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Holomorphic determinants

» Problem: define a function det: A — C which is
holomorphic, det D # 0 iff D is invertible, and is gauge invariant.

» Holomorphic anomaly: gauge invariance and holomorphy don’t mix
well. So drop gauge invariance.

> Zeta regularized determinant: For D € A, let A = D*D.

spectrum of A : 0< <M< 5

» Spectral zeta function:

Cals) =) Ai Re(s) >0

i
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» Assume: (a(s) has meromorphic extension to C and is regular at 0.

> Zeta regularized determinant:

logdetc(A) = —Ca(0),  [[N=e"%0@

» Example: ool =1-2-3--. =21
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Assume: (a(s) has meromorphic extension to C and is regular at 0.
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Zeta regularized determinant:

log detc(A) = —Cp(0), [N =e

v

Example: co!l =1-2-3... =427

But D ~~» v/detA is not holomorphic!

v

v

Quillen’s approach: based on determinant line bundle.
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The determinant line

> Let A= top exterior power functor. Given T : V — W let
AT DAV = AW,

detT := AT € (AV)" @ AW < determinant line

» Goal: globalize this and construct a line bundle Det — Fred over
Fredholm operators s.t.

Dett ~ A(kerT)* ® A(cokerT)
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The determinant line bundle
» Space of Fredholm operators:
F = Fred(Ho, H1) = {T : Hy — Hi; T is Fredholm}

KO(X) - [X’ F]

» Theorem (Quillen) 1) There is a holomorphic line bundle DET — F
s.t.
(DET)71 = MKerT)* @ MN(KerT™)

2) There map o : Fp — DET

(7) 1 T invertible
g =
0 otherwise

is a holomorphic section of DET over Fy.
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Sketch proof

» Open cover: Fred =|J Ugr, dimF < oo,

Ue ={T € Fred; Im(T)+ F = H}

» Over Ur define
Detr = AM(T1F)* @ A\(F)
» Fact: These glue together nicely to define a lie bundle over Fred.
0 — Ker(T) = T™'*F — F — coker(T) — 0

shows that
Dett ~ A(kerT)* ® A(cokerT)
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From det section to det function

> Use elliptic theory to pull back DET to a holomorphic line bundle
L — A with
Lp = AKerD)* @ A(KerD*).

» If £ admits a canonical global section s, then
o(D) = det(D)s

defines a holomorphic determinant. s is defined once we have a
canonical flat connection.
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Families of Cauchy-Riemann operators

» E — M smooth vector bundle over a compact Riemann surface.

QP9(E) (p, q) - forms with coefs. in E

» Let A= space of J-connections D : Q°°(E) — Q%'(E) on E.
D=0+A  AcQ%(End(E))
It is an affine space over B = Q%!(End(E)).

A/G =~ {holomorphic structures on E}
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Quillen’s metric

» D is an elliptic 1st order PDE and defines a Fredholm operator

D : L*(E) - WYQ%(E)), D € Fred(Ho, Hy)

> This defines a map f : A — Fred(Ho, H1). Pull back DET along f

L := f*(DET)

» L is a holomorphic line bundle over A.
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Quillen’s metric on L

» Define a metric on L, using regularized determinants. Pick an o. n.
basis for ker(D) and ker(D*). Get a basis v for
Lp ~ A kerD)* @ A(kerD*). Let

V][> = exp(—CA(0)) = detA.

» Prop: This defines a smooth Hermitian metric on L.

» A Hermitian metric on a holomorphic line bundle has a unique
compatible connection. Its curvature can be computed from

99 log||s][?,

where s is any local holomorphic frame.
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The curvature of L

» A Hermitian metric on B = Q%!(EndE)

Bzzi/T B*B
IBIF = 5. | Tre(B7B)

where B = a(z)dz, B* = a(z)*dz.
» Kaehler form of A. Fix Dy € A, let (D) = ||D — Do||?, and
w = d0q.

» Theorem (Quillen): The curvature of the determinant line bundle is
the symplectic form w.
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A holomorphic determinant

» Modify the metric to get a flat connection:

_ 2
Isl7 = ellP=IF|s||2

» Get a flat holomorphic global section of norm 1. This gives a
holomorphic determinant function

det(D, Do) A—C

It satisfies ,
|det(D, Dy)|? = ellP=DoIl" det, (D* D)
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Cauchy-Riemann operators on Ay

» Complex structure on Ay: a complex number 7 in the upper half
plane.

» A spectral triple

0,1 _ (0 o
Ag, Ho®H™, DO—(a 0
with = 81 + 705.
» Cauchy-Riemann operators on Ay:
0,1 - Q 5* + a*
./497 HO @ H 5 DA - ( a + a O I

with o € Ajy.
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» Symbols of order m: smooth maps o : R? — A% with
|62 gUtR) g (€)|| < (1 + |¢])m i,
and there exists a smooth map k : R? — Ag° such that

Jim A""o(Ar, M) = k(6. €2).

The space of symbols of order m is denoted by S™(Ay).

» To a symbol o of order m, one associates an operator

P, (a) = / / e~ () g() ds dE.

