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Abstract

These are slides of five lectures I gave during the

5th annual noncommutative geometry conference

at Vanderbilt university. The theme of this year’s

meeting was “Index theory, Hopf Cyclic Cohomol-

ogy and Noncommutative Geometry”.

Hopf cyclic cohomology and its corresponding non-

commutative Chern-Weil theory was discovered by

Connes and Moscovici in 1998 in the course of

their breakthrough analysis of transverse index the-

ory on foliated spaces. The subject has since gone

through a rapid development and currently is the

subject of intense study. Ideally, in conjunction

with Hopf cyclic cohomology, I should have also

spoken about the local index formula of Connes-
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Moscovici as well but this obviously requires more

time and space than allowed in a conference. The

lectures started with cyclic cohomology as was dis-

covered by Connes as a receptacle for a noncom-

mutative Chern character map from K-homology

and leads to Hopf cyclic cohomology. My emphasis

was on examples, main ideas and general patterns

and applications rather than a dry formal presen-

tation.

References include:

1. Alain Connes, Noncommutative differential ge-

ometry, Publ. Math. IHES no. 62 (1985), 41-144.

2. Alain Connes, Noncommutative geometry, Aca-

demic Press (1994).

3. Alain Connes and Henri Moscovici, Cyclic coho-



mology and the transverse index theorem, Comm.

Math. Phys. 198 (1998), no. 1, 199–246.
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What is Noncommutative Geometry?

..........In mathematics each object (or subject) can

be looked at in two different ways:

Geometric or Algebraic

Geometry

= C∞(M)

Algebra

Classical Geometry = Commutative Algebra
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Fundamental duality theorems like Gelfand-Naimark,

Serre-Swan, or Hilbert’s Nullstellensatz, among oth-

ers, suggest an equivalence or duality between spaces

and commutative algebras.
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But Alain Connes, in his Noncommutative Geom-

etry, has taught us that there is a far more fasci-

nating world of noncommutative spaces that have
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a rich geometry and topology waiting to be ex-

plored. Noncommutative Geometry (NCG) builds

on this idea of duality between algebra and geome-

try and vastly extends it by treating special classes

of noncommutative algebras as the algebra of co-

ordinates of a noncommutative space.



A paradigm to bear in mind throughout noncom-

mutative geometry is the classical inclusions

smooth ⊂ continuous ⊂ measurable

which reflects in inclusions of algebras

C∞(M) ⊂ C(M) ⊂ L∞(M)

This permeates throughout NCG: in the NC world

one studies a noncommutative space from a

• measure theoretic point of view (von Neumann

algebras)

• continuous topological point of view (C*- alge-

bras)

• differentiable point of view (smooth algebras)

• algebraic geometric point of view (abstract asso-

ciative algebras, abelian or triangulated categories)

7



Needless to say the subject is already quite ma-

ture with many deep theorems and applications. In

these lectures we touch only some selected aspects

of noncommutative geometry related to cyclic co-

homology.



Cyclic Cocycles

In these lectures we shall pursue cyclic cohomol-

ogy as the right NC analogue of de Rham homol-

ogy, closely following Alain Connes’ 1981 paper,

Non commutative Differential Geometry, publica-

tion Math IHES (published in 1985) and his 1994

book, Noncommutative Geometry.

We start by giving many examples of cyclic cocy-

cles. Classes of cyclic cocycles modulo exact cyclic

cochains define cyclic cohomology.

A motivating example: Let M = closed (i.e. com-

pact without boundary), smooth, oriented, n-manifold

and

A = C∞(M)
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the algebra of smooth complex valued functions on

M . For f0, · · · , fn ∈ A, let

ϕ(f0, · · · , fn) =
∫
M
f0df1 ∧ · · · ∧ dfn.

The (n+ 1)-linear cochain

ϕ : A× · · · × A︸ ︷︷ ︸
n+1

→ C

has the properties:

• ϕ is continuous in the Fréchet space topology of

A.

Topology of A:

fn → f

if for each partial derivative ∂α,

∂αfn → ∂αf



uniformly (in a coordinate system).

• ϕ is a Hochschild cocycle, i.e.

bϕ = 0

where

(bϕ)(f0, · · · , fn+1) =
n∑
i=0

(−1)i
∫
M
f0df1 · · · d(f if i+1) · · · dfn+1

+(−1)n+1
∫
M
fn+1f0df1 · · · dfn

= 0,

where we only used the Leibnitz rule for the de

Rham differential d and the graded commutativity

of the algebra (ΩM, d) of differential forms on M .



• ϕ is cyclic:

ϕ(fn, f0, · · · , fn−1) = (−1)nϕ(f0, · · · , fn)

This is more interesting. In fact since∫
M

(fndf0 · · · dfn−1 − (−1)nf0df1 · · · dfn)

=
∫
M
d(fnf0df1 · · · dfn−1).

we see that the cyclic property of ϕ follows from

Stokes’ formula ∫
M
dω = 0,

which is valid for any (n − 1)-form ω on a closed

manifold M .

Definition: Let A be any algebra, commutative or

not. A cyclic n-cocycle on A is an (n + 1)-linear



functional

ϕ : A× · · · × A → C

satisfying the two conditions

bϕ = 0, λϕ = ϕ

where

(λϕ)(a0, · · · , an) = (−1)nϕ(an, a0, · · · , an−1).

Examples:

1) n = 0. A cyclic 0-cocycle on A is a linear map

ϕ : A → C

with

ϕ(ab) = ϕ(ba)

for all a and b, i.e. ϕ is a trace.



2) A cyclic 1-cocycle is a bilinear map

ϕ : A⊗A → C

with

(bϕ)(a, b, c) = ϕ(ab, c)− ϕ(a, bc) + ϕ(ca, b) = 0

ϕ(b, a) = −ϕ(a, b)

for all a, b, c.

Example (winding number through cyclic 1-cocycles).

Let A = C∞(S1).

ϕ(f0, f1) =
1

2πi

∫
S1
f0df1

is a cyclic 1-cocycle on A. Clearly if f is invertible

then

ϕ(f−1, f) =
1

2πi

∫
S1
f−1df = W (f,0)



is the winding number of f .

Thus: cyclic cocycles can carry non-trivial topo-

logical information.

Reinterpret: The formula < [ϕ], [f ] >:= ϕ(f−1, f)

defines a pairing

HC1(A)×K1(A) −→ C

Remark: We shall see that this example can be

generalized, in the odd case, to a pairing

HC2n+1(A)×K1(A) −→ C

for any A, commutative or not. And in the even

case:

HC2n(A)×K0(A) −→ C



(Connes-Chern characters for K-theory)

A remarkable property of cyclic cocycles is that, un-

like de Rham cocycles which make sense only over

smooth manifolds or commutative algebras, they

can be defined over any noncommutative algebra

and the resulting cohomology theory is the right

generalization of de Rham homology of currents

on a smooth manifold.

Before developing cyclic cohomology any further

we give one more example.

3. Let V ⊂ M be a closed p-dimensional oriented

submanifold. Then

ϕ(f0, · · · , fp) =
∫
V
f0df1 · · · dfp



defines a cyclic p-cocycle on A. We can replace V

by any closed current on M and obtain more cyclic

cocycles.

Recall: A p-dimensional current C on M is a con-

tinuous linear functional

C : ΩpM → C

on the space of p-forms on M . We write 〈C, ω〉

instead of C(ω). For example a zero dimensional

current on M is just a distribution on M . The

differential of a current is defined by

〈dC, ω〉 = 〈C, dω〉

The complex of currents on M :

C0(M)
d←− C1(M)

d←− C2(M)
d←− . . .



Its homology is the de Rham homology of M .

Let C be a p-dimensional current on M . The (p+

1)-linear functional

ϕC(f0, · · · , fp) = 〈C , f0df1 · · · dfp〉

is a Hochschild cocycle on A. If C is closed then

ϕC is a cyclic p-cocycle on A. So we have a map

{closed de Rham p-currents on M} −→

{cyclic p-cocycles on C∞(M)}

Dually, as we shall see later, there is a map

{cyclic p-cycles on C∞(M)} −→

{closed differential forms on M}



defined by

f0 ⊗ f1 ⊗ · · · fn 7→ f0df1df2 · · · dfn

Remark: using these maps, we shall find an exact

relation between de Rham homology of currents

HdR
∗ (M) (resp. de Rham cohomology) and cyclic

cohomology of A = C∞(M) (resp. cyclic homology

of A) (Connes’ theorem).



From Quantized Calculus to Cyclic Cocycles

Where cyclic cocycles come from?

Answer: From quantizations of differential and in-

tegral calculus, i.e. from noncommutative ana-

logues of (ΩM, d,
∫
):

Definition: An n-dimensional cycle is a triple (Ω, d,
∫
)

where (Ω, d) is a differential graded algebra and∫
: Ωn → C

is a closed graded trace.
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Thus:

Ω =
⊕
n≥0

Ωn

is a graded algebra,

d : Ω→ Ω

is a graded derivation of degree 1 and∫
dω = 0,

∫
[ω1, ω2] = 0

(ω ∈ Ωn−1 and [ω1, ω2] = ω1ω2 − (−1)|ω1||ω2|ω2ω1.)

Definition: An n-dimensional cycle over an algebra

A is a quadruple

(Ω, d,
∫
, ρ)

where (Ω, d,
∫
) is an n-cycle and ρ : A → Ω0 is an

algebra map.
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Given an n-cycle (Ω, d,
∫
, ρ) over A its character

ϕ : A⊗(n+1) → C

is defined by

ϕ(a0, · · · , an) =
∫
ρ(a0)d(ρa1) · · · d(ρan).



Claim: ϕ is a cyclic n-cocycle on A.

Conversely: Any cyclic cocycle on A is obtained in

this way!

Proof: Introduce the DGA of noncommutative dif-

ferential forms (ΩA, d) on A: let Ω0A = A and

ΩnA= linear span of expressions

(a0 + λI)da1da2 · · · dan.

Alternatively: (ΩA = ⊕nΩnA, d) is the universal

DGA with a non-unital map A → Ω0A.

d is uniquely defined by

d(a0 + λI)da1 · · · dan = da0da1 · · · dan,

and the product is defined using the Leibnitz rule

d(ab) = adb+ da.b.
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Example:

(a0da1da2)(b0db1) = a0da1d(a2b0)db1

−a0d(a1a2)db0db1 + a0a1da2db0db1.

Define a closed graded n-trace on (ΩA, d) by∫
(a0 + λI)da1 · · · dan = ϕ(a0, a1, · · · , an).

Its character is clearly ϕ.

Example: Let A = C and

Ω = C[e, de], e2 = e.

Define
∫

: Ω2 → C by∫
edede = 1

It is a closed graded 2-dimensional cycle on A. The



corresponding cyclic cocycle on C:

σ(1,1,1) = 1.

Example: Let

Ωp = Ωp(M)⊗Mk(C)

denote matrix valued differential p-forms on M , and

define
∫

: Ωn → C by∫
ω =

∫
M

tr(w).

This defines an n-cycle over the algebra

C∞(M,Mk(C))

of matrix valued functions on M . This example

can be generalized:

Example: (Tensor product of cycles)

Let (Ωi, d,
∫
, ρ) be cycles over Ai for i = 1,2 of



dimensions m and n, respectively. Then we have a

cycle

(Ω1 ⊗Ω2, d,
∫
, ρ)

over A1⊗A2 of dimension m+n defined as a tensor

product of DGA’s with a closed graded trace∫
(ω1 ⊗ ω2) = (

∫
ω1)(

∫
ω2)

Tensoring with the 2-dimensioal cycle σ on C yields

a map

S : {cyclic n-cocycles on A} −→

{cyclic n+2-cocycles on A}

and, as we shall see later, a map

S : HCn(A) −→ HCn+2(A), n = 0,1, · · ·



A necessary digression: Operator Ideals

A major source of quantized calculi and cyclic co-

cycles are Fredholm Modules and Spectral Triples.

These are cycles for (noncommutative) K-homology

and Connes’ Chern character associates a cyclic co-

cycle to them:

{p-summable Fredholm modules on A};

{cyclic cocycles on A}

To understand this circle of ideas properly some

doses of operator ideals, operator trace, and the

Dixmier trace is in order.

Let H = complex (separable) Hilbert space,
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L(H)= algebra of bounded linear operators T :

H → H.

||T || := sup{||TX||, ||X|| ≤ 1} <∞

For any T , its adjoint T ∗ is defined by

< TX, Y >=< X,T ∗Y > .

L(H) is a C∗-algebra in which every other C∗-algebra

can be embedded.

(2-sided) ideals of H:

• F(H)= finite rank operators

• K(H) = compact operators

T : H → H is called compact if

T (unit ball) is compact



Facts: K(H) = F(H) = unique proper closed ideal

of L(H) (H is separable). For any proper ideal I,

F(H) ⊂ I ⊂ K(H)

Uncountably many I (Calkin’s classification). They

are classified through their singular numbers.

Example: The Schatten ideals Lp(H), 1 ≤ p <∞

T ∈ Lp(H) if
∞∑
n=1

µn(T )p <∞

µn(T )= n-th eigenvalue of |T | = (T ∗T )
1
2

µ1 ≥ µ2 ≥ · · · −→ 0

• Lp(H) is a 2-sided ideal

• Lp(H) ⊂ Lq(H) if p ≤ p

• For T ∈ L1(H) = trace class operators

Tr(T ) :=
∞∑
n=1

< Ten, en >



independent of the o.n. basis {en}.

Example: Let

T (en) = λnen, n = 1,2, · · ·

be a diagonal operator. Then

T is bounded iff |λn| ≤M for some M and all n

T is compact iff λn → 0 as n→∞

T ∈ Lp(H) iff (λn) ∈ `p.

Example: Let

(Tf)(x) =
∫
K(x, y)f(y)dµ

be an integral operator with K ∈ L2(X ×X) (H =

L2(X,µ)). Then T ∈ L2(H) is a Hilbert-Schmidt

operator with ||T ||2 = ||K||2.



It is harder to get T ∈ L1(H). Certainly K being

continuous suffices. Then

Tr(T ) =
∫
K(x, x)



The Dixmier Trace

Operator trace Tr is the unique (up to scale) pos-

itive normal trace on L(H). Normal= completely

additive:

Tr(
∑
i

Ti) =
∑
i

Tr(Ti)

for positive T ′is. Non-normal positive traces exist

on L(H) (Dixmier, 1966)

Idea of construction: amenability of the ax+b group

plus some extra work with singular values.

Connes’ approach: Let

L1,∞(H) = {T ∈ K(H) : σN(T ) = O(LogN)},
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where

σN(T ) =
N∑
i

µi(T ).

We have strict inclusions

L1(H) ⊂ L1,∞(H) ⊂
⋂
p>1

Lp(H).

e.g. for T with

T (en) =
1

n
en,

T ∈ L1,∞(H) but T /∈ L1(H).

Roughly speaking, the Dixmier trace

Trω(T )

picks up the logarithmic divergencies of Tr(T ). e.g.

in ‘good cases’ when the limit on RHS exists

Trω(T ) = Lim
σN(T )

LogN
as N →∞. (1)



In general for T ∈ L1,∞(H), let

fT (λ) =
1

logλ

∫ λ
1
σu(T )

du

u
.

fT is asymptotically additive in T :

Lim
λ→∞

(fT1+T2
(λ)− fT1

(λ)− fT2
(λ)) = 0.

Thus T 7→ [fT ] sends positive compact operators in

L1,∞(H) additively to Cb[1,∞)/C0[1,∞) :

L1,∞(H)+ −→ Cb[1,∞)/C0[1,∞).

Let

ω : Cb[1,∞)/C0[1,∞)→ C

be a state (i.e. positive, linear map, with ω(1) =

1). Then

Trω(T ) := ω([fT ])

is a positive, unitary invariant, additive and homo-



geneous functional on L1,∞(H)+ and hence has a

unique extension to a positive trace

Trω : L1,∞(H) −→ C,

called the Dixmier trace.

Trω(T ) depends on the state ω, but for geometri-

cally defined operators the definition is actually in-

dependent of the choice of ω. This happens when

the limit in (??) exists. In particular, for T ∈ L1(H),

a trace class operator, we have

Trω(T ) = 0.

Equivalently:

Trω(T1) = Trω(T2)



if

T1 − T2 ∈ L1(H)

is a trace class operator, i.e. an infinitesimal of

first order. This is a cohomological property of

Trω which makes it very flexible for computations!



