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Holomorphic determinants

I Problem: define a function det : A → C which is
holomorphic, detD 6= 0 iff D is invertible, and is gauge invariant.

I Holomorphic anomaly: gauge invariance and holomorphy don’t mix
well. So drop gauge invariance.

I Zeta regularized determinant: For D ∈ A, let ∆ = D∗D.

spectrum of ∆ : 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · → ∞

I Spectral zeta function:

ζ∆(s) =
∑ 1

λsi
, Re(s)� 0
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Regularized determinants

I Assume: ζ∆(s) has meromorphic extension to C and is regular at 0.

I Zeta regularized determinant:

log detζ(∆) = −ζ ′∆(0),
∏

λi = e−ζ
′
∆(0)

I Example: ∞! = 1 · 2 · 3 · · · =
√

2π

I But D  
√

det∆ is not holomorphic!

I Quillen’s approach: based on determinant line bundle.
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The determinant line

I Let λ= top exterior power functor. Given T : V →W , let

λT : λV → λW ,

detT := λT ∈ (λV )∗ ⊗ λW ← determinant line

I Goal: globalize this and construct a line bundle Det→ Fred over
Fredholm operators s.t.

DetT ' λ(kerT )∗ ⊗ λ(cokerT )
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The determinant line bundle

I Space of Fredholm operators:

F = Fred(H0,H1) = {T : H0 → H1; T is Fredholm}

K0(X ) = [X ,F ]

I Theorem (Quillen) 1) There is a holomorphic line bundle DET → F
s.t.

(DET )T = λ(KerT )∗ ⊗ λ(KerT ∗)

2) There map σ : F0 → DET

σ(T ) =

{
1 T invertible

0 otherwise

is a holomorphic section of DET over F0.
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Sketch proof

I Open cover: Fred =
⋃
UF , dimF <∞,

UF = {T ∈ Fred; Im(T ) + F = H}

I Over UF define
DetT = λ(T−1F )∗ ⊗ λ(F )

I Fact: These glue together nicely to define a lie bundle over Fred.

0→ Ker(T )→ T−1F → F → coker(T )→ 0

shows that
DetT ' λ(kerT )∗ ⊗ λ(cokerT )
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From det section to det function

I Use elliptic theory to pull back DET to a holomorphic line bundle
L → A with

LD = λ(KerD)∗ ⊗ λ(KerD∗).

I If L admits a canonical global section s, then

σ(D) = det(D)s

defines a holomorphic determinant. s is defined once we have a
canonical flat connection.
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Families of Cauchy-Riemann operators

I E → M smooth vector bundle over a compact Riemann surface.

Ωp,q(E ) (p, q) - forms with coefs. in E

I Let A= space of ∂̄-connections D : Ω0,0(E )→ Ω0,1(E ) on E .

D = ∂̄ + A, A ∈ Ω0,1(End(E ))

It is an affine space over B = Ω0,1(End(E )).

A/G ' {holomorphic structures on E}
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Quillen’s metric

I D is an elliptic 1st order PDE and defines a Fredholm operator

D : L2(E )→W 1(Ω0,1(E )), D ∈ Fred(H0,H1)

I This defines a map f : A → Fred(H0,H1). Pull back DET along f

L := f ∗(DET )

I L is a holomorphic line bundle over A.
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Quillen’s metric on L

I Define a metric on L, using regularized determinants. Pick an o. n.
basis for ker(D) and ker(D∗). Get a basis v for
LD ' λ(kerD)∗ ⊗ λ(kerD∗). Let

||v ||2 = exp(−ζ ′∆(0)) = det∆.

I Prop: This defines a smooth Hermitian metric on L.

I A Hermitian metric on a holomorphic line bundle has a unique
compatible connection. Its curvature can be computed from

∂̄∂ log ||s||2,

where s is any local holomorphic frame.
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The curvature of L

I A Hermitian metric on B = Ω0,1(EndE )

||B||2 =
i

2π

∫
M

TrE (B∗B)

where B = α(z)dz̄ ,B∗ = α(z)∗dz .

I Kaehler form of A. Fix D0 ∈ A, let q(D) = ||D − D0||2, and

ω = ∂∂̄q.

