
 

 

Operator Algebra 
 
Operator algebra is an algebra of continuous linear operator on a topological 
vector space with the multiplication is given by the composition of mappings. In 
particular it is a set of operator with both algebraic and topological closure 
properties.  
Operator algebra is usually used in reference to algebras of bounded operators on a 
Banach space or even more especially on a separable Hilbert space, endowed with 
the operator norm topology. 
 
Observation: ( )HB , the set of all bounded linear operators is a non commutative 
ring. 
 

Topologies on a Hilbert space H 
A Hilbert space has two useful topologies, which are defined as follows: 
Strong or norm topology: Since a Hilbert space has, by definition, an inner 
product < , >, that inner product induces a norm and that norm induces a metric. 
So our Hilbert space is a metric space. The strong or norm topology is that metric 
topology. A subbase is the collection of all sets of the form  
 ( ) ( )00 , xBxO εε =  
which is in fact, a base for the metric topology. 
In norm topology 0|||| →− xxn  as ∞→n  and we say strong convergence. 
 
Weak topology: A subbase for the weak topology is the collection of all sets of 
the form  
 ( ) { }εε <〉−〈∈= yxxHxyxO ,:,, 00  
If { }nx  is a sequence in H and 〉〈→〉〈 yxyxn ,,  for all Hy∈ , then { }nx  is weakly 
convergence. 
Observation:  
 (i) The weak topology is weaker than the strong topology 
 (ii) Strong convergence implies weak convergence. 

Example: The sequence ( ){ }txn  where ( ) ,......3,2,1,sin
== nnttxn π

 is weakly 

convergent in ( )π2,02L  but it is not norm convergent in ( )π2,02L . 
 

Topologies on ( )HB  
The space of bounded linear operators on a Hilbert space H has several topologies.  
Norm topology: We know ( )HB  is a normed space and the given norm induces a 
metric, so ( )HB  is a metric space. So the norm topology is just defined to be the 
metric topology. 



 

 

In the norm topology TTn →  if and only if 0|||| →−TTn  
 
Strong operator topology (SOT): A subbase for the strong operator topology is 
the collection of all sets of the form  
 ( ) ( ) ( ){ }<∈−∈= ||:||,, 00 xTTHBTxTO ε  
We know a base is the collection of all finite intersections of such sets. It follows 
that a base is the collection of all sets of the form  
 ( ) ( ) ( ){ }kixTTHBTxxxTO ik .......,,2,1||:||,,.....,,, 0210 =<∈−∈=ε  
The corresponding concepts of convergence: TTn →  strongly if and only if  

TxxTn →  strongly for each x in H (i.e. 0|||| →−TxxTn  for each x) 
 
Weak operator topology (WOT):  A subbase for the weak operator topology is 
the collection of all sets of the form  
 ( ) ( ) ( ){ }<∈〉−〈∈= yxTTHBTyxTO ,:,,, 00 ε   
We can also form base from this sets for WOT. 
The corresponding concept of convergence: TTn →  weakly if and only if  

TxxTn →  weakly for each x in H (i.e. 〉〈→〉〈 yTxyxTn ,,  for each x and y) 
 
Example:  Consider the bounded operator on 2l   

(i) Let nT  be defined by 





= ,.......1,1......),,( 2121 x

n
x

n
xxTn , then 0→nT   in 

the norm topology. 
(ii) Let nS  be defined by ( ),.......,.,..........,0,0......),,( 2121 ++= nnn xxxxS  , 

where  0 in n places, then 0→nS  in the strong topology but not in the uniform 
topology. 

(iii) Let  nW  be defined by ( ),.......,.......,,0,0......),,( 2121 xxxxWn =  , where 0 
in n places,  then 0→nW  in the weak operator topology but not in the strong or 
uniform topologies. 
 
Example: Let ( )nx  be a dense sequence in the unit ball B of H and define the 
metrices  
 ( ) ( )∑ −= − ||||2, n

n
S xTSTSd  and ( ) ( )∑ 〉−〈= −

nn
n

W xxTSTSd ,2,  
then Sd  induces  the strong topology on B and Wd  the weak topology. 
 
Observation:  

(i) The WOT is weaker than SOT and SOT is weaker than the norm 
topology.  