From P-summable Fredholm Modules to

Quantized Calculus

The proper context for noncommutative index the-

ory and K-homology is the following notion of an

“elliptic operator on a noncommutative space” :

Definition: A p-summable Fredholm module over

an algebra A is a pair (H, F ) where

1. H is a Hilbert space,

2. H is a left A-module, i.e. there is an algebra

map

A → L(H)

3. there is an F ∈ L(H) with F2 = I and

[F, a] = Fa− aF ∈ Lp(H). (2)

for all a ∈ A.
14



(H, F ) is called even if

H = H+ ⊕H−

is Z2-graded, F is odd, and A acts by even opera-

tors.

If instead of (??), we just have

[F, a] ∈ K(H), (3)

we say we have a Fredholm module over A.

The difference between p-summable Fredholm mod-

ules and Fredholm modules is like the difference be-

tween p-times differentiable functions and contin-

uous functions. The p-summability condition (??)

singles out ‘smooth subalgebras’ A of a C∗-algebra

A.



This principle is easily corroborated in the commu-

tative case, using the fundamental commutation

formula

[
d

dx
, f ] = f ′

which relates boundedness of LHS to the regularity

of f .

That is why if A is a C∗-algebra, the natural condi-

tion to consider is condition (??) instead of (??).

In general any Fredholm module over a C∗-algebra

A defines a series of subalgebras of ‘smooth func-

tions’ in A, via (??), which are closed under holo-

morphic functional calculus and have the same K-

theory as A.



Example: Let

D : C∞(E+)→ C∞(E−)

be an elliptic differential operator on a closed man-

ifold M . Assume D is injective and let

F =
D

|D|
: L2(E+) −→ L2(E−)

be the phase of D. Let A = C∞(M) act by mul-

tiplication on sections of E+ and E−. It can be

shown that

(L2(E+)⊕ L2(E−), F )

is an even p-summable Fredholm module over A

for any p > n = dimension M .

Proposition: let (H, F ) be a 1-summable even Fred-

holm module over A. Its character Ch (H,F ) : A →



C defined by

Ch (H,F )(a) =
1

2
Tr (εF [F, a])

is a trace on A. (prove it as a good exercise!)

This construction is an example of Connes’ Chern

character from K-homology −→ cyclic cohomol-

ogy. It can be extended to higher dimensions.

The cycle (Ω, d,
∫
) associated to a Fredholm mod-

ule:

Let (H,F ) = even p-summable Fredholm module

on A and n ≥ p an integer. Then for all a ∈ A,

da := [F, a] ∈ Ln(H).

Let

Ωq = linear span of operators



(a0 + λI)da1da2 · · · daq ∈ L
n
q (H)

and

Ω =
n⊕
i=0

Ωi

dω = [F, ω] = Fω − (−1)|ω|ωF

Check: d2 = 0 and

d(ω1ω2) = d(ω1)ω2 + (−1)|ω1|ω1d(ω2)

Define:
∫

: Ωn → C by∫
ω = Trace(εω)

where ε is the grading operator.

Check:
∫

is a closed graded trace.

Using the general construction

n-cycles over A −→ cyclic n-cocycles over A



for each n ≥ p we obtain a cyclic n-cocycle ϕ on

A:

ϕ(a0, · · · , an) =
∫
a0da1 · · · dan

= Trace (εa0[F, a1][F, a2] · · · [F, an])

For symmetry reasons, if n=odd, we have ϕ = 0

and only even cocycles survive.

A mystery: The 1-summable case we had before

suggests that something more should be true! In

fact for each

n ≥ p− 1

one can define a cyclic cocycle on A as follows:



For any T such that [F, T ] ∈ L1(H) let

Trs(T ) = Trace(εF [F, T ]).

1) Trs(T ) = 0 if T is odd

2) Trs(T ) = Trace(εT ) if T ∈ L1(H)

3) [F,Ωn] ⊂ L1(H) and

Trs : Ωn → C

is a closed graded trace on A.

The corresponding cyclic n-cocycle is given by

ϕ(a0, · · · , an) = Trs(a
0da1 · · · dan)

= Trace(εF [F, a0][F, a1][F, a2] · · · [F, an]).

Example: Let A = C∞(V ), V = C/Γ a two dimen-



sional torus. Let

∂̄ : H+ = {ξ ∈ L2(V ), ∂̄ξ ∈ L2(V )} → H− = L2(V ).

Let C∞(V ) act on H+ and H− by multiplication

operators and let

F =

(
0 (∂̄ + ε)−1

(∂̄ + ε) 0

)
where the fixed parameter ε is not in the spectrum

of ∂̄. Then

1. (H,F ) is p-summable for any p > 2

2. Its character is given by

Trs(f
0[F, f1][F, f2]) =

−1

2πi

∫
f0df1 ∧ df2.



Refinements

There are two issues:

A) Bounded versus unbounded operators: F or D

?

B) Non-local versus local trace in cyclic cocycles.

Fredholm modules only capture the topology of a

NC space. Its metric aspects are rather hidden and

can best be expressed using unbounded operators.

Then we are dealing with an spectral triple.

In practice a differential operator D is an unbounded

operator between L2-sections of vector bundles.

To obtain a bounded F with F2 = 1 from D, as-

suming D is injective, the recipe is

F =
D

|D|
15



Definition: A spectral triple (A, H, D) consists of

1. A unital involutive algebra A

2. An action of A by bounded operators on H

3. A self-adjoint (unbounded, in general) operator

D on H with compact resolvent:

(D+ i)−1 ∈ K(H)

A spectral triple is even if H is Z2-graded, D is odd

and A acts by even operators. It is called finitely

summable if the singular values µn of the resolvent

of D satisfy

µn = O(n−α)

for some α > 0.

To address the second issue Connes advanced the

idea of using the Dixmier trace Trω instead of the



usual operator trace Tr. (More on this later).



Cyclic Cohomology 101

A= any algebra, commutative or not.

Cn(A) := Hom(A⊗(n+1), C)

Thus: n-cochains = (n+ 1)-linear functionals

ϕ(a0, a1, · · · , an)

on A.

Define

b, b′ : Cn(A)→ Cn+1(A), and λ : Cn(A)→ Cn(A),
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by

(bϕ)(a0, · · · , an+1) =
n∑
i=0

(−1)iϕ(a0, · · · , aiai+1, · · · , an+1)

+(−1)n+1ϕ(an+1a0, a1, · · · , an)

(b′ϕ)(a0, · · · , an+1) =
n∑
i=0

(−1)iϕ(a0, · · · , aiai+1, · · · , an+1)

λϕ(a0, · · · , an) = (−1)nϕ(an, a0, · · · , an−1)

By a direct computation one checks that:

b2 = 0, (1− λ)b = b′(1− λ), b′2 = 0. (4)



Hochschild complex of A:

C0(A)
b−→ C1(A)

b−→ C2(A)
b−→ · · · (5)

Its cohomology is the Hochschild cohomology of

A (with coefficients in A*-more about this later!)

shall be denoted as

HHn(A), n = 0,1,2, · · ·

A cochain ϕ ∈ Cn is called cyclic if

(1− λ)ϕ = 0,

or equivalently

ϕ(an, a0, · · · , an−1) = (−1)nϕ(a0, · · · , an).

Using (??) we obtain the very interesting fact:



The space of cyclic cochains is invariant under b,

i.e. for all n,

bCnλ(A) ⊂ Cn+1
λ (A).

We therefore have a subcomplex of the Hochschild

complex, called the Connes complex of A:

C0
λ(A)

b−→ C1
λ(A)

b−→ C2
λ(A)

b−→ · · · (6)

The cohomology of this complex is called the cyclic

cohomology of A and will be denoted by

HCn(A), n = 0,1,2, · · ·

A cocycle for cyclic cohomology is called a cyclic



cocycle. It satisfies the two conditions:

(1− λ)ϕ = 0, and bϕ = 0.

Examples:

1. For any A

HC0(A) = HH0(A) = space of traces onA

In particular if A is commutative then

HC0(A) ' A∗

2. A = C.

Cn(C) = C

b|C2n = 0, b|C2n+1 = id

C2n
λ (C) = C, C2n+1

λ (C) = 0



Hochschild : C 0−→ C id−→ C 0−→ C id−→ · · ·

Connes : C 0−→ 0
0−→ C 0−→ 0

0−→ · · ·

We obtain:

HH0(C) = C, HHn(C) = 0, n ≥ 1

HC2n(C) = C, HC2n+1(C) = 0

3. Let A = C∞(M). By a result Connes, its con-

tinuous Hochschild cohomology is

HHn
cont(C

∞(M)) ' Cn(M)

and its continuous cyclic cohomology is

HCncont(C
∞(M)) ' Zn(M)⊕Hdr

n−2(M)⊕Hdr
n−4(M)⊕· · ·

Remark: later we shall see analogues of these re-

sults for Hochschild and cyclic homology. Note



that computing the algebraic Hochschild and cyclic

(co)homology of C∞(M) is totally hopeless! More

on this later.....

3. Let δ : A → A be a derivation and τ : A → C an

invariant trace, i.e.

τ(δ(a)) = 0

for all a ∈ A. Then one checks that

ϕ(a0, a1) = τ(a0δ(a1)) (7)

is a cyclic 1-cocycle on A.

Remark: compare with

ϕ(f0, f1) =
∫
S1
f0df1

we had earlier.



This example can be generalized. Let δ1 and δ2

be a pair of commuting derivations which leave a

trace τ invariant. Then

ϕ(a0, a1, a2) = τ(a0(δ1(a1)δ2(a2)− δ2(a1)δ1(a2)))

(8)

is a cyclic 2-cocycle on A.

Here is a concrete example with A = Aθ a smooth

noncommutative torus. Let δ1, δ2 : Aθ → Aθ be the

unique derivations defined by

δ1(U) = U, δ1(V ) = 0; δ2(U) = 0, δ2(V ) = V.

They commute with each other and preserve the

standard trace τ on Aθ. The resulting cyclic 1-

cocycles ϕ1(a0, a1) = τ(a0δ1(a1)) and ϕ′1(a0, a1) =

τ(a0δ2(a1)) form a basis for the periodic cyclic



cohomology HP1(Aθ). Similarly, the correspond-

ing cocycle (??) together with τ form a basis for

HP0(Aθ).



Connes’ Long exact Sequence

Consider the short exact sequence of complexes

0→ Cλ → C → C/Cλ → 0

Its associated long exact sequence is

· · · −→ HCn(A) −→ HHn(A) −→ Hn(C/Cλ) (9)

−→ HCn+1(A) −→ · · ·

We need to identify the cohomology groups

Hn(C/Cλ) =?

Consider the short exact sequence

0 −→ C/Cλ
1−λ−→ (C, b′) N−→ Cλ −→ 0, (10)

where

N = 1 + λ+ λ2 + · · ·+ λn : Cn −→ Cn.
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The relations

N(1− λ) = (1− λ)N = 0, bN = Nb′

can be verified and they show that 1−λ and N are

morphisms of complexes.

Exercise Show that (??) is exact (the interesting

part is to show that KerN ⊂ Im (1− λ)).

Assume A is unital. The middle complex (C, b′) in

(??) is exact with contracting homotopy s : Cn →

Cn−1

(sϕ)(a0, · · · , an−1) = (−1)nϕ(a0, · · · , an−1,1).

Thus:

Hn(C/Cλ) ' HCn−1(A).



Using this in (??), we obtain Connes’ long exact

sequence relating Hochschild and cyclic cohomol-

ogy:

· · · −→ HCn(A)
I−→ HHn(A)

B−→ HCn−1(A) (11)

S−→ HCn+1(A) −→ · · ·

The operators B and S can be made more explicit

by finding the connecting homomorphisms in the

above long exact sequences. Remarkably, there is

a formula for Connes’ boundary operator

B : HHn(A) −→ HCn−1(A)

on the level of cochains:

B = Ns(1− λ) = NB0,



with B0 : Cn → Cn−1 defined by:

B0ϕ(a0, · · · , an−1) = ϕ(1, a0, · · · , an−1)

−(−1)nϕ(a0, · · · , an−1,1).

The periodicity operator

S : HCn(A)→ HCn+2(A)

is related to Bott periodicity and it is used to define

the periodic cyclic cohomology of A as a direct

limit:

HP i(A) = Lim−→ HC2n+i(A), i = 0, 1



Morita Invariance

A typical application of Connes’ long exact se-

quence (??) is to extract information about cyclic

cohomology from Hochschild cohomology. For ex-

ample, assume f : A → B is an algebra homomor-

phism such that

f∗ : HHn(B)→ HHn(A)

is an isomorphism for all n ≥ 0. Then, using the

five lemma and the IBS sequence, we conclude that

f∗ : HCn(B)→ HCn(A)

is an isomorphism for all n. In particular from

Morita invariance of Hochschild cohomology one

obtains the Morita invariance of cyclic cohomol-

ogy.
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The generalized trace map

Tr : Cn(A) −→ Cn(Mk(A)),

is defined as

(Trϕ)(a0 ⊗m0, · · · , an ⊗mn) =

tr(m0 · · ·mn)ϕ(a0, · · · , an)

where mi ∈ Mk(C), ai ∈ A and tr is the standard

trace of matrices.

It is easy to see that:

1. Tr is a chain map.

2. Let i : A →Mk(A) be the map

a 7→ a⊗ E11



and define a map

i∗ : Cn(Mk(A)) −→ Cn(A).

Then

i∗ ◦ Tr = id.

i∗◦Tr however is not equal to id on the nose. There

is instead a homotopy between Tr ◦ i∗ and id.

We need to know, also when defining the Connes-

Chern character, that inner automorphisms act by

identity on Hochschild and cyclic cohomology and

inner derivations act by zero. Let u ∈ A be invert-

ible, and let a ∈ A. They induce the chain maps

Θu, La : Cn(A)→ Cn(A)



by

(Θuϕ)(a0, · · · , an) = ϕ(ua0u
−1, · · · , uanu−1),

(Laϕ)(a0, · · · , an) =

n∑
i=0

ϕ(a0, · · · , [a, ai], · · · an).

Θ induces the identity map on Hochschild homol-

ogy and La induces the zero map.

The maps (cf. e.g. Loday), hi : A
⊗n+1 → A⊗n+2, i =

0, · · · , n

hi(a0⊗· · ·⊗an) = (a0u
−1⊗ua1u−1, · · · , u⊗ai+1 · · ·⊗an)

define a homotopy

h =
n∑
i=0

(−1)ih∗i

between id and Θu.



For La the maps hi : A
⊗n+1 → A⊗n+2, i = 0, · · · , n,

hi(a0 ⊗ · · · ⊗ an) = (a0 ⊗ · · · ai ⊗ a · · · ⊗ an),

define a homotopy between La and 0.

Remark: Let A and B be unital Morita equivalent

algebras. Let X be an equivalence A−B bimodule

and Y its inverse bimodule. Let M be an A − A

bimodule and N = Y ⊗AM⊗AX the corresponding

B-bimodule. Morita invariance of Hochschild co-

homology (with coefficients) states that there is a

natural isomorphism

Hn(A,M) ' Hn(B, N),

for all n ≥ 0. In the above we sketch a proof of

this for B = Mk(A) and M = A∗.



Connes’ Spectral Sequence

The cyclic complex and the long exact sequence,

as useful as they are, are not powerful enough for

computations. A much deeper relation between

Hochschild and cyclic cohomology is encoded in

Connes’ spectral sequence. This spectral sequence

resembles in many ways the Hodge to de Rham

spectral sequence for complex manifolds.

A = unital algebra. We have

b2 = 0, bB +Bb = 0, B2 = 0.

The middle relation follows from b′s+ sb′ = 1,

(1− λ)b = b′(1− λ) and Nb′ = bN.

Connes’ (b, B)- bicomplex of A:
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... ... ...

C2(A)
B−→ C1(A)

B−→ C0(A)

b

x b

x
C1(A)

B−→ C0(A)

b

x
C0(A)

Theorem: (Connes, 1981) The map

ϕ 7→ (0, · · · ,0, ϕ)

is a quasi-isomorphism of complexes

(Cλ(A), b)→ (TotB (A), b+B).

This is a consequence of the vanishing of the E2

term of the second spectral sequence (filtration by

columns) of B(A). To prove this consider the short



exact sequence of b-complexes

0 −→ ImB −→ KerB −→ KerB/ImB −→ 0

By a hard lemma of Connes ( NCDG, Lemma 41

), the induced map

Hb(ImB) −→ Hb(KerB)

is an isomorphism. It follows that Hb(KerB/ImB)

vanish. To take care of the first column one ap-

peals to the fact that

ImB ' Ker(1− λ)

is the space of cyclic cochains.