I Theorem (Quillen): The curvature of the determinant line bundle is
the symplectic form ω.
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A holomorphic determinant

I Modify the metric to get a flat connection:

||s||2f = e||D−D0||2 ||s||2

I Get a flat holomorphic global section of norm 1. This gives a
holomorphic determinant function

det(D,D0) : A → C

It satisfies
|det(D,D0)|2 = e||D−D0||2detζ(D∗D)
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Cauchy-Riemann operators on Aθ

I Complex structure on Aθ: a complex number τ in the upper half
plane.

I A spectral triple

Aθ, H0 ⊕H0,1, D0 =

(
0 ∂̄∗

∂̄ 0

)
with ∂̄ = δ1 + τδ2.

I Cauchy-Riemann operators on Aθ:

Aθ, H0 ⊕H0,1, DA =

(
0 ∂̄∗ + α∗

∂̄ + α 0

)
,

with α ∈ Aθ.
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Connes’ Pseudodifferential Calculus

I Symbols of order m: smooth maps σ : R2 → A∞θ with

||δ(i1,i2)∂(j1,j2)σ(ξ)|| ≤ c(1 + |ξ|)m−j1−j2 ,

and there exists a smooth map k : R2 → A∞θ such that

lim
λ→∞

λ−mσ(λξ1, λξ2) = k(ξ1, ξ2).

The space of symbols of order m is denoted by Sm(Aθ).

I To a symbol σ of order m, one associates an operator

Pσ(a) =

∫ ∫
e−is·ξσ(ξ)αs(a) ds dξ.

The operator Pσ is said to be a pseudodifferential operator of order
m.
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Classical symbols

I Product formula:

σ(PQ) ∼
∑

`=(`1,`2)≥0

1

`!
∂`(σ(ξ))δ`(σ′(ξ)).

I Classical symbol of order α ∈ C : f or any N and each 0 ≤ j ≤ N
there exist σα−j : R2\{0} → Aθ positive homogeneous of degree
α− j , and a symbol σN ∈ S<(α)−N−1(Aθ), such that

σ(ξ) =
N∑
j=0

χ(ξ)σα−j(ξ) + σN(ξ) ξ ∈ R2.

We denote the set of classical symbols of order α by Sαcl (Aθ) and
the associated classical pseudodifferential operators by Ψα

cl(Aθ).
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Noncommutative residue

I The Wodzicki residue of a classical pseudodifferential operator Pσ is
defined as

Res(Pσ) = ϕ0 (res(Pσ)) ,

where res(Pσ) :=
∫
|ξ|=1

σ−2(ξ)dξ.

I t is evident from its definition that Wodzicki residue vanishes on
differential operators and on non-integer order classical
pseudodifferential operators.
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A cutoff integral

I Any pseudo of order < −2 is trace-class with

Tr(P) = ϕ0

(∫
R2

σP(ξ)dξ

)
.

I For ord(P) ≥ −2 the integral is divergent, but, assuming P is
classical, one has an asymptotic expansion as R →∞∫

B(R)

σ(ξ)dξ ∼
∞∑

j=0,α−j+26=0

αj(σ)Rα−j+2 + β(σ) logR + c(σ),

where β(σ) =
∫
|ξ|=1

σ−2(ξ)dξ.
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The Kontsevich-Vishik trace

I The cut-off integral of a symbol σ ∈ Sαcl (Aθ) is defined to be the
constant term in the above asymptotic expansion, and we denote it
by
∫
−σ(ξ)dξ.

I The canonical trace of a classical pseudo P ∈ Ψα
cl(Aθ) of

non-integral order α is defined as

TR(P) := ϕ0

(∫
−σP(ξ)dξ

)
.

I Theorem: The functional TR is the analytic continuation of the
ordinary trace on trace-class pseudodifferential operators.
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I Let A ∈ Ψα
cl(Aθ) be of order α ∈ Z and let Q be a positive elliptic

classical pseudodifferential operator of positive order q. We have

Resz=0TR(AQ−z) =
1

q
Res(A).