The operator P, is said to be a pseudodifferential operator of order
m.
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Classical symbols

» Product formula:

dPQ~ Y (o€ ()

0=(1,6,)>0

> Classical symbol of order « € C: forany Nandeach0 < <N
there exist 0,_; : R?\{0} — Ay positive homogeneous of degree
a —j, and a symbol oV € S%(O‘)’N’l(Ag), such that

N
o(€) =3 X()oaj(&) +oM(€) R
j=0

We denote the set of classical symbols of order a by S%(.Ag) and
the associated classical pseudodifferential operators by W% (Ay).
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Noncommutative residue

» The Wodzicki residue of a classical pseudodifferential operator P, is
defined as
Res(P,) = o (res(Py)),

where res(P,) := f\&\zl o_o(&)d¢.

> tis evident from its definition that Wodzicki residue vanishes on
differential operators and on non-integer order classical
pseudodifferential operators.
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A cutoff integral

» Any pseudo of order < —2 is trace-class with

1(P) = o ( [ ow(e)a)

» For ord(P) > —2 the integral is divergent, but, assuming P is
classical, one has an asymptotic expansion as R — oo

oo

/ 7O~ S (ORI Glo) og R + c(o),

J=0,0—j+20

where (o) = fl£|:1 o_2(§)d¢€.
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The Kontsevich-Vishik trace

» The cut-off integral of a symbol o € S5(.Ag) is defined to be the
constant term in the above asymptotic expansion, and we denote it

by f o(§)d¢.

» The canonical trace of a classical pseudo P € W% (Ay) of
non-integral order « is defined as

TR(P) := o (][O'P(g)df> ,

» Theorem: The functional TR is the analytic continuation of the
ordinary trace on trace-class pseudodifferential operators.



> Let Ae W% (Ap) be of order € Z and let Q be a positive elliptic
classical pseudodifferential operator of positive order g. We have

1
Res,—oTR(AQ™?) = aRes(A).



> Let Ae W% (Ap) be of order € Z and let Q be a positive elliptic
classical pseudodifferential operator of positive order g. We have

1
Res,—oTR(AQ™?) = aRes(A).

» Proof: For the holomorphic family o(z) = 0(AQ~%), z =0 is a pole
for the map z —  o(z)(£)d€ whose residue is given by

Res,_o <z - ][ a(z)(g)dg) - —ﬁ /|s|—1 o _5(0)de

1
= —mreb(A).

Taking trace on both sides gives the result.



» Prop: We have TR(AB) = TR(BA) for any A, B € W(Ap),
provided that ord(A) + ord(B) ¢ Z.



> Prop: We have TR(AB) = TR(BA) for any A, B € V(Ay),
provided that ord(A) + ord(B) ¢ Z.

» z-derivatives of a classical holomorphic family of symbols is not
classical anymore. So we introduce log-polyhomogeneous symbols
which include the z-derivatives of the symbols of the holomorphic
family o(AQ~%).
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Logarithmic symbols

» Log-polyhomogeneous symbols:

ZZaa-ﬂ )log' [¢] [¢] >0,

j>0 I=0

with o,_j positively homogeneous in & of degree a — j.

» Example: log Q where Q € WY (Ap) is a positive elliptic
pseudodifferential operator of order g > 0.

d

. i z—1 __
IOgQ'_de Q _de

z=0

z—1 1
27r//\ (Q — \)"tdA.



Logarithmic symbols

» Log-polyhomogeneous symbols:

~ S ou (@) logl €] el >0,

j>0 I=0

with o,_j positively homogeneous in & of degree a — j.

» Example: log Q where Q € WY (Ap) is a positive elliptic
pseudodifferential operator of order g > 0.

d

d
lOgQ'_Q? dz|,

@r=Q

//\Z L@ —N)"tdA.
27r

z=0

» Wodzicki residue:

res(A) = /|5|=1 o_2,0(§)d¢.
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Variations of LogDet and the curvature form

» Recall: for our canonical section

lo|? = e~ ®

» Consider a holomorphic family of Cauchy-Riemann operators
D, = 9+ a,,, and compute

d0log ||o||* = 0adwCa(0) = 5W5W%TR(A—Z)|Z:O.

» The first variational formula is given by

8w((2) = 0, TR(A™?) = TR(6, A7) = —2zTR(0, AA™*71).



» Using the properties of TR, we have

5uC'(0) = 6,0(2)

z=0

—0 <][ o(6wAATTY) — %res (6w AA log A)) :



The curvature of the determinant line bundle

» For a holomorphic family of Cauchy-Riemann operators D,,, the
second variation of ¢’(0) is given by :
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The curvature of the determinant line bundle

» For a holomorphic family of Cauchy-Riemann operators D,,, the
second variation of ¢’(0) is given by :

8wdwC’'(0) = %800 (6wDézres(log A D)) .

» Using the symbol calculus and properties of the canonical trace we
prove:
Theorem (A. Fathi, A. Ghorbanpour, MK.) The curvature of the
determinant line bundle for the noncommutative two torus is given
by

56 (0) = 35750 (D3 D)").
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