Topological Algebras

For applications of cyclic (co)homology to non-

commutative geometry, it is crucial to consider

topological algebras, topological resolutions, and

continuous chains and cochains on them. For ex-

ample while the algebraic Hochschild and cyclic

groups of the algebra of smooth functions on a

manifold are not known, their topological counter-

parts are computed by Connes as we recall below.

There is no difficulty in defining continuous ana-

logues of Hochschild and cyclic cohomology groups

for Banach algebras. One simply replaces bimod-

ules by Banach bimodules (where the left and right

module actions are bounded operators) and cochains

by continuous cochains. Since the multiplication of
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a Banach algebra is a bounded map, all operators

including the Hochschild boundary and the cyclic

operator extend to this continuous setting.

The resulting Hochschild and cyclic theory for Ba-

nach and C∗-algebras, however, are hardly useful

and tend to vanish in many interesting examples.

This is hardly surprising since the definition of any

Hochschild and cyclic cocycle of dimension bigger

than zero involves differentiating the elements of

the algebra in one way or another. This is in sharp

contrast with topological K-theory where the right

setting is the setting of Banach or C∗-algebras.

Exercise: Let X be a compact Hausdorff space.

Show that any derivation δ : C(X) −→ C(X) is



identically zero. (hint: first show that if f = g2

and g(x) = 0 for some x ∈ X, then δ(f)(x) = 0.)

Compare this with the fact that: there exists a

one-one correspondence between derivations

δ : C∞(M)→ C∞(M)

and smooth vector fields on M given, in local co-

ordinated, by

δ =
∑

Xi ∂

∂xi

Remark: By results of Connes and Haggerup, a

C∗-algebra is amenable if and only if it is nuclear.

Amenability refers to the property that for all n ≥ 1,

Hn
cont(A,M

∗) = 0,



for any Banach dual bimodule M∗. In particular, by

using Connes’ long exact sequence, we find that,

for any nuclear C∗-algebra A,

HC2n
cont(A) = A∗, and HC2n+1

cont (A) = 0,

for all n ≥ 0.

The right class of topological algebras for Hochschild

and cyclic cohomology turns out to be the class of

locally convex algebras:

Definition: An algebra A equipped with a locally

convex topology is called a locally convex algebra

if its multiplication map

A×A → A



is jointly continuous.

Examples of locally convex algebras:

A = C∞(M), A = Aθ

smooth functions on a closed manifold and smooth

noncommutative tori. The topology of C∞(M) is

defined by the sequence of seminorms

‖f‖n = sup |∂α f |; |α| ≤ n,

where the supremum is over a fixed, finite, coordi-

nate cover for M .

The sequence of norms

pk(a) = Sup {(1 + |n|+ |m|)k|amn|}



defines a locally convex topology on the smooth

noncommutative torus Aθ. The multiplication of

Aθ is continuous in this topology.

Given locally convex topological vector spaces V1

and V2, their projective tensor product is a lo-

cally convex space V1⊗̂V2 together with a universal

jointly continuous bilinear map

V1 ⊗ V2 → V1⊗̂V2

It follows from the universal property that for any

locally convex space W , we have a natural isomor-

phism

B(V1 × V2,W ) ' L(V1⊗̂V2,W )

between continuous bilinear maps and continuous

linear maps .



One of the nice properties of the projective tensor

product is that for smooth compact manifolds M

and N , the natural map

C∞(M)⊗̂C∞(N)→ C∞(M ×N)

is an isomorphism. This is crucial for computa-

tions.

A topological left A-module is a locally convex

topological vector space M endowed with a con-

tinuous left A-module action A×M→M. A topo-

logical free left A-module is a module of the type

M = A⊗̂V where V is a locally convex space. A

projective module is a module which is a direct

summand in a free module.



Given a locally convex algebra A, let

Cncont(A) = Homcont(A⊗̂n, C)

be the space of continuous (n+1)-linear function-

als on A and let Cncont, λ(A) denote the space of

continuous cyclic cochains on A.

All of algebraic definitions and results extend to this

topological setting. In particular one defines topo-

logical Hochschild and cyclic cohomology groups of

a locally convex algebra. The right class of topo-

logical projective resolutions are those resolutions

that admit a continuous linear splitting. This ex-

tra condition is needed when one wants to prove

comparison theorems for resolutions. We won’t go

into details here since this is very well explained in

Connes’ original article (NCDG).



Cyclic Cohomology in Physics

1. The quantum Hall effect:

In low temperatures and under strong magnetic

fields the Hall conductivity σH takes on only quan-

tized values

σH = ν
e2

h
ν ∈ Z

(there is a rational q.h.e as well which is more sub-

tle and we won’t consider here. Classically σH can
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take on any real values.)

How to understand the integrality of a quantity?

Classical examples from differential topology: Let

α =
∫
M
ω

e.g. M= a 2-dimensional Riemannian manifold and

α =
1

2π

∫
M
K = total curvature

Gauss-Bonnet says this is an integer. One way to

prove integrality results is to use the index theorem

and look for a an elliptic operator D and show that

α =
∫
M
ω = index(D)

which is a priori an integer.

Cyclic cohomology and Connes-Chern character al-

lows one to extend this method to noncommuta-



tive manifolds and that is exactly what is needed

in quantum Hall effect.

Let ϕ ∈ Z2n
λ (A) be a cyclic 2n-cocycle on an algebra

A, E ∈ A a projection (it can be a projection in

Mq(A) as well) and let

α = ϕ(E,E, · · · , E) =
∫
ϕ
EdEdE · · · dE

Assume there is a p-summable Fredholm module

(H,F ) on A with

Ch(H,F ) = ϕ

Then Connes’ index formula shows that

ϕ(E,E, · · · , E) = index (F+
e )

from which the integrality of α of course follows.

The noncommutative manifold A for the quantum



Hall effect is the Brilouin Zone which is Morita

equivalent to a noncommutative torus Aθ.

Kubo’s formula expresses σH by

σH = ϕ(E,E,E)

where ϕ is a cyclic 2-cocycle on A and E = Eµ is

the spectral projection of the Hamiltonian H corre-

sponding to energies smaller than the Fermi level

µ. For the construction of the (2,∞)-summable

Fredholm module we refer to Connes’ 1994 book

or Bellissard’s articles cited there.

2. Noncommutative Yang-Mills theory:

Classical setting of Yang-Mills theory: A fixed back

ground manifold M , representing the spacetime, a



principal G-bundle over M , and a vector bundle E

over M (associated to a representation of G).

matter fields: (fermions) sections of E

Yang-Mills fields: (aka vector potential; gauge field):

(bosons) connections A = Aµdxµ on E, carriers of

force.

Thus, locally, A is a matrix valued (or Lie algebra

valued, in general) 1-form on M . Yang-Mills action:

YM(A) =
∫
M
||F ||2

where

F = dA+A2

is the curvature (aka: force field).



The set up for noncommutative Yang-Mills theory:

Let A be an ∗-algebra, τ a Hochschild 4-cocycle on

A and ∫
τ
: Ω4A → C

the corresponding graded trace. For a gauge field

A ∈ Ω1A, the Yang-Mills functional is defined by

YM(A) =
∫
τ
(dA+A2)2

This action is gauge invariant in the sense that

YM(A) = YM(γu(A))

where

γu(A) = udu∗+ uAu∗, u ∈ A, uu∗ = u∗u = 1



proof: It follows from

F (γu(A)) = uF (A)u∗

To obtain inequalities similar to classical inequali-

ties for YM impose the condition:

A Hochschild cocycle τ ∈ Z2n(A) is called positive

if for all ω ∈ ΩnA ∫
τ
ωω∗ ≥ 0

where

(a0da1 · · · dan)∗ = (−1)nda∗n · · · da∗1a
∗
0

Simple example: a zero cocycle is positive iff the

corresponding trace is positive.



Assuming τ is positive one can then how that

YMτ(A) ≥ 0 ∀A ∈ Ω1

From complex structures to positive Hochschild

cocycles: Let M be a compact Riemann surface.

Then

ϕ(f0, f1, f2) =
i

π

∫
M
f0∂f1∂̄f2,

is a positive Hochschild 2-cocycle on A = C∞(M).

For another example notice that the Dixmier trace

is positive in the sense that

Trω(T ) ≥ 0 ∀T ∈ L(1,∞), T ≥ 0

Let (H, D) be an even (n,∞)-summable module

over A. Then for n = 2m even,

ϕω(a
0, · · · , an) =



const.Trω((1 + γ)a0[D, a1] · · · [D, an]D−n)

is a positive Hochschild cocycle on A.

3. Chern-Simons action in NC gauge theory

Let ψ be a cyclic 3-cocycle on A. For any gauge

field A ∈ Ω1A, the Chern-Simon action is defined

by

CSψ(A) =
∫
ψ
AdA+

2

3
A3.

Unlike the Yang-Mils action, Chern-Simons action

is not invariant under gauge transformation γu(A) =

udu∗+ uAu∗, but we have (Chamseddine-Connes):

CSψ(γu(A)) = CSψ(A) +
1

3
< ψ, u >

where < ψ, u > denotes the pairing between HC3(A)

and K1(A) given by

< ψ, u >=
∫
ψ
udu∗dudu∗.



Proof: (on board!)



Cyclic Homology

Cyclic cohomology is a contravariant functor on the

category of algebras. There is a dual covariant the-

ory called cyclic homology. The relation between

the two is similar to the relation between currents

and differential forms on manifolds. Through (con-

tinuous) cyclic homology we can recover the de

Rham cohomology.

For each n ≥ 0, let

Cn(A) = A⊗(n+1).
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Define the operators

b : Cn(A) −→ Cn−1(A)

b′ : Cn(A) −→ Cn−1(A)

λ : Cn(A) −→ Cn(A)

s : Cn(A) −→ Cn+1(A)

N : Cn(A) −→ Cn(A)

B : Cn(A) −→ Cn+1(A)



by

b(a0 ⊗ · · · ⊗ an) =
n−1∑
i=0

(−1)i(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+(−1)n(ana0 ⊗ a1 · · · ⊗ an−1)

b′(a0 ⊗ · · · ⊗ an) =
n−1∑
i=0

(−1)i(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

λ(a0 ⊗ · · · ⊗ an) = (−1)n(an ⊗ a0 · · · ⊗ an−1)

s(a0 ⊗ · · · ⊗ an) = (−1)n(a0 ⊗ · · · ⊗ an ⊗ 1)

N = 1 + λ+ λ2 + · · ·+ λn

B = (1− λ)sN



They satisfy the relations

b2 = 0, b′2 = 0, (1− λ)b′ = b(1− λ)

b′N = Nb, B2 = 0, bB +Bb = 0

The complex (C•(A), b) is the Hochschild complex

of A with coefficients in the A-bimodule A. The

complex

Cλn(A) := Cn(A)/Im(1− λ)

is the Connes complex of A. Its homology

HCn(A), n = 0,1, · · ·

is the cyclic homology of A.

It is clear that the space of cyclic cochains is the

linear dual of the space of cyclic chains

Cnλ(A) ' Hom(Cλn(A), C)



and

HCn(A) ' HCn(A)∗.

Similar to cyclic cohomology, there is a long exact

sequence relating Hochschild and cyclic homolo-

gies, and also there is a spectral sequence from

Hochschild to cyclic homology. In particular cyclic

homology can be computed using the following bi-

complex.

... ... ...

A⊗3 B←− A⊗2 B←− Ayb yb
A⊗2 B←− Ayb
A



Example (Hochschild-Kostant-Rosenberg and Connes

theorems) Let

A d−→ Ω1A d−→ Ω2A d−→ · · ·

denote the de Rham complex of a commutative

unital algebra A. By definition

d : A → Ω1A

is a universal derivation into a symmetric A-bimodule,

the module of Kähler differentials, and

ΩnA :=
n∧
A

Ω1A

is the k-th exterior power of Ω1A over A.

Alternatively:

Ω1A = I/I2,



where

I = Ker {m : A⊗A→ A}

and

d(a) = a⊗ 1− 1⊗ a mod(I2).

The universal derivation d has a unique extension to

a graded derivation of degree one on ΩA, denoted

by d.

The antisymmetrization map:

εn : ΩnA −→ A⊗(n+1),

εn(a0da1∧· · ·∧dan) =
∑
σ∈Sn

sgn(σ)a0⊗aσ(1)⊗· · ·⊗aσ(n).

We also have a map

µn : A⊗n −→ ΩnA,



µn(a0 ⊗ a1 ⊗ · · · ⊗ an) = a0da1 ∧ · · · ∧ dan.

The resulting maps

(ΩA, 0)→ (C(A), b), and, (C(A), b)→ (ΩA, 0)

are morphisms of complexes, i.e.

b ◦ εn = 0, µn ◦ b = 0.

We have:

µn ◦ εn = n! Idn.

It follows that, for any commutative algebra A, the

antisymmetrization map induces an inclusion

εn : ΩnA ↪→ HHn(A),

for all n.

Hochschild-Kostant-Rosenberg theorem: if A is a

regular algebra, e.g. the algebra of regular func-



tions on a smooth affine variety, then εn defines an

algebra isomorphism

εn : ΩnA ' HHn(A)

between Hochschild homology of A and the algebra

of differential forms on A.

To compute the cyclic homology of A, we first

show that under the map µ the operator B corre-

sponds to the de Rham differential d. More pre-

cisely, for each integer n ≥ 0 we have a commuta-

tive diagram:

Cn(A)
µ−→ ΩnAyB yd

Cn+1(A)
µ−→ Ωn+1A



We have

µB(f0 ⊗ · · · ⊗ fn) =

µ
n∑
i=0

(−1)ni(1⊗ fi ⊗ · · · ⊗ fi−1

−(−1)nfi ⊗ · · · fi−1 ⊗ 1)

=
1

(n+ 1)!

n∑
i=0

(−1)nidfi · · · dfi−1

=
1

(n+ 1)!
(n+ 1)df0 · · · dfn

= dµ(f0 ⊗ · · · ⊗ fn).

It follows that µ defines a morphism of bicomplexes

B(A) −→ Ω(A),



where Ω(A) is the bicomplex

... ... ...

Ω2A d←− Ω1A d←− Ω0Ay0 y0
Ω1A d←− Ω0Ay0
Ω0A

Since µ induces isomorphisms on row homologies,

it induces isomorphisms on total homologies as

well. Thus we have (Connes):

HCn(A) ' ΩnA/Im d⊕Hn−2
dR (A)⊕ · · · ⊕Hk

dR(A),

where k = 0 if n is even and k = 1 if n is odd.

Using the same map µ acting between the corre-

sponding periodic complexes, one concludes that



the periodic cyclic homology of A is given by

HPk(A) '
⊕
i

H2i+k
dR (A), k = 0,1.

By a completely similar method one can compute

the continuous cyclic homology of the algebra A =

C∞(M) of smooth functions on a smooth closed

manifold M . Here by continuous cyclic homology

we mean the homology of the cyclic complex where

instead of algebraic tensor products A ⊗ · · · ⊗ A,

one uses the topological projective tensor product

A⊗̂ · · · ⊗̂A. The continuous Hochschild homology

of A can be computed using Connes’ topological

resolution for A as an A-bimodule as in Example

(??). The result is

HHcont
n (C∞(M)) ' ΩnM



with isomorphism induced by the map

f0 ⊗ f1 ⊗ · · · ⊗ fn 7→ f0df1 · · · dfn.

The rest of the computation of continuous cyclic

homology follows the same pattern as in the case

of regular algebras above. The end result is [?]:

HCcont
n (C∞(M)) '

ΩnM/Im d⊕Hn−2
dR (M)⊕ · · · ⊕Hk

dR(M),

and

HP contk (C∞(M)) '
⊕
i

H2i+k
dR (M), k = 0,1.



Cyclic Modules

Any (co)homology theory has two variables

H(A,M)

Typically M , the coefficient, belongs to a linear

category but A, the main object of interest, lives

in a highly non-linear category. For cyclic homol-

ogy (resp. cohomology) M = A (resp. M = A∗),

though this is rather hidden at first.

As we saw before, cyclic cohomology of algebras

was first defined by Connes through an explicit

complex or bicomplex. Soon after he introduced

the notion of cyclic module and defined its cyclic

cohomology. Later developments proved that this

extension was of great significance.
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Apart from earlier applications, in recent work of

Connes-Marcolli-Consani on Riemann zeta func-

tion, the abelian category of cyclic modules plays

the role of the category of motives in noncommu-

tative geometry.

Another recent example is the cyclic cohomology

of Hopf algebras which cannot be defined as the

cyclic cohomology of an algebra or a coalgebra but

only as the cyclic cohomology of a cyclic module

naturally attached to the given Hopf algebra.