I Proof: For the holomorphic family σ(z) = σ(AQ−z), z = 0 is a pole
for the map z 7→

∫
−σ(z)(ξ)dξ whose residue is given by

Resz=0

(
z 7→

∫
−σ(z)(ξ)dξ

)
= − 1

α′(0)

∫
|ξ|=1

σ−2(0)dξ

= − 1

α′(0)
res(A).

Taking trace on both sides gives the result.
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I Prop: We have TR(AB) = TR(BA) for any A,B ∈ Ψcl(Aθ),
provided that ord(A) + ord(B) /∈ Z.

I z-derivatives of a classical holomorphic family of symbols is not
classical anymore. So we introduce log-polyhomogeneous symbols
which include the z-derivatives of the symbols of the holomorphic
family σ(AQ−z).
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I Log-polyhomogeneous symbols:

σ(ξ) ∼
∑
j≥0

∞∑
l=0

σα−j,l(ξ) logl |ξ| |ξ| > 0,

with σα−j,l positively homogeneous in ξ of degree α− j .

I Example: logQ where Q ∈ Ψq
cl(Aθ) is a positive elliptic

pseudodifferential operator of order q > 0.

logQ := Q
d

dz

∣∣∣∣
z=0

Qz−1 = Q
d

dz

∣∣∣∣
z=0

i

2π

∫
C

λz−1(Q − λ)−1dλ.

I Wodzicki residue:

res(A) =

∫
|ξ|=1

σ−2,0(ξ)dξ.



Logarithmic symbols

I Log-polyhomogeneous symbols:

σ(ξ) ∼
∑
j≥0

∞∑
l=0

σα−j,l(ξ) logl |ξ| |ξ| > 0,

with σα−j,l positively homogeneous in ξ of degree α− j .

I Example: logQ where Q ∈ Ψq
cl(Aθ) is a positive elliptic

pseudodifferential operator of order q > 0.

logQ := Q
d

dz

∣∣∣∣
z=0

Qz−1 = Q
d

dz

∣∣∣∣
z=0

i

2π

∫
C

λz−1(Q − λ)−1dλ.

I Wodzicki residue:

res(A) =

∫
|ξ|=1

σ−2,0(ξ)dξ.



Logarithmic symbols

I Log-polyhomogeneous symbols:

σ(ξ) ∼
∑
j≥0

∞∑
l=0

σα−j,l(ξ) logl |ξ| |ξ| > 0,

with σα−j,l positively homogeneous in ξ of degree α− j .

I Example: logQ where Q ∈ Ψq
cl(Aθ) is a positive elliptic

pseudodifferential operator of order q > 0.

logQ := Q
d

dz

∣∣∣∣
z=0

Qz−1 = Q
d

dz

∣∣∣∣
z=0

i

2π

∫
C

λz−1(Q − λ)−1dλ.

I Wodzicki residue:

res(A) =

∫
|ξ|=1

σ−2,0(ξ)dξ.



Variations of LogDet and the curvature form

I Recall: for our canonical section

‖σ‖2 = e−ζ
′
∆α

(0)

I Consider a holomorphic family of Cauchy-Riemann operators
Dw = ∂̄ + αw , and compute

∂̄∂ log ‖σ‖2 = δw̄δwζ
′
∆(0) = δw̄δw

d

dz
TR(∆−z)|z=0.

I The first variational formula is given by

δwζ(z) = δwTR(∆−z) = TR(δw∆−z) = −zTR(δw∆∆−z−1).
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I Using the properties of TR, we have

δwζ
′(0) =

d

dz
δwζ(z)

∣∣∣∣
z=0

=

−ϕ0

(∫
−σ(δw∆∆−1)− 1

2
res (δw∆∆−1 log ∆)

)
.



The curvature of the determinant line bundle

I For a holomorphic family of Cauchy-Riemann operators Dw , the
second variation of ζ ′(0) is given by :

δw̄δwζ
′(0) =

1

2
ϕ0

(
δwDδw̄ res(log ∆D−1)

)
.

I Using the symbol calculus and properties of the canonical trace we
prove:
Theorem (A. Fathi, A. Ghorbanpour, MK.) The curvature of the
determinant line bundle for the noncommutative two torus is given
by

δw̄δwζ
′(0) =

1

4π=(τ)
ϕ0 (δwD(δwD)∗) .
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