncommutative space of Q-lattices (joint with Marcolli), as well as his (joint
with Kreimer) work on the mathematical underpinnings of renormalization in
quantum field theory as a Riemann-Hilbert Correspondence. These results tie
up experimentally tested areas of high energy physics with number theory and
algebraic geometry. In fact the ensuing work (joint with Marcolli) revealed a
beautiful motivic Galois group, conjectured and named cosmic Galois group
by Cartier, hidden in quantum field theory. These results have brought
noncommutative geometry much closer to central areas of modern number
theory, algebraic geometry and high energy physics and will be the subject
of intensive studies in coming years.

But that is not all and in fact by now, just 25 years after the creation of
these ideas, one can say examples abound! With the new freedom afforded by
allowing noncommutativity as a viable option the reader can move on to his
or her own favorite mathematics or physics subject and find more examples
and applications!
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