The original motivation of Connes was to define

cyclic cohomology of algebras as a derived functor.

Since the category of algebras and algebra homo-

morphisms is not even an additive category (for the



simple reason that the sum of two algebra homo-

morphisms is not an algebra homomorphism in gen-

eral), the standard (abelian) homological algebra is

not applicable. In Connes’ approach, the category

Λk of cyclic k-modules appears as an abelianization

of the category of k-algebras. Cyclic cohomology is

then shown to be the derived functor of the functor

of traces, as we shall explain.

The simplicial category ∆:

objects: totally ordered sets

[n] = {0 < 1 < · · · < n}, n = 0,1,2, · · ·

morphisms: order preserving, i.e. monotone non-

decreasing, maps f : [n]→ [m]



faces δi and degeneracies σi,

δi : [n−1]→ [n], σi : [n]→ [n−1], i = 1,2, · · ·

δi = unique injective morphism missing i

σi = unique surjective morphism identifying i with

i+ 1

simplicial identities:

δjδi = δj−1δi if i < j,

σiσi = σiσi if i < j,

σiδi =


σj−1δi i < j

id i = j or i = j + 1

σjδi−1 i > j + 1.

Every morphism of ∆ can be uniquely decomposed

as a product of faces followed by a product of de-

generacies.

cyclic category Λ: same objects as ∆, but more



morphisms

Extra morphisms:

τn : [n]→ [n], n = 0,1,2, · · ·

extra relations:

τnδi = δi−1τn−1 1 ≤ i ≤ n

τnδ0 = δn

τnσi = σi−1τn−1 1 ≤ i ≤ n

τnσ0 = σnτ
2
n+1

τn+1
n = id.

cyclic object in a category: a functor

Λop → C.

cocyclic object:

Λ→ C



Λk = category of cyclic objects in k-modules = aka

cyclic modules

morphism of cyclic k-modules = natural transfor-

mation between corresponding functors.

Equivalently: sequences of k-linear maps fn : Xn →

Yn compatible with the face, degeneracy, and cyclic

operators.

Λk is an abelian category. Kernel and cokernel of

a morphism f defined pointwise:

(Ker f)n = Ker fn : Xn → Yn

(Coker f)n = Coker fn : Xn → Yn

Let Algk = category of unital k-algebras and unital



algebra homomorphisms. There is a functor

\ : Algk −→ Λk, A 7→ A\

where

A\n = A⊗(n+1), n ≥ 0

with face, degeneracy and cyclic operators

δi(a0 ⊗ a1 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

δn(a0 ⊗ a1 ⊗ · · · ⊗ an) = ana0 ⊗ a1 ⊗ · · · ⊗ an−1

σi(a0 ⊗ a1 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ · · · ⊗ an

τn(a0 ⊗ a1 ⊗ · · · ⊗ an) = an ⊗ a0 · · · ⊗ an−1.

A unital algebra map f : A→ B induces a morphism

of cyclic modules f \ : A\ → B\ by

f \(a0 ⊗ · · · ⊗ an) = f(a0)⊗ · · · ⊗ f(an).



Example:

HomΛk (A
\, k\) ' T (A),

where T (A) is the space of traces A → k. A trace

τ is sent to the cyclic map (fn)n≥0,

fn(a0 ⊗ a1 ⊗ · · · ⊗ an) = τ(a0a1 · · · an), n ≥ 0.

Theorem: (Connes) For any unital k-algebra A,

there is a canonical isomorphism

HCn(A) ' ExtnΛk(A
\, k\), for all n ≥ 0.

Now the above Example and Theorem, combined

together, say that cyclic cohomology is the derived

functor of the functor of traces A → T (A) where

the word derived functor is understood to mean as

above.



Motivated by the above theorem, one defines the

cyclic cohomology and homology of any cyclic mod-

ule M by

HCn(M) := ExtnΛk(M, k\),

and

HCn(M) := Tor
Λk
n (M, k\),

One can use the injective resolution used to prove

the above Theorem to show that these Ext and Tor

groups can be computed by explicit complexes and

bicomplexes, similar to the situation with algebras.

For example one has the following first quadrant



bicomplex, called the cyclic bicomplex of M

... ... ...

M2
1−λ←−−− M2

N←− M2
1−λ←−−− . . .yb y−b′ yb

M1
1−λ←−−− M1

N←− M1
1−λ←−−− . . .yb y−b′ yb

M0
1−λ←−−− M0

N←− M0
1−λ←−−− . . .

whose total homology is naturally isomorphic to

cyclic homology. Here the operator λ : Mn → Mn

is defined by λ = (−1)nτn, while

b =
n∑
i=0

(−1)iδi, b′ =
n−1∑
i=0

(−1)iδi,

and N =
∑n
i=0 λ

i. Using the simplicial and cyclic

relations, one can check that b2 = b′2 = 0, b(1 −

λ) = (1 − λ)b′ and b′N = Nb′. These relations

amount to saying that the above is a bicomplex.



The (b, B)-bicomplex of a cyclic module is the bi-

complex
... ... ...

M2
B←− M1

B←− M0yb yb
M1

B←− M0yb
M0

whose total homology is again isomorphic to the

cyclic homology of M (this time we have to assume

that k is a field of characteristic 0). Here B : Mn →

Mn+1 is Connes’ boundary operator defined by B =

(1− λ)sN , where s = (−1)nσn.

A remarkable property of the cyclic category Λ, not

shared by the simplicial category, is its self-duality

in the sense that there is a natural isomorphism



of categories Λ ' Λop. Roughly speaking, Connes’

duality functor Λop −→ Λ acts as the identity on

objects of Λ and exchanges face and degeneracy

operators while sending the cyclic operator to its

inverse. Thus to a cyclic (resp. cocyclic) module

one can associate a cocyclic (resp. cyclic) module

by applying Connes’ duality isomorphism. In the

next section we shall see examples of cyclic mod-

ules in Hopf cyclic (co)homology that are dual to

each other in the above sense.



Hochschild Cohomology

What we called the Hochschild cohomology of A

and denoted by HHn(A) is in fact the Hochschild

cohomology of A with coefficients in the A-bimodule

A∗. In general, given an A-bimoduleM, the Hochschild

complex of A with coefficients in the bimodule M

is the complex

C0(A,M)
δ−→ C1(A,M)

δ−→ C2(A,M) −→ · · ·

where

C0(A,M) =M, Cn(A,M) = HomC (A⊗n,M)

is the space of n-linear functionals on A with values
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in M. The differential δ is given by

(δϕ)(a1, · · · , an+1) =

a1ϕ(a2, · · · , an+1)

+
n∑
i=1

(−1)i+1ϕ(a1, · · · , aiai+1, · · · , an+1)

+ (−1)n+1ϕ(a1, · · · , an)an+1.

Among all bimodules M over an algebra A, the fol-

lowing two bimodules play an important role:

1) M=A, with bimodule structure a(b)c = abc, for

all a, b, c in A. The Hochschild complex C•(A,A) is

also known as the deformation complex , or Ger-

stenhaber complex of A. It plays an important role

in deformation theory of associative algebras pio-

neered by Gerstenhaber. For example it is easy



to see that H2(A,A) is the space of infinitesimal

deformations of A and H3(A,A) is the space of ob-

structions for deformations of A.

2) M = A∗ = Hom(A, k) with bimodule structure

defined by

(afb)(c) = f(bca),

for all a, b, c in A, and f in A∗. This bimodule is

relevant to cyclic cohomology. Indeed as we shall

see the Hochschild groups H•(A,A∗) and the cyclic

cohomology groups HC•(A) enter into a long ex-

act sequence (Connes’s long sequence). Using the

identification

Hom(A⊗n, A∗) ' Hom(A⊗(n+1), k), f 7→ ϕ,



ϕ(a0, a1, · · · , an) = f(a1, · · · , an)(a0),

the Hochschild differential δ is transformed into the

differential b given by

bϕ(a0, · · · , an+1) =
n∑
i=0

(−1)iϕ(a0, · · · aiai+1, · · · , an+1)

+(−1)n+1ϕ(an+1a0, a1, · · · , an).

Thus for n = 0,1,2 we have the following formulas

for b:

bϕ(a0, a1) = ϕ(a0a1)− ϕ(a1a0),

bϕ(a0, a1, a2) = ϕ(a0a1, a2)− ϕ(a0, a1a2) + ϕ(a2a0, a1),

bϕ(a0, a1, a2, a3) = ϕ(a0a1, a2, a3)− ϕ(a0, a1a2, a3)

+ϕ(a0, a1, a2a3)− ϕ(a3a0, a1, a2).

We give a few examples of Hochschild cohomology

in low dimensions.



Examples

1. n = 0. It is clear that

H0(A,M) = {m ∈M ;ma = am for all a ∈ A}.

In particular for M = A∗,

H0(A,A∗) = {f : A→ k; f(ab) = f(ba) for all a, b ∈ A},

is the space of traces on A.

Exercise: For A = k[x, ddx], the algebra of differ-

ential operators with polynomial coefficients, show

that H0(A,A∗) = 0.

2. n = 1. A Hochschild 1-cocycle f ∈ C1(A,M) is

simply a derivation, i.e. a linear map f : A → M



such that

f(ab) = af(b) + f(a)b,

for all a, b in A. A cocycle is a coboundary if and

only if the corresponding derivation is inner, that

is there exists m in M such that f(a) = ma − am

for all a in A. Therefore

H1(A,M) =
derivations

inner derivations

Sometimes this is called the space of outer deriva-

tions of A to M .

Exercise: 1) Show that any derivation on the al-

gebra C(X) of continuous functions on a compact

Hausdorff space X is zero. (Hint: If f = g2 and

g(x) = 0 then f ′(x) = 0.)



2) Show that any derivation on the matrix alge-

bra Mn(C) is inner. (This was proved by Dirac

in 1925 in his first paper on quantum mechanics

where derivations are called redquantum differen-

tials.

3) Show that any derivation on the Weyl algebra

A = k[x, ddx] is inner.

3. n = 2. We show, following Hochschild, that

H2(A,M) classifies abelian extensions of A by M .

Let A be a unital algebra over a field k. By defini-

tion, an abelian extension is an exact sequence of

algebras

0 −→M −→ B −→ A −→ 0,

such that B is unital, M has trivial multiplication



(M2 = 0), and the induced A-bimodule structure

on M coincides with the original bimodule struc-

ture. Let E(A,M) denote the set of isomorphism

classes of such extensions. We define a natural

bijection

E(A,M) ' H2(A,M)

as follows. Given an extension as above, let s : A→

B be a linear splitting for the projection B → A, and

let f : A⊗A→M be its curvature defined by,

f(a, b) = s(ab)− s(a)s(b),

for all a, b in A. One can easily check that f is a

Hochschild 2-cocycle and its class is independent

of the choice of splitting s. In the other direction,

given a 2-cochain f : A⊗ A→ M , we try to define



a multiplication on B = A⊕M via

(a,m)(a′,m′) = (aa′, am′+ma′+ f(a, a′)).

It can be checked that this defines an associative

multiplication if and only if f is a 2-cocycle. The

extension associated to a 2-cocycle f is the exten-

sion

0 −→M −→ A⊕M −→ A −→ 0.

It can be checked that these two maps are bijective

and inverse to each other.



Hochschild Cohomology is a Derived Functor

Let Aop denote the opposite algebra of A, where

Aop = A and the new multiplication is defined by

a.b := ba. There is a one to one correspondence

between A-bimodules and left A⊗Aop-modules de-

fined by

(a⊗ bop)m = amb.

Define a functor from the category of left A⊗ Aop

modules to k-modules by

M 7→ HomA⊗Aop(A,M) = {m ∈M ;ma = am ∀a}

= H0(A,M).

To show that Hochschild cohomology is the de-

rived functor of the functor HomA⊗Aop(A,−), we
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introduce the bar resolution of A. It is defined by

0←− A b′←− B1(A)
b′←− B2(A) · · · ,

where Bn(A) = A⊗Aop⊗A⊗n is the free left A⊗Aop

module generated by A⊗n. The differential b′ is

defined by

b′(a⊗ b⊗ a1 ⊗ · · · ⊗ an) = aa1 ⊗ b⊗ a2 · · · ⊗ an

+
n−1∑
i=1

(−1)i(a⊗ b⊗ a1 ⊗ · · · aiai+1 · · · ⊗ an)

+(−1)n(a⊗ anb⊗ a1 ⊗ · · · ⊗ an−1).

Define the operators s : Bn(A) → Bn+1(A), n ≥ 0,

by

s(a⊗ b⊗ a1 ⊗ · · · ⊗ an) = 1⊗ b⊗ a⊗ a1 ⊗ · · · ⊗ an.

One checks that

b′s+ sb′ = id

which shows that (B•(A), b′) is acyclic. Thus (B•(A), b′)



is a projective resolution of A as an A-bimodule.

Now, for any A-bimodule M we have

HomA⊗Aop(B•(A), M) ' (C•(A,M), δ),

which shows that Hochschild cohomology is a de-

rived functor.

One can therefore use resolutions to compute

Hochschild cohomology groups. Here are a few

exercises

1. Let

A = T (V ) = k ⊕ V ⊕ V ⊗2 ⊕ · · · ,

be the tensor algebra of a vector space V . Show

that

0←− T (V )
δ←− T (V )⊗T (V )

δ←− T (V )⊗V⊗T (V )←− 0,



δ(x⊗ y) = xy, δ(x⊗ v ⊗ y) = xv ⊗ y − x⊗ vy,

is a free resolution of T (V ). Conclude that A has

Hochschild cohomological dimension 1 in the sense

that Hn(A,M) = 0 for all M and all n ≥ 2. Com-

pute H0 and H1.

2. Let A = k[x1, · · · , xn] be the polynomial algebra

in n variables over a field k of characteristic zero.

Let V be an n dimensional vector space over k.

Define a resolution of the form

0← A← A⊗A← A⊗V⊗A← · · ·A⊗∧iV⊗A · · · ← A⊗∧nV⊗A← 0

by tensoring resolutions in 1) above for one dimen-

sional vector spaces.



Conclude that for any symmetric A-bimodule M ,

Hi(A,M) 'M ⊗ ∧iV, i = 0,1, · · · .

Hochschild Homology

The Hochschild complex of A with coefficients in

M ,

(C(A,M), δ)

is defined by

C0(A,M) = M, Cn(A,M) = M ⊗A⊗n,

with δ : Cn(A,M) −→ Cn−1(A,M) defined by

δ(m⊗ a1 ⊗ · · · an) = ma1 ⊗ a1 · · · an

+
n−1∑
i=1

(−1)im⊗ a1 ⊗ aiai+1 · · · an

+(−1)nanm⊗ a1 ⊗ · · · an.



We denote this homology by

Hn(A,M).

Clearly,

H0(A,M) = M/[A,M ],

where [A,M ] is the subspace of M spanned by com-

mutators am−ma for a in A and m in M .

The following facts are easily established:

1. Hochschild homology H•(A,M) is the derived

functor of the functor

A⊗Aop −Mod −→ k −Mod, M 7→ A⊗A⊗AopM,

i.e.

Hn(A,M) = TorA⊗A
op

n (A,M).

For the proof one uses the bar resolution as before.



2. (Duality) Let M∗ = Hom(M,k). It is an A-

bimodule via (afb)(m) = f(bma). One checks that

the natural isomorphism

Hom(A⊗n,M∗) ' Hom(M ⊗A⊗n, k), n = 0,1, · · ·

is compatible with differentials. Thus if k is field

of characteristic zero, we have

H•(A,M∗) ' (H•(A,M))∗.

From now on we denote by HHn(A) the Hochschild

group Hn(A,A∗) and by HHn(A) the Hochschild

group Hn(A,A).

We give a few examples of Hochschild (co)homology

computations. In particular we shall see that group



homology and Lie algebra homology are instances

of Hochschild homology. We start by recalling

the classical results of Connes [?] and Hochschild-

Kostant-Rosenberg [?] on the Hochschild homol-

ogy of smooth commutative algebras.

Example (Commutative Algebras)

Let A be a commutative unital algebra over a ring

k. We recall the definition of the algebraic de Rham

complex of A. The module of 1-forms over A,

denoted by Ω1A, is defined to be a left A-module

Ω1A with a universal derivation

d : A −→ Ω1A.

This means that any other derivation δ : A → M

into a left A-module M , uniquely factorizes through



d. One usually defines Ω1A = I/I2 where I is the

kernel of the multiplication map A⊗ A → A. Note

that since A is commutative this map is an algebra

homomorphism. d is defined by

d(a) = a⊗ 1− 1⊗ a mod(I2).