(ii) Norm convergence implies strong convergence and strong convergence 
implies weak convergence. If we impose additional conditions, then the reverse is 



 

 

also true in the following sense: (i) If 〉〈→〉〈 yTxyxTn ,,  uniformly for 1|||| =y , 
then 0|||| →−TxxTn  and (ii) If 0|||| →−TxxTn  uniformly for 1|||| =x , then 

0|||| →−TTn  
(iii) Which of the three topologies (uniform, SOT, WOT) makes the norm 

(i.e. the function |||| TT → ) continuous? 
The norm is continuous with respect to the uniform topology and discontinuous 
with respect to the SOT and WOT 

(iv) Which of the three topologies (uniform, SOT, WOT) makes the adjoint 
(i.e. the mapping *TT → ) continuous?  
The adjoint is continuous with respect to the uniform and WOT and discontinuous 
with respect to the SOT.  

(v) Multiplication is continuous with respect to the norm topology and 
discontinuous with respect to the SOT and WOT. 
 
There are many topologies that can be defined on ( )HB . These topologies are all 
locally convex, which implies that they are defined by a family of semi norms.  
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The most commonly used topologies are the norm, strong and weak operator 
topologies. The weak operator topology is useful for compactness arguments. The 
norm topology is fundamental because it makes ( )HB  into a Banach space. Strong 
topology provides the natural language for the generalization of the spectral 
theorem.  
The SOT lacks some of the nicer properties that the weak operator topology has, 
but being stronger, things are some times easier to prove in this topology. It is 
more natural too, since it is simply the topology of pointwise convergence for an 
operator. 
As an example of this lack of nicer properties,  
Example: let us mention that the involution map is not continuous in SOT:  fix an 
orthonormal basis { }Nnen ∈:  of a Hilbert space and consider the unilateral shift S 
given by  
 ( ) 1+= nn eeS  
Then the adjoint *S  is given by  
 ( ) ( ) 0,1, 0

*
1

* =≥= − eSneeS nn  
The sequence { }nS  satisfies ( ) |||||||| xxSn =  for every vector x, but ( ) 0lim * =

∞→ nn
S  in 

the SOT topology. 
 
Observation:  All norms on a finite dimensional vector space are equivalent from 
a topological point as they induce the same topology although the resulting metric 
space need not be same. Moreover the strong operator topologies and weak 
operator topologies coincide on the group ( )HU  of unitary operators in ( )HB . 
  
Mention that subsets of a topological vector space are weakly closed means closed 
with respect to the WOT and strongly closed means closed with respect to SOT. 
Similarly we can define strong continuity and weak continuity. 
 
Proposition: For a functional ϕ  on ( )HB  the following conditions are equivalent: 

(i) There are vectors nxxx ......,,, 21  and nyyy ......,,, 21  in H such that 
( ) ∑ 〉〈= kk yTxT ,ϕ  for all T in ( )HB . 

(ii) ϕ  is weakly continuous 
(iii) ϕ  is strongly continuous 

Corollary: Every strongly closed, convex set in ( )HB  is weakly closed. In 
particular, every strongly closed subspace of ( )HB  is weakly closed. 
 
For any subset U  of ( )HB  we let U ′  denote the commutant of U, i.e. 
 ( ){ }USSTTSHBTU ∈∀=∈=′ ,:  



 

 

Here U ′  is weakly closed and is an algebra. If U is a self-adjoint subset of ( )HB  
(which means if US ∈  then US ∈* ), then U ′  is a weakly closed, unital C*-
subalgebra of ( )HB . 

Similarly we can also find iterated commutants ( )′′U  and ( )
′





 ′′U which we will 

write U ′′  and U ′′′  respectively. 
Note that if 2UU ⊂  then ′⊃′ 21 UU . On the other hand we have UU ′′⊂ . It 
follows that UUU ′′′⊂′⊂′′′  for every subset U, so that the process of taking 
commutants stabilizes after at most two steps. 
The following double commutant theorem by Von Neumann (1929) is the 
fundamental result in operator algebra theory. 
 
Theorem: For a self-adjoint, unital subalgebra U of ( )HB  the following 
conditions are equivalent: 
 (i) UU ′′=  
 (ii) U is weakly closed  
 (iii) U is strongly closed 
 
Proof: )()( iii ⇒  Since U ′  is weakly closed, so U ′′  is also weakly closed which is 
equal to U. Hence U is weakly closed.  

