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In my Oberwolfach talk I gave a report on our joint (with Farzad Fathizadeh)
new paper Scalar Curvature for Noncommutative Four-Tori [9]. In this paper we
study the curved geometry of noncommutative 4-tori T4

θ. We use a Weyl conformal
factor to perturb the standard volume form and obtain the Laplacian that encodes
the local geometric information. Connes’ pseudodifferential calculus is then used
to explicitly compute the terms in the small time heat kernel expansion of the
perturbed Laplacian which correspond to the volume and scalar curvature of T4

θ.
We establish the analogue of Weyl’s law, define a noncommutative residue, prove
the analogue of Connes’ trace theorem, and find explicit formulas for the local
functions that describe the scalar curvature of T4

θ. We also study the analogue of
the Einstein-Hilbert action for these spaces and show that metrics with constant
scalar curvature are critical for this action.

Spectral geometry has played an important role in the development of metric
aspects of noncommutative geometry [2, 3]. After the seminal paper [5], in which
the analogue of the Gauss-Bonnet theorem is proved for noncommutative two tori
T2
θ with complex parameter τ = i, there has been much progress in understanding

the local differential geometry of these noncommutative spaces [6, 4, 7, 8, 13]. In
these works, the flat geometry of T2

θ is conformally perturbed by means of a Weyl
factor given by a positive invertible element in C∞(T2

θ) (see also [1] for a prelim-
inary version). Connes’ pseudodifferential calculus for C∗-dynamical systems is
employed crucially to apply heat kernel techniques to geometric operators on T2

θ

to derive small time heat kernel expansions that encode local geometric informa-
tion such as scalar curvature. A purely noncommutative feature is the appearance
of the modular automorphism of the Tomita-Takesaki theory for the KMS state
implementing the conformal perturbation of the metric in the computations and in
the final formula for the curvature [4, 7]. Among other results, in [9] we show that
modular automorphism appears also in the final formula for the scalar curvature
of the noncommutative 4-tori.

We consider the noncommutative 4-torus T4
θ with the simplest structure of

a noncommutative abelian variety. We perturb the standard volume form on
this space conformally and analyse the corresponding perturbed Laplacian. Using
Connes’ pseudodifferential calculus for T4

θ we derive the small time heat kernel
expansion for the perturbed Laplacian. This enables us to prove the analogue
of Weyl’s law for T4

θ by studying the asymptotic distribution of the eigenvalues
of the perturbed Laplacian on this space. We define a noncommutative residue
on the algebra of classical pseudodifferential operators on T4

θ, and show that it
gives the unique continuous trace on this algebra. We also prove the analogue
of Connes’ trace theorem for T4

θ by showing that this noncommutative residue
and the Dixmier trace coincide on pseudodifferential operators of order −4. We
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have performed the computation of the scalar curvature for T4
θ, and found explicit

formulas for the local functions that describe the curvature in terms of the modular
automorphism of the conformally perturbed volume form and derivatives of the
logarithm of the Weyl factor. Then, by integrating this curvature, we define and
find an explicit formula for the analogue of the Einstein-Hilbert action for T4

θ.
Finally, we show that the extremum of this action occurs at metrics with constant
scalar curvature. We record here some of the main results of our paper [9] that
were presented in my talk in Oberwolfach.

Theorem 1. (Noncommutative Weyl’s law) The eigenvalue counting function N
of the Laplacian 4ϕ on T4

θ satisfies

(1) N(λ) ∼ π2ϕ0(e−2h)

2
λ2 (λ→∞).

Theorem 2. (Noncommutative Connes’ trace theorem) Let ρ be a classical pseu-
dodifferential symbol of order −4 on T4

θ. Then Pρ is a measurable operator in
L1,∞(H0), and under the assumption that all nonzero entries of θ are irrational,
we have ∫

−Pρ =
1

4
res(Pρ).

Following [3, 4, 7] we define the scalar curvature of T4
θ equipped with the per-

turbed Laplacian 4ϕ as follows.

Definition 1. The scalar curvature of the noncommutative 4-torus equipped with
the perturbed volume form is the unique element R ∈ C∞(T4

θ) such that

ress=1Trace(a4−sϕ ) = ϕ0(aR),

for any a ∈ C∞(T4
θ).

Theorem 3. The scalar curvature R of T4
θ, up to a factor of π2, is equal to

e−hK(∇)
( 4∑
i=1

δ2i (h)
)

+ e−hH(∇(1),∇(2))
( 4∑
i=1

δi(h)2
)
,(2)

where

K(s) =
1− e−s

2s
,

H(s, t) = −e
−s−t ((−es − 3) s (et − 1) + (es − 1) (3et + 1) t)

4st(s+ t)
.

A natural analogue of the Einstein-Hilbert action for T4
θ is ϕ0(R), where R is

the scalar curvature given by (2). In the following theorem we find an explicit
formula for this action.
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Theorem 4. A local expression for the Einstein-Hilbert action for T4
θ, up to a

factor of π2, is given by

(3) ϕ0(R) =
1

2
ϕ0

( 4∑
i=1

e−hδ2i (h)
)

+ ϕ0

( 4∑
i=1

G(∇)(e−hδi(h))δi(h)
)
,

where G(s) = −4s−3e−s+es+2
4s2 .

The Einstein-Hilbert action ϕ0(R) attains its maximum if and only if the Weyl
factor e−h is a constant. This is done by combining the two terms in the ex-
plicit formula (3) for ϕ0(R), and observing that it can be expressed by a non-
negative function. We note that the function G in (3), is neither bounded below
nor bounded above.

Theorem 5. The maximum of the Einstein-Hilbert action is equal to 0, and it is
attained if and only if the Weyl factor is a constant. That is, for any Weyl factor
e−h, h = h∗ ∈ C∞(T4

θ), we have

ϕ0(R) ≤ 0,

and the equality happens if and only if h is a constant.
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