One defines the space of n-forms on A as the n-th

exterior power of the A-module Ω1A:

ΩnA := ∧nAΩ1A.

There is a unique extension of d to a graded deriva-

tion

d : Ω•A −→ Ω•+1A.

It satisfies the relation d2 = 0. The algebraic de

Rham cohomology of A is defined to be the coho-

mology of the complex (Ω•A, d).



Let M be a symmetric A-bimodule. We compare

the complex (M ⊗A Ω•A,0) with the Hochschild

complex of A with coefficients in M . Consider the

antisymmetrization map

εn : M ⊗A ΩnA −→M ⊗A⊗n, n = 0,1,2, · · · ,

εn(m⊗da1∧· · ·∧dan) =
∑
σ∈Sn

sgn(σ)m⊗aσ(1)⊗· · ·⊗aσ(n),

where Sn denotes the symmetric group on n letters.

We also have a map

µn : M ⊗A⊗n −→M ⊗A ΩnA, n = 0,1, · · ·

µn(m⊗ a1 ⊗ · · · an) = m⊗ da1 ∧ · · · ∧ dan.

One checks that both maps are morphisms of com-

plexes, i.e.

δ ◦ εn = 0, µn ◦ δ = 0.



Moreover, one has

µn ◦ εn = n! Idn.

It follows that if k is a field of characteristic zero

then the antisymmetrization map

εn : M ⊗A ΩnA −→ Hn(A,M),

is an inclusion. For M = A we obtain a natural

inclusion

ΩnA −→ HHn(A).

The celebrated Hochschild-Kostant-Rosenberg the-

orem [?] states that if A is the algebra of regular

functions on an smooth affine variety the above

map is an isomorphism.

Let M be a smooth closed manifold and let A =



C∞(M) be the algebra of smooth complex valued

functions on M . It is a locally convex (in fact,

Frechet) topological algebra. Fixing a finite atlas

on M , one defines a family of seminorms

pn(f) = sup{|∂I(f)|; |I| ≤ n},

where the supremum is over all coordinate charts.

It is easily seen that the induced topology is inde-

pendent of the choice of atlas. In [?], using an

explicit resolution, Connes shows that the canoni-

cal map

HHcont
n (A)→ ΩnM, f0 ⊗ · · · ⊗ fn 7→ f0df1 · · · dfn,

is an isomorphism. In fact the original, equiva-

lent, formulation of Connes in [?] is for continuous

Hochschild cohomology HHn(A) which is shown

to be isomorphic to the continuous dual of ΩnM



(space of n-dimensional de Rham currents).

Example (Group Algebras)

It is clear from the original definitions that group

(co)homology is an example of Hochschild (co)homology.

Let G be a group and let M be a left G-module

over the ground ring k. Recall that the standard

complex for computing group cohomology is given

by

M
δ−→ C1(G,M)

δ−→ C2(G,M)
δ−→ · · · ,

where

Cn(G,M) = {f : Gn −→M}.

The differential δ is defined by

(δm)(g) = gm−m,



δf(g1, · · · , gn+1) = g1f(g2, · · · , gn+1)

+
n∑
i=1

(−1)if(g1, · · · gigi+1, · · · gn+1)

+ (−1)n+1f(g1, g2, · · · , gn).

Let A = kG denote the group algebra of the group

G over k. Then M is a kG-bimodule via the two

actions

g.m = g(m), m.g = m,

for all g in G and m in M . It is clear that for all n,

Cn(kG,M) ' Cn(G,M),

and the two differentials are the same. It follows

that the cohomology of G with coefficients in M

coincides with the Hochschild cohomology of kG

with coefficients in M .



Lie algebra (co)homology

We shall see that Lie algebra (co)homology is

Hochschild (co)homology:

HLie
n (g,M) = Hn(U(g),M)

and dually for cohomology.

Let g be a Lie algebra and M be a g-module given

by a Lie algebra morphism

g −→ Endk(M).

The Lie algebra homology of g with coefficients

in M is the homology of the Chevalley-Eilenberg

complex

M
δ←−M ⊗

1∧
g

δ←−M ⊗
2∧

g
δ←− · · ·
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with the differential

δ(m⊗X) = X(m),

δ(m⊗X1 ∧X2 ∧ · · · ∧Xn) =∑
i<j

(−1)i+jm⊗ [Xi, Xj] ∧X1 · · · ∧ X̂i · · · X̂j · · · ∧Xn

+
∑
i

(−1)iXi(m)⊗X1 ∧ · · · X̂i ∧ · · · ∧Xn.

One checks that δ2 = 0.

Let U(g) denote the enveloping algebra of g. Given

a g module M we define a U(g)-bimodule

Mad = M

with left and right U(g)-actions:

X ·m = X(m), m ·X = 0.



Define a map

εn : CLien (g,M) −→ Cn(U(g),Mad),

εn(m⊗X1∧· · ·∧Xn) =
∑
σ∈Sn

sgn(σ)m⊗Xσ(1)⊗· · ·⊗Xσ(n).

Fact: ε is a chain map (prove this!).

Claim: ε is a quasi-isomorphism, i.e. induces iso-

morphism on homology.

Sketch proof: use the Poincare-Birkhoff-Witt fil-

tration on U(g) to define a filtration on

(C•(U(g),M), δ). The associated E1 term is the de

Rham complex of the symmetric algebra S(g). The

induced map is the antisymmetrization map

εn : M ⊗ ∧ng→M ⊗ S(g)⊗n.



By Hochschild-Kostant-Rosenberg theorem (for poly-

nomial algebras), this map is a quasi-isomorphism

hence the original map is a quasi-isomorphism.

Dual version: Lie algebra cohomology

Cn(g,M) = Hom(
n∧

g,M),

space of alternating n-linear maps f(X1, · · · , Xn)

on g with values in M .

Chevalley-Eilenberg complex:

M
δ−→ C1(g,M)

δ−→ C2(g,M) · · ·

(δf)(X1, · · · , Xn+1) =∑
i<j

(−1)i+jf([Xi, Xj], · · · , X̂i · · · , X̂j · · · , Xn+1)

+
∑
i

(−1)iXi · f(X1, · · · , X̂i, · · · , Xn+1).



Note: when M = C, the ground field with trivial

action, we shall denote the cohomology by Hn
Lie(g).

Relative Cohomology: Let h ⊂ g be a Lie subalge-

bra. The relative complex:

Cn(g, h) = {ϕ; iXϕ = iX(δϕ) = 0 ∀X ∈ h}

Example 1: g is abelian, i.e. [X,Y ] = 0 for all X

and Y and M is trivial. Then, clearly,

HLie
n (g) =

n∧
g

for all n.

Example 2: g = Lie(G), G a compact connected

Lie group. Then

Hn
Lie(g) = Hn

dR(G).



Sketch proof:

(
n∧

g)∗ = (ΩnG)G

is the space of left invariant n-forms on G. Using

Cartan’s formula for d:

(dω)(X1, · · · , Xn+1) =

∑
i<j

(−1)i+jω([Xi, Xj], X1, · · · , X̂i · · · , X̂j · · · , Xn+1)

we see that the de Rham differential reduces to

the Chevalley-Eilenberg differential and we have an

inclusion of complexes:

(C(g), δ) ↪→ (ΩG, d).

We are done using homotopy invariance and aver-

aging over G (on board!).

Note: the principle used in this proof is very general



and worth recording in a more abstract form. Let

a compact connected topological group G act con-

tinuously on a topological chain complex (C•, d).

Then the inclusion of complexes

(C•, d)G ↪→ (C•, d)

is a quasi-isomorphism.

Note: The theorem fails if G is not compact. e.g.

let G = Rn, or, even better, consider the next ex-

ample.

Example 3: Let g = sl2(R). basis:

X0 =

(
1 0
0 −1

)
, X1 =

(
0 1
0 0

)
, X2 =

(
0 0
1 0

)
Dual basis:

ϕ0, ϕ1, ϕ2



Using

[X0, X1] = 2X1, [X0, X2] = −2X2, [X1, X2] = X0

we obtain:

δϕ0 = −ϕ1∧ϕ2, δϕ1 = −2ϕ0∧ϕ1, δϕ2 = 2ϕ0∧ϕ2

and

Hn
Lie(sl2(R)) =

R n = 0,3

0 n 6= 0,3,

Relative cohomology of the pair so2 ⊂ sl2: basis for

so2: X = X2 −X1.

iXϕ0 = 0, iXϕ1 = −1, ıXϕ2 = 1

The only nontrivial relative cocycle: ϕ0∧ (ϕ1 +ϕ2)

and hence



Hn
Lie(sl2, so2) =

R n = 0,2

0 n 6= 0,2,

Example 4: Let g = gln(R). We have, with l = [n2],

H∗Lie(gln(R) = H∗Lie(un) =
∧

(u1, u3, · · · , ul)

Generators as left invariant differential forms:

uk = [Tr((g−1dg)k)]

Check: these forms are closed and invariant.

Example 4: (Gelfand-Fuks cohomology)

Let g = V ect(M)= Lie algebra of smooth vector

fields on M . Topologize by: uniform convergence



of partial derivatives of components of vector fields

on compact subsets. Let

CnGF (g) = Homcon(
n∧
,R)

and

Hn
GF (V ect(M)) = Hn(CnGF (g)

Amazing fact: For M compact, Hn(V ect(M),R)

are finite dimensional for all n.

Example: For M = S1, Gelfand and Fuks have

shown that H∗(V ect(S1)), as an algebra, by 2 and

3 cocycles ϕ and ψ explicitly given by:

ϕ(f, g) =
∫
S1

∣∣∣∣∣ f ′(x) f ′′(x)
g′(x) g′′(x)

∣∣∣∣∣



ψ(f, g, h) =
∫
S1

∣∣∣∣∣∣∣
f(x) f ′(x) f ′′(x)
g(x) g′(x) g′′(x)
h(x) h′(x) h′′(x)

∣∣∣∣∣∣∣
Formal vector fields



Hopf Cyclic Cohomology of Connes and

Moscovici

In their study of index theory of transversally ellip-

tic operators, Connes and Moscovici developed a

cyclic cohomology theory for Hopf algebras which

can be regarded, post factum, as the right non-

commutative analogue of group homology and Lie

algebra homology.

One of the main motivations was to obtain a non-

commutative characteristic map

χτ : HC∗(δ,σ)(H) −→ HC∗(A),

for an action of a Hopf algebra H on an algebra

A endowed with an “invariant trace” τ : A → C.

Here, the pair (δ, σ), called a modular pair in invo-

lution consists of a grouplike element σ ∈ H and a
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character δ : H → C, satisfying certain compatibil-

ity conditions explained below.

Later on the theory was extended, by Khalkhali-

Rangipour and Hajac-Khalkhali-Rangipour-Sommerhaeuser

to a cyclic cohomology theory with coefficients for

triples

(C,H,M)

where C is a coalgebra endowed with an action of

a Hopf algebra H and M is an H-module and an H-

comodule satisfying some compatibility conditions,

called SAYD conditions (see below) The theory

of Connes and Moscovici corresponds to C = H

equipped with the regular action of H and M a

one dimensional SAYD H-module.



The idea was to view the Hopf-cyclic cohomology

as the cohomology of the invariant part of certain

natural complexes attached to (C,H,M). This is

remarkably similar to interpreting the cohomology

of the Lie algebra of a Lie group as the invari-

ant part of the de Rham cohomology of the Lie

group. The second main idea was to introduce

coefficients into the theory. This also explained

the important role played by modular pairs (δ, σ) in

Connes-Moscovici’s theory.

The module M is a noncommutative analogue of

coefficients for Lie algebra and group homology

theories. The periodicity condition

τn+1
n = id

for the cyclic operator and the fact that all sim-



plicial and cyclic operators have to descend to the

invariant complexes, puts very stringent conditions

on the type of the H-module M . This problem

is solved by introducing the class of stable anti-

Yetter-Drinfeld modules over a Hopf algebra.

The category of anti-Yetter-Drinfeld modules over

a Hopf algebra H is a twisting, or ‘mirror image’ of

the category of Yetter-Drinfeld H-modules. Tech-

nically it is obtained from the latter by replacing

the antipode S by S−1 although this connection is

hardly illuminating.



Coalgebras, Bialgebras, and Hopf Algebras

A coalgebra is a triple

(C, ∆, ε)

where C is a linear space, and

∆ : C −→ C ⊗ C, ε : C −→ k,

are linear maps called comultiplication and counit.

They satisfy the coassociativity and counit axioms:

(∆⊗ I) ◦∆ = (I ⊗∆) ◦∆ : C −→ C ⊗ C ⊗ C,

(ε⊗ I) ◦∆ = (I ⊗ ε) ◦∆ = I.

C is called cocommutative if τ∆ = ∆, where τ :

C ⊗ C → C ⊗ C is the fillip x⊗ y 7→ y ⊗ x.

28



Sweedler’s notation with summation suppressed:

∆(c) = c(1) ⊗ c(2).

Coassociativity and counit axioms via Sweedler’s

notation:

c(1) ⊗ c(2)(1) ⊗ c(2)(2) = c(1)(1) ⊗ c(1)(2) ⊗ c(2),

ε(c(1))(c(2)) = c = (c(1))ε(c(2)).

Notation:

c(1) ⊗ c(2) ⊗ c(3) := (∆⊗ I)∆(c).

Similarly, for iterated comultiplication maps

∆n := (∆⊗ I) ◦∆n−1 : C −→ C⊗(n+1),

we write

∆n(c) = c(1) ⊗ · · · ⊗ c(n+1).



Algebra notions have their dual analogues for coal-

gebras, like, subcoalgebra, (left, right, two sided)

coideal, quotient coalgebra, and morphism of coal-

gebras.

A left C-comodule is a linear space M endowed

with a left coaction of C, i.e. a linear map

ρ : M −→ C ⊗M

such that

(ρ⊗ 1)ρ = ∆ρ and (ε⊗ 1)ρ = ρ

Notation:

ρ(m) = m(−1) ⊗m(0),

Similarly if M is a right C-comodule, we write

ρ(m) = m(0) ⊗m(1)



to denote its coaction ρ : M →M ⊗ C.

Convolution Product

Let C =coalgebra, A = algebra. Then

Hom(C,A)

is an associative unital algebra under the convolu-

tion product f ∗ g defined by

f ∗ g = (f ⊗ g)∆ : C
∆−→ C ⊗ C f⊗g−→ A⊗A,

or, equivalently, by

(f ∗ g)(c) = f(c(1))g(c(2)).

Its unit is the map e : C → A, e(c) = ε(c)1A.

In particular the linear dual of a coalgebra C

C∗ = Hom(C, k)



is an algebra.

Note: The linear dual of an algebra A is not a coal-

gebra unless it is finite dimensional. Ways to get

around this: topologize A and consider just the

continuous dual; or use topological tensor prod-

ucts...

Bialgebra

A bialgebra is an algebra equipped with a compat-

ible coalgebra structure. Thus

∆ : B −→ B ⊗B, ε : B −→ k,

are morphisms of unital algebras.

Equivalently: multiplication and unit maps of B are

morphisms of coalgebras.



Hopf Algebra

A Hopf algebra is a bilagebra endowed with an an-

tipode, i.e. a linear map S : H → H with

S ∗ I = I ∗ S = ηε,

where η : k → H is the unit map of H. Equivalently,

S(h(1))h(2) = h(1)S(h(2)) = ε(h)1.

S is the inverse of the identity map I : H → H in

the convolution algebra Hom(H,H). This shows

that the antipode is unique, if it exists at all.

The following properties of the antipode are well

known:

1. If H is commutative or cocommutative then

S2 = I. The converse need not be true.



2. S is an anti-algebra map and an anti-coalgebra

map. The latter means

S(h(2))⊗ S(h(1)) = S(h)(1) ⊗ S(h)(2),

for all h ∈ H.

Examples of Hopf algebras:

1. Commutative or cocommutative Hopf algebras

are closely related to groups and Lie algebras, as

we indicate below:

1.a. Let G be a discrete group (need not be finite),

and H = kG its group algebra. Let

∆(g) = g ⊗ g, S(g) = g−1, and ε(g) = 1



and linearly extend to H.

(H,∆, ε, S)

is a cocommutative Hopf algebra.