)()( iiiii ⇒  follows by previous corollary. 
)()( iiii ⇒  We already know UU ′′⊂ , to prove the converse let UT ′′∈ . We want to 

show that T lies in the strong closure of U. A neighborhood base of zero in the 
strong topology is given by the system of all sets of the form 

( ){ }niSxHBS i ,.....,2,1||:|| =<∈ ε  where nxxx ,........,, 21  are arbitrary vectors in H. 
and 0>ε . So it suffices to show that for given Hxxx n ∈,........,, 21 and 0>ε there is 
a US ∈  with ε<− |||| ii SxTx  for ni ,.....,2,1= . For this let ( )HB  act diagonally on 

nH . The commutant of U in ( )nHB  is the algebra of all nn×  matrices with entries  
in U ′ , and the bicommutant of U in ( )nHB  is the algebra IU ′′ , where 

nII = denotes the nn×  unit matrix. Consider the vector ( ) t
nxxxx ,.......,2,1=  in 

nH . The closure of Ux  in nH  is a closed, U-stable subspace of nH . As U is a *-
algebra, the orthogonal complement ( )⊥Ux  is U-stable as well; therefore the 
orthogonal projection P onto the closure of Ux  is in the commutant of U in 
( )nHB . It follows that IUT ′′∈  commutes with P and leaves Ux  stable. One 

concludes UxTx∈ , and so there is, to given 0>ε , an element S of U such that  
ε<− |||| SxTx , which implies the desired ε<− |||| ii SxTx  for ni ,.....,2,1= . 

 



 

 

An algebra satisfying the conditions of above is called a Von Neumann algebra  
These algebras appear quite naturally in many connections. From the preceding we 
see that if D is any self-adjoint subset of ( )HB , then D′  is a Von Neumann 
algebra. 
 
 We can also define Von Neumann algebra by following ways: 
Let H be a Hilbert space. A *- subalgebra M of ( )HB , which contains the unit 1 of 
( )HB  and is closed with respect to the weak topology, is called a Von Neumann 

algebra.  
 
Since weak-closedness implies norm-closedness, every Von Neumann algebra is a 
C*-algebra. So Von Neumann algebras are a special class of C*-algebras. Those 
C*-algebras that appear in topology / geometry are separable C*- algebras in most 
cases. However Von Neumann algebras are not separable with respect to norm 
topology unless they are finite dimensional. We illustrated it by an example. 
 
Example: The algebra ( )HB  is a VonNeumann algebra. Let { }Nnen ∈;  be an 
orthonormal system of H. Choose a sequence ( )nαα =  so that { }1,0∈nα . Define 

( )HBT ∈α  by  
  ∑ 〉〈=

n
nnn eeT ,φαφα  

Then { }ααT  is an uncountable set, and ( )βαβα ≠=− 1|||| TT . Therefore  { }αT  
cannot be approximated by a countable set. 
 
Example: The ring ( )RL∞  of essentially bounded measurable functions on the real 
line is a commutative Von Neumann algebra. 
 
Example: Let ( )11 HBM ⊂  and ( )22 HBM ⊂  be Von Neumann algebras. On the 
direct sum 21 HH ⊕  of Hilbert spaces, the space  

  ( )








∈∈⊕∈







2121 ,;

0
0

MbMaHHB
b

a
  

is a Von Neumann algebra. This Von Neumann algebra is called the direct sum of 
1M  and 2M , and it is denoted 21 MM ⊕  

 
A commutative, self-adjoint algebra U of operators in ( )HB  is maximal 
commutative if it is not contained properly in any larger commutative  *-
subalgebra of ( )HB . Since if UT ′∈  and *TT = , then the algebra generated by U 
and T will be commutative and self-adjoint. Thus just as the condition UU ′⊂  
characterizes the commutative *-subalegbras of ( )HB , the condition UU ′=  
characterizes the maximal commutative algebras in the class of *-subalegbras of 



 

 

( )HB . In particular each maximal commutative algebra is weakly closed and 
contains I, and is therefore a Von Neumann algebra. 
 
Examples of operator algebras which are not self-adjoint include: nest algebras, 
many commutative subspace lattice algebras, many limit algebras.  
 
Nest algebras are a class of operator algebras that generalize the upper triangular 
matrix algebras to a Hilbert space context.  
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