1.b. Let g be a Lie algebra, and H = U(g) the

universal enveloping algebra of g. Use the universal

property of U(g) to define algebra homomorphisms

∆ : U(g)→ U(g)⊗ U(g), ε : U(g)→ k

and an anti-algebra map S : U(g)→ U(g), by

∆(X) = X ⊗ 1+1⊗X, ε(X) = 0, S(X) = −X,

for all X ∈ g. Then

(U(g),∆, ε, S)



is a cocommutative Hopf algebra. It is commuta-

tive iff g is abelian, in which case U(g) = S(g) =

symmetric algebra of g.

1.c. Let G be a compact topological group. A con-

tinuous function f : G → C is called representable

if the set of left translates of f by all elements

of G forms a finite dimensional subspace of C(G).

Clearly

H = Rep(G) ⊂ C(G)

is a subalgebra. Let m : G×G→ G= multiplication

of G and

m∗ : C(G×G)→ C(G), m∗f(x, y) = f(xy),

its dual map.



If f is representable, then

m∗f ∈ Rep(G)⊗Rep(G) ⊂ C(G×G).

Let e= the identity of G. Then

∆f = m∗f, εf = f(e), (Sf)(g) = f(g−1),

define a Hopf algebra structure on Rep(G).

Alternatively: Let Rep(G) = linear span of matrix

coefficients of all finite dimensional complex reps

of G. Peter-Weyl’s Theorem: Rep(G) is a dense

subalgebra of C(G). It is finitely generated (as an

algebra) iff G is a Lie group.

1.d. Affine Group Scheme = Commutative Hopf
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Algebra = Representable Functors

ComAlgk −→ Groups

The coordinate ring of an affine algebraic group

H = k[G] is a commutative Hopf algebra. The

maps ∆, ε, and S are the duals of the multiplica-

tion, unit, and inversion maps of G, respectively.

More generally, for any commutative Hopf algebra

H and a commutative algebra A,

HomAlg(H,A)

is a group under convolution product and

A 7→ HomAlg(H,A)

is a functor from ComAlgk → Groups. Conversely,

any representable functor

ComAlgk → Groups



is represented by a, unique up to isomorphism,

commutative Hopf algebra.

2. Compact quantum groups and quantized en-

veloping algebras are examples of noncommutative

and noncommutative Hopf algebras. We won’t re-

call these examples here.

A very important example for noncommutative ge-

ometry and its applications to transverse geometry

and number theory is the Connes-Moscovici Hopf

algebra H1 which we recall now. Let gaff be the

Lie algebra of the group of affine transformations

of the line with linear basis X and Y and the rela-



tion

[Y,X] = X

Let g be an abelian Lie algebra with basis

{δn; n = 1,2, · · · }

It is easily seen that gaff acts on g via

[Y, δn] = nδn, [X, δn] = δn+1,

for all n. Let

gCM := gaff o g

be the corresponding semidirect product Lie alge-

bra. As an algebra, H1 coincides with the universal

enveloping algebra of the Lie algebra gCM . Thus

H1 is the universal algebra generated by

{X, Y, δn;n = 1,2, · · · }



subject to relations

[Y,X] = X, [Y, δn] = nδn

[X, δn] = δn+1, [δk, δl] = 0,

for n, k, l = 1,2, · · · . We let the counit of H1 coin-

cide with the counit of U(gCM). Its coproduct and

antipode, however, will be certain deformations of

the coproduct and antipode of U(gCM) as follows.

Using the universal property of U(gCM), one checks

that the relations

∆Y = Y ⊗ 1 + 1⊗ Y, ∆δ1 = δ1 ⊗ 1 + 1⊗ δ1,

∆X = X ⊗ 1 + 1⊗X + δ1 ⊗ Y,

determine a unique algebra map ∆ : H1 → H1 ⊗

H1. Note that ∆ is not cocommutative and it

differs from the corrodent of the enveloping alge-



bra U(gCM). Similarly, one checks that there is a

unique antialgebra map S : H1 → H1 determined

by the relations

S(Y ) = −Y, S(X) = −X + δ1Y, S(δ1) = −δ1.

Again we note that this antipode also differs from

the antipode of U(gCM), and in particular S2 6= I.

In fact Sn 6= I for all n.

In the next section we will show, following Connes-

Moscovici, that H1 is a bicrossed product of Hopf

algebras U(gaff) and U(g)∗, where g is a pro-unipotent

Lie algebra to be described in the next section.

In any Hopf algebra the set of grouplike elements

G(H) is defined as

∆g = g ⊗ g, g 6= 0.



G(H) is a subgroup of the multiplicative group of

H.

e.g. for H = kG, G(H) = G.

Similarly primitive elements P(H) are defined as:

∆x = 1⊗ x+ x⊗ 1

P (H) is a Lie algebra under the bracket [x, y] :=

xy − yx.

Poincare-Birkhoff-Witt ⇒ P (U(g)) = g.

A Character is a unital algebra map

δ : H → k

e.g. the counit ε : H → k is a character. For a less

trivial example, let G be a non-unimodular real Lie

group and H = U(g) the universal enveloping alge-

bra of the Lie algebra of G. The modular function



of G, measuring the difference between the right

and left Haar measures on G, is a smooth group

homomorphism ∆ : G→ R+. Its derivative at iden-

tity defines a Lie algebra map δ : g→ R. We denote

its natural extension by δ : U(g) → R. It is obvi-

ously a character of U(g). For a concrete example,

let G = Aff(R) be the group of affine transforma-

tions of the real line. It is a non-unimodular group

with modular homomorphism given by

∆

(
a b
0 1

)
= |a|.

The corresponding infinitesimal character on gaff =

Lie(G) is given by

δ(Y ) = 1, δ(X) = 0,

where Y =

(
1 0
0 0

)
and X =

(
0 1
0 0

)
are a basis

for gaff . We will see that this character plays an



important role in constructing a twisted antipode

for the Connes-Moscovici Hopf algebra H1.

If H is a Hopf algebra, by a left H-module (resp.

left H-comodule), we mean a left module (resp.

left comodule) over the underlying algebra (resp.

the underlying coalgebra) of H.



Monoidal Categories

A monoidal category

(C, ⊗, U, a, l, r)

consists of a category C, a functor

⊗ : C × C → C

, an object U ∈ C (called the unit object), and

natural isomorphisms

a = aA,B,C : A⊗ (B ⊗ C)→ (A⊗B)⊗ C,

l = lA : U ⊗A→ A, r = rA : A⊗ U → A,

called associativity and unit constraints. Moreover

the following

Pentagon and Triangle diagrams should commute:
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((A⊗B)⊗ C)⊗D
ssffffffffffffffffffffff

++XXXXXXXXXXXXXXXXXXXXXX

(A⊗ (B ⊗ C))⊗D
��

(A⊗B)⊗ (C ⊗D)

��

A⊗ ((B ⊗ C)⊗D) //A⊗ (B ⊗ (C ⊗D))

(A⊗ U)⊗B //

))RRRRRRRRRRRRRR
A⊗ (U ⊗B)

uullllllllllllll

A⊗B

Coherence Theorem (MacLane): all diagrams com-

posed from a, l, r by tensoring, substituting and

composing, commute.



A Braided Monoidal Category is a monoidal Cate-

gory endowed with natural isomorphisms

cA,B : A⊗B → B ⊗A,

called braiding such that the folowing diagram, the

Hexagon Axiom, is commutative:

A⊗ (B ⊗ C) // (B ⊗ C)⊗A
**UUUUUUUUUUUUUUUU

(A⊗B)⊗ C

44jjjjjjjjjjjjjjjj

**UUUUUUUUUUUUUUUU
(C ⊗B)⊗A

(B ⊗A)⊗ C //C ⊗ (B ⊗A)

44jjjjjjjjjjjjjjjj

A braiding is called a symmetry if we have

cA,B ◦ cB,A = I

for all A,B.

A symmetric monoidal category is a monoidal cat-

egory endowed with a symmetry.
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Example: Let H be a bialgebra. Using the comul-

tiplication of H, the category

H −Mod

of left H-modules is a monoidal category via

h(m⊗ n) = h(1)m⊗ h(2)n,

and unit object U = k with trivial H-action:

h(1) = ε(h)1,

If H is cocommutative, then one checks that the

map

cM,N : M ⊗N → N ⊗M, cM,N(m⊗ n) = n⊗m,

is a morphism of H-modules and is a symmetry

operator on H −Mod, turning it into a symmetric

monoidal category.



The category H −Mod is not braided in general.

For that to happen, one must either restrict the

class of modules to what is called Yetter-Drinfeld

modules, or restrict the class of Hopf algebras to

quasitriangular Hopf algebras to obtain a braiding

on H − Mod. We shall discuss the first scenario

and will see that, quite unexpectedly, this question

is closely related to Hopf cyclic cohomology!

Similarly, the category

H − Comod

of left H-comodules is a monoidal category:

ρ(m⊗ n) = m(−1)n(−1) ⊗m(0) ⊗ n(0).

If H is commutative then H−Comod is a symmetric

monoidal category. More generally, when H is co-



quasitriangular, H −Comod can be endowed with a

braiding.



Symmetry in Noncommutative Geometry

The idea of symmetry in noncommutative geome-

try is encoded by the action or coaction of a Hopf

algebra on an algebra or on a coalgebra. Thus

there are four possibilities in general that will be re-

ferred to as (Hopf-) module algebra, module coal-

gebra, comodule algebra, and comodule coalgebra.

For each type of symmetry there is a corresponding

Hopf cyclic cohomology theory with coefficients.

These theories in a certain sense are generaliza-

tions of equivariant de Rham cohomology with co-

efficients in an equivariant local system.

An algebra A is called a left H-module algebra if

-A is a left H-module
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- multiplication and unit maps

A⊗A→ A, k → A

are morphisms of H-modules, i.e.

h(ab) = h(1)(a)h(2)(b), and h(1) = ε(h)1.

Using the relations

∆g = g ⊗ g, ∆x = 1⊗ x+ x⊗ 1

it is easily seen that in an H-module algebra, group-

like elements act as unit preserving automorphisms

while primitive elements act as derivations. E.g.

for H = kG, H-module algebra structure on A is

simply an action of G by unit preserving automor-

phisms on A. Similarly, we have a 1-1 correspon-

dence between U(g)-module algebra structures on



A and Lie actions of the Lie algebra g by derivations

on A.

Left H-comodule algebra B:

-B is a left H-comodule

- multiplication and unit maps of B are H-comodule

maps.

Left H-module coalgebra C:

-C is a left H-module

comultiplication and counit maps of C

∆ : C → C ⊗ C, ε : C → k

are H-module maps:

(hc)(1)⊗(hc)(2) = h(1)c(1)⊗h(2)c(2), ε(hc) = ε(h)ε(c).



Example: the coproduct ∆ : H → H ⊗ H turns H

into a left (and right) H-comodule algebra. The

product H ⊗H → H turns H into a left (and right)

H-module coalgebra. These are noncommutative

analogues of translation action of a group on itself.

The conjugation action H ⊗H → H,

g ⊗ h 7→ g(1)hS(g(2))

turns H into a left H-module algebra.

Example: An important feature of the Connes-

MoscoviciH1, and in fact its raison d’être, is that

it acts as quantum symmetries of various objects

of interest in noncommutative geometry, like the

‘space’ of leaves of codimension one foliations or

the ‘space’ of modular forms modulo the action of

Hecke correspondences. Let M be a one dimen-



sional manifold and A = C∞0 (F+M) denote the al-

gebra of smooth functions with compact support

on the bundle of positively oriented frames on M .

Given a discrete group Γ ⊂ Diff+(M) of orienta-

tion preserving diffeomorphisms of M , one has a

natural prolongation of the action of Γ to F+(M)

by

ϕ(y, y1) = (ϕ(y), ϕ′(y)(y1)).

Let

AΓ = C∞0 (F+M) o Γ

denote the corresponding crossed product algebra.

Elements of AΓ consist of finite linear combinations

(over C) of terms fU∗ϕ with f ∈ C∞0 (F+M) and



ϕ ∈ Γ. Its product is defined by

fU∗ϕ · gU∗ψ = (f · ϕ(g))U∗ψϕ.

There is an action of H1 on AΓ given by [?, ?]:

Y (fU∗ϕ) = y1
∂f

∂y1
U∗ϕ, X(fU∗ϕ) = y1

∂f

∂y
U∗ϕ,

δn(fU
∗
ϕ) = yn1

dn

dyn
(log

dϕ

dy
)fU∗ϕ.

Once these formulas are given, it can be checked,

by a long computation, that AΓ is indeed an H1-

module algebra. In the original application, M is

a transversal for a codimension one foliation and

thus H1 acts via transverse differential operators.



Modular Hecke Algebras and the Action of H1

We recall, very briefly, the action of the Hopf al-

gebra H1 on the so called modular Hecke algebras,

discovered by Connes and Moscovici where a very

intriguing dictionary comparing transverse geom-

etry notions with modular forms notions can be

found. For each N ≥ 1, let

Γ(N) =

{(
a b
c d

)
∈ SL(2,Z);

(
a b
c d

)
=

(
1 0
0 1

)
modN

}
denote the level N congruence subgroup of Γ(1) =

SL(2,Z). LetMk(Γ(N)) denote the space of mod-

ular forms of level N and weight k and

M(Γ(N)) := ⊕kMk(Γ(N))

be the graded algebra of modular forms of level N .
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Finally let

M := lim→
N

M(Γ(N))

denote the algebra of modular forms of all levels,

where the inductive system is defined by divisibility.

The group

G+(Q) := GL+(2,Q),

acts on M by its usual action on functions on the

upper half plane (with corresponding weight):

(f, α) 7→ f |kα(z) = det(α)k/2(cz + d)−kf(α · z),

α =

(
a b
c d

)
, α.z =

az + b

cz + d
.

The elements of the corresponding crossed-product

algebra

A = AG+(Q) :=MoG+(Q),



are finite sums

∑
fU∗γ , f ∈M, γ ∈ G+(Q),

with a product defined by

fU∗α · gU∗β = (f · g|α)U∗βα.

A can be thought of as the algebra of ‘noncommu-

tative coordinates’ on the ‘noncommutative quo-

tient space’ of modular forms modulo Hecke cor-

respondences.

Consider the operator X of degree two on the space

of modular forms defined by

X :=
1

2πi

d

dz
−

1

12πi

d

dz
(log∆) · Y,

where

∆(z) = (2π)12η24(z) = (2π)12q
∞∏
n=1

(1−qn)24, q = e2πiz,



and Y denotes the grading operator

Y (f) =
k

2
· f, for all f ∈Mk.

The following theorem is proved by Connes-Moscivici.

It shows that AG+(Q) is an H1-module algebra:

Theorem: There is a unique action of H1 on AG+(Q)

determined by

X(fU∗γ) = X(f)U∗γ , Y (fU∗γ) = Y (f)U∗γ ,

δ1(fU
∗
γ) = µγ · f(U∗γ),

where

µγ(z) =
1

2πi

d

dz
log

∆|γ
∆

.

More generally, for any congruence subgroup Γ an

algebra A(Γ) is constructed that contains as sub-



algebras both the algebra of Γ-modular forms and

the Hecke ring at level Γ. There is also a corre-

sponding action of H1 on A(Γ).



Bicrossed Products

For four types of symmetries there is a correspond-

ing crossed product construction as well as a more

elaborate version called bicrossed product construc-

tion. The Connes-Moscovici Hopf algebra H1 is a

bicrossed product of two, easy to describe, Hopf

algebras.

Crossed Product: Let A = left H-module algebra.

Crossed product algebra AoH = A⊗H with prod-

uct

(a⊗ g)(b⊗ h) = a(g(1)b)⊗ g(2)h.

E.g. for H = kG, recover the crossed product al-

gebra AoG.

Also, for g acting by derivations on a commutative

34



A. A o U(g) is a subalgebra of the algebra of dif-

ferential operators on A generated by derivations

from g and multiplication operators by elements of

A.

Simple example: A = k[x] and g = k acting via d
dx

on A. Then AoU(g) = Weyl algebra of differential

operators on the line with polynomial coefficients.

Crossed Coproduct: let D = right H-comodule

coalgebra with coaction d 7→ d(0) ⊗ d(1) ∈ D ⊗ H.

H oD = H ⊗D is a coalgebra with coproduct and

counit:

∆(h⊗ d) = h(1) ⊗ (d(1))(0) ⊗ h(2)(d(1))(1) ⊗ d(2)

ε(h⊗ d) = ε(d)ε(h).



These constructions deform multiplication or co-

multiplication, of algebras or coalgebras, respec-

tively. Thus to obtain a simultaneous deformation

of multiplication and comultiplication of a Hopf al-

gebra it stands to reason to try to apply both con-

structions simultaneously. This idea, going back to

G. I. Kac in 1960’s in the context of Kac-von Neu-

mann Hopf algebras, has now found its complete

generalization in the notion of bicrossed product of

matched pairs of Hopf algebras. There are many

variations of this construction of which the most

relevant for the structure of the Connes-Moscovici

Hopf algebra is the following:

Let U and F be Hopf algebras s.t.

- F is a left U-module algebra



- U is a right F -comodule coalgebra

ρ : U → U ⊗ F.

(U, F ) is called a matched pair if

ε(u(f)) = ε(u)ε(f),

∆(u(f)) = (u(1))(0)(f(1))⊗ (u(1))(1)(u(2)(f(2))),

ρ(1) = 1⊗ 1,

ρ(uv) = (u(1))(0)v(0) ⊗ (u(1))(1)(u(2)(v(1))),

(u(2))(0) ⊗ (u(1)(f))(u(2))(1) =

(u(1))(0) ⊗ (u(1))(1)(u(2)(f)).

Given a matched pair as above, we define its bi-

crossed product Hopf algebra F o U to be F ⊗ U



with crossed product algebra structure and crossed

coproduct coalgebra structure. Its antipode S is

defined by

S(f ⊗ u) = (1⊗ S(u(0)))(S(fu(1))⊗ 1).

It is a remarkable fact that, thanks to the above

compatibility conditions, all the axioms of a Hopf

algebra are satisfied for F o U .

Example: The simplest, and first, example of a

bicrossed product Hopf algebra is as follows. Let

G = G1G2

be a factorization of a finite group G. This means

that G1 and G2 are subgroups of G and

G1 ∩G2 = {e} and G1G2 = G



We denote the factorization of an element g by

g = g1g2. The relation

g · h := (gh)2

defines a left action of G1 on G2 and

g • h := (gh)1

defines a right action of G2 on G1. Let

F = F (G2), U = kG1

The first action turns F into a left U-module al-

gebra. The second action turns U into a right F -

comodule coalgebra. The latter coaction is simply

the dual of the map F (G1)⊗kG2 → F (G1) induced

by the right action of G2 on G1.

Remark: By a theorem of Kostant, any cocommu-

tative Hopf algebra H over an algebraically closed



field k of characteristic zero is isomorphic (as a

Hopf algebra) with a crossed product algebra

H = U(P (H)) o kG(H)

where P (H) is the Lie algebra of primitive elements

of H and G(H) is the group of grouplike elements of

H and G(H) acts on P (H) by inner automorphisms.

The coalgebra structure of H = U(P (H)) o kG(H)

is simply the tensor product of the two coalgebras

U(P (H)) and kG(H).

Example: The Connes-Moscovici Hopf algebra H1

is a bicrossed product Hopf algebra. Let

G = Diff(R)

denote the group of diffeomorphisms of the real



line. It has a factorization of the form

G = G1G2,

where G1 is the subgroup of diffeomorphisms that

satisfy

ϕ(0) = 0, ϕ′(0) = 1,

and G2 is the ax + b- group of affine transforma-

tions.

The first Hopf algebra, F , is formally speaking,

the algebra of polynomial functions on the pro-

unipotent group G1. It can also be defined as the

“continuous dual” of the enveloping algebra of the

Lie algebra of G1. It is a commutative Hopf algebra

generated by functions δn, n = 1,2, . . . , defined by

δn(ϕ) =
dn

dtn
(log(ϕ′(t))|t=0.



The second Hopf algebra, U , is the universal en-

veloping algebra of the Lie algebra g2 of the ax+b-

group. It has generators X and Y and one relation

[X,Y ] = X.

F is a right U-module algebra:

δn(X) = −δn+1, and δn(Y ) = −nδn.

U is a left F -comodule coalgebra:

X 7→ 1⊗X + δ1 ⊗X, and Y 7→ 1⊗ Y.

One can check that they are a matched pair of

Hopf algebras and the resulting bicrossed product

Hopf algebra is isomorphic to the Connes-Moscovici

Hopf algebra H1.

Example: The Drinfeld double D(H) of a finite



dimensional Hopf algebra H is a bicrossed product:

D(H) = H oH∗



Modular Pair in Involution

Let δ : H → k be a character and σ ∈ H a group-

like element. Following Connes-Moscovici, (δ, σ) is

called a modular pair if

δ(σ) = 1

and a modular pair in involution if in addition:

S̃2
δ = Adσ, or, S̃2

δ (h) = σhσ−1

Here the δ- twisted antipode S̃δ : H → H is defined

by S̃δ = δ ∗ S, i.e.

S̃δ(h) = δ(h(1))S(h(2)),

for all h ∈ H.

The notion of an invariant trace for actions of

groups and Lie algebras can be extended to the
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Hopf setting. For applications to transverse ge-

ometry and number theory, it is important to for-

mulate a notion of ‘invariant trace’ twisted by a

modular pair (δ, σ) as follows.

Let A be an H-module algebra. A linear map τ :

A→ k is called δ-invariant if for all h ∈ H and a ∈ A,

τ(h(a)) = δ(h)τ(a).

τ is called a σ-trace if for all a, b in A,

τ(ab) = τ(bσ(a)).

For the following formula the fact that A is unital

is crucial. For a, b ∈ A, let

< a, b >:= τ(ab).



Integration by parts formula: Let τ be a σ-trace on

A. Then τ is δ-invariant if and only if the integra-

tion by parts formula holds:

< h(a), b >=< a, S̃δ(h)(b) >,

for all h ∈ H and a, b ∈ A.

Loosely speaking, the lemma says that the formal

adjoint of the differential operator h is S̃δ(h).

Example 1: For any Hopf algebra H, the pair (ε,1)

is modular. It is involutive if and only if S2 = id.

This happens, for example, when H is a commu-

tative or cocommutative Hopf algebra.

Example 2: The original non-trivial example of

a modular pair in involution is the pair (δ,1) for



Connes-Moscovici Hopf algebra H1. Let δ denote

the unique extension of the modular character

δ : gaff → R, δ(X) = 1, δ(Y ) = 0,

to a character δ : U(gaff) → C. There is a unique

extension of δ to a character, denoted by the same

symbol δ : H1 → C. The relations

[Y, δn] = nδn

show that

δ(δn) = 0

for n = 1,2, · · · . One can then check that these

relations are compatible with the algebra structure

of H1.



The algebra

AΓ = C∞0 (F+(M) o Γ

admits a δ-invariant trace τ : AΓ → C given by:

τ(fU∗ϕ) =
∫
F+(M)

f(y, y1)
dydy1

y21
, if ϕ = 1,

and τ(fU∗ϕ) = 0, otherwise.

Example 3: Let H = A(SLq(2, k)) = Hopf algebra

of functions on quantum SL(2, k). As an algebra

it is generated by symbols x, u, v, y, with the fol-

lowing relations:

ux = qxu, vx = qxv, yu = quy, yv = qvy,

uv = vu, xy − q−1uv = yx− quv = 1.

The coproduct, counit and antipode of H are de-



fined by

∆(x) = x⊗ x+ u⊗ v, ∆(u) = x⊗ u+ u⊗ y,

∆(v) = v ⊗ x+ y ⊗ v, ∆(y) = v ⊗ u+ y ⊗ y,

ε(x) = ε(y) = 1, ε(u) = ε(v) = 0,

S(x) = y, S(y) = x, S(u) = −qu, S(v) = −q−1v.

Define a character δ : H → k by:

δ(x) = q, δ(u) = 0, δ(v) = 0, δ(y) = q−1.

One checks that S̃2
δ = id. This shows that (δ,1) is

a modular pair for H.

More generally, Connes-Moscovici show that corib-

bon Hopf algebras and compact quantum groups

are endowed with canonical modular pairs of the



form (δ,1) and, dually, ribbon Hopf algebras have

canonical modular pairs of the type (1, σ). Notice

that a pair (1, σ) with σ a group-like element is an

MPI iff for all h ∈ H

S2(h) = σhσ−1

Example 4: We shall see later that modular pairs in

involution are in fact one dimensional cases of sta-

ble anti-Yetter-Drinfeld modules, i.e. they are one

dimensional noncommutative local systems over a

quantum group.



Anti-Yetter-Drinfeld Modules

An important question: to identify the most gen-

eral class of coefficients allowable in cyclic

(co)homology of Hopf algebras and Hopf (co) mod-

ule (co)algebras in general.

This problem is completely solved by Hajac, Rangipour,

Sommerhauser, and M.K., following the work of

M.K. and B. Rangipour. It was shown that the

most general coefficients are the class of so called

stable anti-Yetter-Drinfeld modules.

It is quite surprising that when the general for-

malism of cyclic cohomology theory, namely the

theory of (co)cyclic modules is applied to Hopf

algebras, variations of such standard notions like
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Yetter-Drinfeld (YD) modules appear naturally. The

so called anti-Yetter-Drinfeld modules are twist-

ings, by modular pairs in involution, of YD mod-

ules. This means that the category of anti-Yetter-

Drinfeld modules is a “mirror image” of the cate-

gory of YD modules.



Yetter-Drinfeld Modules

Motivation: How to define a braiding on the monoidal

category H −Mod or a subcategory of it?

To define a braiding one should either restrict to

special classes of Hopf algebras, or, to special classes

of modules. Drinfeld showed that when H is a qu-

asitriangular, H −Mod is a braided monoidal cat-

egory. Dually, when H is coquasitriangular, H −

Comod is a braided monoidal category. Yetter shows

that to obtain a braiding on a subcategory of H −

Mod, for an arbitrary H, one has essentially one

choice and that is restricting to the class of Yetter-

Drinfeld modules as we explain now.

Definition: Let M be a left H-module and a left

H-comodule. M is a left-left Yetter-Drinfeld H-
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module if the two structures on M are compatible

in the sense that

ρ(hm) = h(1)m(−1)S(h(3))⊗ h(2)m(0).

We denote the category of left-left YD modules

over H by H
HYD.

Facts about H
HYD:

1. The tensor product M⊗N of two YD modules is

a YD module. Its module and comodule structure

are the standard ones:

h(m⊗ n) = h(1)m⊗ h(1)n

(m⊗ n) 7→ m(−1)n(−1) ⊗m(0) ⊗ n(0)

This shows that the category H
HYD is a monoidal

subcategory of the monoidal category H −Mod.



2. The category H
HYD is braided under the braiding

cM,N : M ⊗N −→ N ⊗M

m⊗ n 7→ m(−1) · n⊗m(0)

Yetter proved a strong inverse to this statement:

for any small strict monoidal category C endowed

with a monoidal functor F : C → V ectf to the cate-

gory of finite dimensional vector spaces, there is a

Hopf algebra H and a monoidal functor F̃ : C →H
H

YD such that the following diagram comutes

C //

��

H
HYD

��
V ectf //V ect

3. H
HYD is the center of H − Mod. Recall that

the (left) center ZC of a monoidal category is a



category whose objects are pairs (X,σX,−), where

X is an object of C and

σX,− : X ⊗− → −⊗X

is a natural isomorphism satisfying certain compati-

bility axioms with associativity and unit constraints.

It can be shown that the center of a monoidal cat-

egory is a braided monoidal category and

Z(H −Mod) =H
H YD

4. If H is finite dimensional then the category H
HYD

is isomorphic to the category of left modules over

the Drinfeld double D(H).

Example 1: 1. Let H = kG be the group algebra of

a discrete group G. A left kG-comodule is simply



a G-graded vector space

M =
⊕
g∈G

Mg

where the coaction is defined by

m ∈Mg 7→ g ⊗m.

An action of G on M defines a YD module structure

iff for all g, h ∈ G,

hm ∈Mhgh−1.

This example can be explained as follows. Let G be

a groupoid whose objects are G and its morphisms

are defined by

Hom(g, h) = {k ∈ G; kgk−1 = h}.

Recall that an action of a groupoid G on the cat-

egory V ect of vector spaces is simply a functor

F : G → V ect. Then it is easily seen that we have a



one-one correspondence between YD modules for

kG and actions of G on V ect. This example clearly

shows that one can think of an YD module over

kG as an ‘equivariant sheaf’ on G and of Y D mod-

ules as noncommutative analogues of equivariant

sheaves on a topological group.

Example 2: If H is cocommutative then any left H-

module M can be turned into a left-left YD mod-

ule via the coaction m 7→ 1 ⊗ m. Similarly, when

H is cocommutative then any left H-comodule M

can be turned into a YD module via the H-action

h ·m := ε(h)m.

Example 3: Any Hopf algebra acts on itself via

conjugation action g · h := g(1)hS(g(2)) and coacts



via translation coaction h 7→ h(1) ⊗ h(2). It can be

checked that this endows M = H with a YD mod-

ule structure.



Stable anti-Yetter-Drinfeld modules

This class of modules for Hopf algebras were intro-

duced for the first time by Hajac-Khalkhali-Rangipour-

Sommerhauser. Unlike Yetter-Drinfeld modules, its

definition, however, was entirely motivated and dic-

tated by cyclic cohomology theory: the anti-Yetter-

Drinfeld condition guarantees that the simplicial

and cyclic operators are well defined on invariant

complexes and the stability condition implies that

the crucial periodicity condition for cyclic modules

are satisfied.

Definition: A left-left anti-Yetter-Drinfeld H-module

is a left H-module and left H-comodule such that

ρ(hm) = h(1)m(−1)S(h(3))⊗ h(2)m(0),

for all h ∈ H and m ∈ M. We say M is stable if in
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addition we have

m(−1)m(0) = m,

for all m ∈M .

Notice that by changing S to S−1 in the above

equation, we obtain the compatibility condition for

a Yetter-Drinfeld module.

The following lemma shows that 1-dimensional SAYD

modules correspond to Connes-Moscovici’s modu-

lar pairs in involution:

Lemma: There is a one-one correspondence be-

tween modular pairs in involution (δ, σ) on H and

SAYD module structure on M = k, defined by

h.r = δ(h)r, r 7→ σ ⊗ r.



We denote this module by M =σkδ.

Let H
HAYD denote the category of left-left anti-

Yetter-Drinfeld H-modules, where morphisms are

H-linear and H-colinear maps. Unlike YD mod-

ules, anti-Yetter-Drinfeld modules do not form a

monoidal category under the standard tensor prod-

uct. This can be checked easily on 1-dimensional

modules given by modular pairs in involution. The

following result of HKRS, however, shows that the

tensor product of an anti-Yetter-Drinfeld module

with a Yetter-Drinfeld module is again anti-Yetter-

Drinfeld.

Lemma: Let M be a Yetter-Drinfeld module and

N be an anti-Yetter-Drinfeld module (both left-

left). Then M⊗N is an anti-Yetter-Drinfeld module



under the diagonal action and coaction:

h(m⊗ n) = h(1)m⊗ h(1)n,

(m⊗ n) 7→ m(−1)n(−1) ⊗m(0) ⊗ n(0).

In particular, using a modular pair in involution

(δ, σ), we obtain a functor

H
HYD →

H
H AYD, M 7→

−
M =σkδ ⊗M.

This result clearly shows that AYD modules can be

regarded as the twisted analogue or mirror image

of YD modules, with twistings provided by modular

pairs in involution. This result was later strength-

ened by the following result, pointed out to us by

M. Staic. It shows that if the Hopf algebra has

a modular pair in involution then the category of



YD modules is equivalent to the category of AYD

modules:

Proposition: Let H be a Hopf algebra, (δ, σ) a mod-

ular pair in involution and M an anti-Yetter-Drinfeld

module. If we define m · h = mh(1)δ(S(h(2))) and

ρ(m) = σ−1m(−1)⊗m(0), then (M, ·, ρ) is an Yetter-

Drinfeld module. This defines an isomorphism be-

tween the categories of AYD and YD modules.

It follows that tensoring with σ−1
kδ◦S turns the anti-

Yetter-Drinfeld modules to Yetter-Drinfeld mod-

ules and this is the inverse for the operation of

tensoring with σkδ.

Example 1: For Hopf algebras with S2 = I, e.g.

commutative or cocommutative Hopf algebras, there



is no distinction between YD and AYD modules.

This applies in particular to H = kG and to H =

U(g). The stability condition m(−1)m(0) = m is

equivalent to

g ·m = m, for all g ∈ G, m ∈Mg.

Example 2: Hopf-Galois extensions are noncom-

mutative analogues of principal bundles in (affine)

algebraic geometry. Following HKRS we show that

they give rise to large classes of examples of SAYD

modules. Let P be a right H-comodule algebra,

and let

B := PH = {p ∈ P ; ρ(p) = p⊗ 1}



be the space of coinvariants of P . It is easy to see

that B is a subalgebra of P . The extension B ⊂ P

is called a Hopf-Galois extension if the map

can : P ⊗B P → B ⊗H, p⊗ p′ 7→ pρ(p′),

is bijective. (Note that in the commutative case

this corresponds to the condition that the action

of the structure group on fibres is free). The bijec-

tivity assumption allows us to define the translation

map T : H → P ⊗B P ,

T (h) = can−1(1⊗ h) = h(1̄) ⊗ h(2̄).

It can be checked that the centralizer ZB(P ) =

{p | bp = pb ∀b ∈ B} of B in P is a subcomodule

of P . There is an action of H on ZB(P ) defined

by ph = h(1)ph(2) called the Miyashita-Ulbrich ac-

tion. It is shown that this action and coaction



satisfy the Yetter-Drinfeld compatibility condition.

On the other hand if B is central, then by defining

the new action ph = (S−1(h))(2)p(S−1(h))(1) and

the right coaction of P we have a SAYD module.

Example 3: Let M = H. Then with conjugation

action g ·h = g(1)hS(g(2)) and comultiplication h 7→

h(1) ⊗ h(2) as coaction, M is an SAYD module.



Hopf-cyclic cohomology

We first recall the approach by Connes and Moscovici

towards the definition of their cyclic cohomology

theory for Hopf algebras. The characteristic map

χτ plays an important role here. Then we switch

to the point of view adopted by HKRS based on

invariant complexes. The resulting Hopf-cyclic co-

homology theories include all known examples of

cyclic theory discovered so far. Very recently A.

Kaygun has extended the Hopf cyclic cohomology

to a cohomology for bialgebras with coefficients in

stable modules. For Hopf algebras it reduces to

HKRS.
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Connes-Moscovici’s breakthrough

Without going into details we formulate one of the

problems that was faced and solved by Connes and

Moscovici in the course of their study of an index

problem on foliated manifolds. This led them to a

new cohomology theory for Hopf algebras that is

the quintessential example of Hopf cyclic cohomol-

ogy.

The local index formula of Connes and Moscovici

gives the Chern character Ch(A, h,D) of a regu-

lar spectral triple (A,H, D) as a cyclic cocycle in

the (b, B)-bicomplex of the algebra A. For spectral

triples of interest in transverse geometry this co-

cycle is differentiable in the sense that it is in the

image of the Connes-Moscovici characteristic map
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χτ ,

χτ : H⊗n −→ Hom(A⊗(n+1), k),

defined below, with H = H1 and A = AΓ. To

identify this class in terms of characteristic classes

of foliations, it would be extremely helpful to show

that it is the image of a cocycle for a cohomology

theory for Hopf algebras. This is rather similar

to the situation for classical characteristic classes

which are pull backs of group cohomology classes.

We can formulate this problem abstractly as fol-

lows: Let H be a Hopf algebra endowed with a

modular pair in involution (δ, σ), and A be an H-

module algebra. Let τ : A → k be a δ- invariant

σ-trace on A as we defined before. Consider the



Connes-Moscovici characteristic map

χτ : H⊗n −→ Hom(A⊗(n+1), k),

χτ(h1 ⊗ · · · ⊗ hn)(a0 ⊗ · · · ⊗ an) =

τ(a0h1(a1) · · ·hn(an)) .

Now the burning question is: can we promote the

collection of spaces {H⊗n}n≥0 to a cocyclic module

such that the characteristic map χτ turns into a

morphism of cocyclic modules? We recall that the

face, degeneracy, and cyclic operators for

Hom(A⊗(n+1), k)



are defined by:

δni ϕ(a0, · · · , an+1) = ϕ(a0, · · · , aiai+1, · · · , an+1)

δnn+1ϕ(a0, · · · , an+1) = ϕ(an+1a0, a1, · · · , an)

σni ϕ(a0, · · · , an) = ϕ(a0, · · · , ai,1, · · · , an)

τnϕ(a0, · · · , an) = ϕ(an, a0, · · · , an−1)

The relation

h(ab) = h(1)(a)h(2)(b)

shows that in order for χτ to be compatible with

face operators, the face operators on H⊗n must

involve the coproduct of H. In fact if we define,

for 0 ≤ i ≤ n, δni : H⊗n → H⊗(n+1), by

δn0(h1 ⊗ · · · ⊗ hn) = 1⊗ h1 ⊗ · · · ⊗ hn,

δni (h1 ⊗ · · · ⊗ hn) = h1 ⊗ · · · ⊗ h
(1)
i ⊗ h(2)

i ⊗ · · · ⊗ hn,

δnn+1(h1 ⊗ · · · ⊗ hn) = h1 ⊗ · · · ⊗ hn ⊗ σ,



then we have, for all n and i,

χτδ
n
i = δni χτ .

Similarly, the relation h(1A) = ε(h)1A, shows that

the degeneracy operators on H⊗n should involve

the counit of H. We thus define

σni (h1 ⊗ · · · ⊗ hn) = h1 ⊗ · · · ⊗ ε(hi)⊗ · · · ⊗ hn.

The most difficult part in this regard is to guess

the form of the cyclic operator

τn : H⊗n → H⊗n.

Compatibility with χτ demands that

τ(a0τn(h1 ⊗ · · · ⊗ hn)(a1 ⊗ · · · ⊗ an)) =

τ(anh1(a0)h2(a1) · · ·hn(an−1)),



for all ai’s and hi’s. Now integration by parts for-

mula combined with the σ-trace property of τ , gives

us:

τ(a1h(a0)) = τ(h(a0)σ(a1)) = τ(a0S̃δ(h)(σ(a1)).

This suggests that we should define τ1 : H → H by

τ1(h) = S̃δ(h)σ.

Note that the condition τ21 = I is equivalent to the

involutive condition S̃2
δ = Adσ.

For any n, integration by parts formula together

with the σ-trace property shows that:

τ(anh1(a0) · · ·hn(an−1)) =

τ(h1(a0) · · ·hn(an−1)σ(an)) =

τ(a0S̃δ(h1)(h2(a1) · · ·hn(an−1)σ(an))) =

τ(a0S̃δ(h1) · (h2 ⊗ · · · ⊗ hn ⊗ σ)(a1 ⊗ · · · ⊗ an).



This suggests that the Hopf-cyclic operator τn :

H⊗n → H⊗n should be defined as

τn(h1 ⊗ · · · ⊗ hn) = S̃δ(h1) · (h2 ⊗ · · · ⊗ hn ⊗ σ),

where · denotes the diagonal action defined by

h · (h1 ⊗ · · · ⊗ hn) := h(1)h1 ⊗ h(2)h2 ⊗ · · · ⊗ h(n)hn.

We let τ0 = I : H⊗0 = k → H⊗0, be the identity

map.

The remarkable fact, proved by Connes and Moscovici,

is that endowed with the above face, degeneracy,

and cyclic operators,

{H⊗n}n≥0

is a cocyclic module. The resulting cyclic coho-



mology groups are denoted by

HCn(δ,σ)(H), n = 0,1, · · ·

and we obtain the desired characteristic map

χτ : HCn(δ,σ)(H)→ HCn(A).

As with any cocyclic module, cyclic cohomology

can also be defined in terms of cyclic cocycles. In

this case a cyclic n-cocycle is an element x ∈ H⊗n

satisfying the conditions

bx = 0, (1− λ)x = 0,

where b : H⊗n → H⊗(n+1) and λ : H⊗n → H⊗n are



defined by

b(h1 ⊗ · · · ⊗ hn) = 1⊗ h1 ⊗ · · · ⊗ hn

+
n∑
i=1

(−1)ih1 ⊗ · · · ⊗ h
(1)
i ⊗ h(2)

i ⊗ · · · ⊗ hn

+(−1)n+1h1 ⊗ · · · ⊗ hn ⊗ σ,

λ(h1 ⊗ · · · ⊗ hn) = (−1)nS̃δ(h1) · (h2 ⊗ · · · ⊗ hn ⊗ σ).

The cyclic cohomology groups HCn(δ,σ)(H) have been

computed in several cases. Of particular inter-

est for applications to transverse index theory and

number theory is the (periodic) cyclic cohomology

of the Connes-Moscovici Hopf algebra H1. Connes

and Moscovici have shown that that the periodic

groups HPn(δ,1)(H1) are canonically isomorphic to

the Gelfand-Fuks cohomology of the Lie algebra of



formal vector fields on the line:

H∗(a1,C) = HP ∗(δ,1)(H1).

Calculation of the unstable groups is an interesting

open problem.

The following interesting elements have already

been identified. It can be directly checked that

the elements

δ′2 := δ2 −
1

2
δ21 and δ1

are cyclic 1-cocycles on H1, and

F := X ⊗ Y − Y ⊗X − δ1Y ⊗ Y

is a cyclic 2-cocycle. See [?] for detailed calcula-

tions and relations between these cocycles and the

Schwarzian derivative, Godbillon-Vey cocycle, and



the transverse fundamental class of Connes respec-

tively.



Hopf-cyclic cohomology: type A, B, and C

theories

We recall the definitions of the three cyclic coho-

mology theories that were defined by HKRS. We

call them A, B and C theories. In the first case the

algebra A is endowed with an action of a Hopf al-

gebra; in the second case the algebra B is equipped

with a coaction of a Hopf algebra; and finally in the-

ories of type C, we have a coalgebra endowed with

an action of a Hopf algebra. In all three theories

the module of coefficients is a stable anti-Yetter-

Drinfeld (SAYD) module over the Hopf algebra and

we attach a cocyclic module to the given data.

Along the same lines one can define a Hopf-cyclic

cohomology theory for comodule coalgebras as well

(type D theory). Since so far we have found no ap-
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plications of such a theory we won’t give its defini-

tion here. We also show that all known examples of

cyclic cohomology theories that are introduced so

far such as ordinary cyclic cohomology for algebras,

Connes-Moscovici’s cyclic cohomology for Hopf al-

gebras, twisted and equivariant cyclic cohomology

are special cases of these theories.

Let A be a left H-module algebra and M be a left-

right SAYD H-module. Then the spaces

M ⊗A⊗(n+1)

are right H-modules via the diagonal action

(m⊗ ã)h := mh(1) ⊗ S(h(2))ã,

where the left H-action on ã ∈ A⊗(n+1) is via the

left diagonal action of H.



We define the space of equivariant cochains on A

with coefficients in M by

CnH(A,M) := HomH(M ⊗A⊗(n+1), k).

More explicitly, f : M⊗A⊗(n+1) → k is in CnH(A,M),

if and only if

f((m⊗ a0 ⊗ · · · ⊗ an)h) = ε(h)f(m⊗ a0 ⊗ · · · ⊗ an),

for all h ∈ H,m ∈M , and ai ∈ A.

It can be shown that the following operators define



a cocyclic module structure on {CnH(A,M)}n∈N:

(δif)(m⊗ a0 ⊗ · · · ⊗ an) =

f(m⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an),

(δnf)(m⊗ a0 ⊗ · · · ⊗ an) =

f(m(0) ⊗ (S−1(m(−1))an)a0 ⊗ a1 ⊗ · · · ⊗ an−1),

(σif)(m⊗ a0 ⊗ · · · ⊗ an) =

f(m⊗ a0 ⊗ · · · ⊗ ai ⊗ 1⊗ · · · ⊗ an),

(τnf)(m⊗ a0 ⊗ · · · ⊗ an) =

f(m(0) ⊗ S−1(m(−1))an ⊗ a0 ⊗ · · · ⊗ an−1).

We denote the resulting cyclic cohomology theory

by HCnH(A,M), n = 0,1, · · · .

Example 1: For H = k = M we obviously recover

the standard cocyclic module of the algebra A. The



resulting cyclic cohomology theory is the ordinary

cyclic cohomology of algebras.

Example 2: For M = H and H acting on M by con-

jugation and coacting via coproduct, we obtain the

equivariant cyclic cohomology theory of Akbarpour

and Khalkhali For H-module algebras.

Example 3: For H = k[σ, σ−1] the Hopf algebra

of Laurent polynomials, where σ acts by automor-

phisms on an algebra A, and M = k is a trivial

module, we obtain the so called twisted cyclic co-

homology of A with respect to σ. A twisted cyclic

n-cocycle is a linear map f : A⊗(n+1) → k satisfy-

ing:

f(σan, a0, · · · , an−1) = (−1)nf(a0, · · · , an), bσf = 0,



where bσ is the twisted Hochschild boundary de-

fined by

bσf(a0, · · · , an+1) =
n∑
i=0

(−1)if(a0, · · · , aiai+1, · · · , an+1)

+(−1)n+1f(σ(an+1)a0, a1, · · · , an).

Example 4: It is easy to see that for M =σkδ, the

SAYD module attached to a modular pair in invo-

lution (δ, σ), HC0
H(A,M) is the space of δ-invariant

σ-traces on A in the sense of Connes-Moscovici.

Next, let B be a right H-comodule algebra and M

be a right-right SAYD H-module. Let

Cn,H(B,M) := HomH(B⊗(n+1),M),

denote the space of right H-colinear (n+ 1)-linear



functionals on B with values in M . Here B⊗(n+1)

is considered a right H-comodule via the diagonal

coaction of H:

b0 ⊗ · · · ⊗ bn 7→ (b(0)
0 ⊗ · · · ⊗ b(0)

n )⊗ (b(1)
0 b

(1)
1 · · · b(1)

n ).

It can be shown that, thanks to the invariance prop-

erty imposed on our cochains and the SAYD con-

dition on M , the following maps define a cocyclic

module structure on {Cn,H(B,M)}n∈N:

(δif)(b0, · · · , bn+1) = f(b0, · · · , bibi+1, · · · , bn+1),

(δnf)(b0, · · · , bn+1) = f(b(0)
n+1b0, b1, · · · , bn)b

(1)
n+1,

(σif)(b0, · · · , bn−1) = f(b0, · · · , bi,1, · · · bn−1),

(τnf)(b0, · · · , bn) = f(b(0)
n , b0, · · · , bn−1)b

(1)
n .

We denote the resulting cyclic cohomology groups

by HCn,H(B,M), n = 0,1, · · · .



Example 1: For B = H, equipped with comulti-

plication as coaction, and M =σkδ associated to a

modular pair in involution, we obtain the dual Hopf

cyclic cohomology of Hopf algebras (Rangipour+

M. K.). This theory is different from Connes-

Moscovici’s theory for Hopf algebras. It is dual,

in the sense of Hopf algebras and not Hom dual,

to Connes-Moscovici’s theory. It is computed in

the following cases: H = kG, H = U(g), where it

is isomorphic to group cohomology and Lie alge-

bra cohomology, respectively; H = SL2(q, k), and

H = Uq(sl2).

Example 2:. For H = k, and M = k a trivial mod-

ule, we obviously recover the cyclic cohomology of

the algebra B.



Finally we describe theories for module coalgebras

and their main examples. As we shall see, Connes-

Moscovici’s original example of Hopf-cyclic coho-

mology belong to this class of theories.

Let C be a left H-module coalgebra, and M be a

right-left SAYD H-module. Let

Cn(C,M) := M ⊗H C⊗(n+1) n ∈ N.

It can be checked that, thanks to the SAYD condi-

tion on M , the following operators are well defined

and define a cocyclic module, denoted {Cn(C,M)}n∈N.

In particular the crucial periodicity conditions

τn+1
n = id, n = 0,1,2 · · ·



are satisfied:

δi(m⊗ c0 ⊗ · · · ⊗ cn−1) =

m⊗ c0 ⊗ · · · ⊗ c
(1)
i ⊗ c(2)

i ⊗ cn−1,

δn(m⊗ c0 ⊗ · · · ⊗ cn−1) =

m(0) ⊗ c(2)
0 ⊗ c1 ⊗ · · · ⊗ cn−1 ⊗m(−1)c

(1)
0 ,

σi(m⊗ c0 ⊗ · · · ⊗ cn+1) =

m⊗ c0 ⊗ · · · ⊗ ε(ci+1)⊗ · · · ⊗ cn+1,

τn(m⊗ c0 ⊗ · · · ⊗ cn) =

m(0) ⊗ c1 ⊗ · · · ⊗ cn ⊗m(−1)c0.

Example 1: For H = k = M , we recover the co-

cyclic module of a coalgebra which defines its cyclic

cohomology.

Example 2: For C = H and M =σkδ, the co-



cyclic module {CnH(C,M)}n∈N is isomorphic to the

cocyclic module of Connes-Moscovici, attached to

a Hopf algebra endowed with a modular pair in in-

volution. This example is truly fundamental and

started the whole theory.


