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What is curvature?
Classical geometry: R;kl, R, R.
Einstein-Hilbert action: [, Rdvol.
Einstein field equation R, — 1g,, R + g A = 32T,

Chern-Weil theory: — Tr(e®) Q; = Rjjpda® A dzl.



Curvature in NCG

Connection-Curvature formalism of Connes in 1981 (NC Chern-Weil
theory):

V:E— E®sQ'A, V € Endc(E @4 QA)
VvZe EndQA(E ®A QA) = EndA(E) R4 QA.
Any cyclic cocycle ¢ : A®(n+1) _ C defines a closed graded trace
fw : QA — C. Can define fw Tr(e®), etc. But won't discuss it here.

In particular in his 1981 paper Connes shows how to define the
curvature of vector bundles over NC tori using this idea.



How to define the scalar curvature of a spectral triple (A, H, D)?
This is also answered by Connes since late 1980's and is based on
ideas of spectral geometry. But computing it in concrete examples
is only acheived in the last few years!

A spectral triple is a NC Riemannian manifold. It is tempting to
think that one might be able to define a Levi-Civita type connection
for a spectral triple and then define the curvature of this connection.
For many reasons this does not work in NCG in general.



Spectral geometry

» (M, g) = closed Riemannian manifold. Laplacian on forms
A= (d+d)?: QP (M) — QP(M),
has pure point spectrum:

0< A <A< - =00

» Fact: Dimension, volume, total scalar curvature, Betti
numbers, and hence the Euler characteristic of M are fully
determined by the spectrum of A (on all p-forms).



Heat trace asymptotics
» Heat equation for functions: 9, + A =0

> k(t,z,y) = kernel of e~*. Asymptotic expansion near t = 0:

k(t,x,x) ~ (Clo(.r,A)+CL1(1‘,A)t+G2($,A)t2+...)

b
(47Tt)m/2

> a;(x, ), Seeley-De Witt-Gilkey coefficients.
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» Theorem: a;(z, ) are universal polynomials in the curvature
tensor R = le‘kl and its covariant derivatives:

ap(z, ) = 1
1
ar(x,N) = 65(3:) scalar curvature
A) = L (@QR@)P - 2Ric(@)? +5|S(2)]?
W 8) = IR ~ 2Ric(@)]? +5[5(2)])



Spectral Triples

Noncommutative geometric spaces are described by spectral triples:
(A, H, D),
7 A— L(H) (x-representation),
D =D*:Dom(D)CH— H,
Dr(a) —7(a) D € L(H).

Examples.

(C>(M),L*(M, S), D = Dirac operator).

(=", 22", % a%).



Noncommutative Local Invariants

The local geometric invariants such as scalar curvature of (4, H, D)
are detected by the high frequency behavior of the spectrum of D
and the action of A via heat kernel asymptotic expansions of the
form

Trace (ae™'P%) ~po > aj(a, D*) 2 g e A
=0



Noncommutative 2-Torus Ay = C(T%)

It is the universal C*-algebra generated by U and V s.t.

U* — U*l7
V* _ V*l,
VU = 2™uv,

where 0 € R is fixed.

The geometry of the Kronecker foliation dy = 6dx on the ordinary
torus R?/Z? is closely related to the structure of this algebra.

A representation of Ay:

Ug(x) = e*™¢(x), V() =¢&(z+0), € L*(R).



Action of T? = (5£-)? on Ay and Smooth Elements

as: Ag — Ay, seR?,
as(UmVn) — eis.(m,n)U'mVn, m,n € 7.

Ay = {a € Ay; s +— as(a) is smooth from R*to Ay}

={ ) amaU™V" € Ap;  (amn) € S(Z)}.

m,n€z
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The Derivations §1, > and the Volume Form

® 01,00 1 AZ® — Ag° are defined by:
a(U)=U, &(V)=0, 6U)=0, &V)=V,
di(ad) = d;(a) b+ ad;(b), a,b e Ag.
e Tracial state o : Ag — C (analog of integration):

¥o (1) =1, $¥o (Umvn) =0 if (mvn) # (050)



Conformal Structure on Ay (Connes)

The Dolbeault operators associated with 7 € C, (1) > 0 are

=081 +76s: Ho — HLO),
O =101+ 710y: Hg — HOD,

The conformal structure represented by 7 is encoded in

¥(a,b,c) = —po(ad(b) d(c)), a,b,c e A,

which is a positive Hochschild cocycle.



Conformal Perturbation (Connes-Tretkoff)

Let h = h* € AZ° and replace the trace ¢g by
@ : Ay — (C,

o(a) = po(ae™™), a € Ay.
@ is a KMS state with the modular group

oi(a) = e geth, a € Ay,
and the modular automorphism
A(a) == oi(a) = e Mael, a € Ay.

plad) = @(bA(a)), a,b € Ay.



A Spectral Triple (A3°,H, D)

H=H, ®H,

a»—><a O):H—>H,
0 a

0 o
e © .
D.<aw 0).71%%,

Dy =0 =01+ 702 : Hy — HIO,
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Anti-Unitary Equivalence of the Laplacians

D? = ( 3w0‘9¢ 8@08; ) tHe @ HEY - H, @ HEO.

Lemma: Let
k= el/2.
We have
0504 My — My ~ kOOk : Ho — Ho,
0,05 : HWO 5 HO o k29 HOO 5 (0,

(The Tomita anti-unitary map J is used.)



Conformal Geometry of T% with 7=
(Cohen-Connes, late 80’s)

Let
AM <A< A3 < be the eigenvalues of 0,0,
and
C(s) = Z)\j_s, R(s) > 1.
Then

¢(0)+1=

(F(A)(61(e"?)) 61(e"2)) + o (F(A)(2(e"/2)) 52 (e/?)),

where

flu) = éu_l/Q_%+£1(u)_2(1+U1/2)£2(u)+(1+u1/2)2£3(u),
Lo (u) = (—=1)™(u — 1)~ (m+D (logu _ i(_l)ﬁlu)

j=1 J
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The Gauss-Bonnet theorem for T

Theorem. (Connes-Tretkoff; Fathizadeh-Kh.) For any 6 € R,
complex parameter 7 € C \ R and Weyl conformal factor e, h =
h* € A%°, we have

¢(0)+1=0.



Final Part of the Proof

S

2 (k@) ) D (k)@ e (D).

‘X(T) 9 S(7)
where
K(z) = — (3 — 3sinh (£) — 3sinh(x) + sinh (22)) csch? (£)
3z2

is an odd entire function, and V = log A.
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a3 2325

K(z) —%Jr 5910~ erO(:cG).
1o
osl.
Ty _ 5 10
sl
1ol




Scalar Curvature for (A3°,H, D)

It is the unique element R € AZ° such that
Ca(0) = po(a R), a€ Ay
where

Ca(s) := Trace(a|D|72%), Re(s) > 0.

Equivalently, consider small-time heat kernel expansions:

Trace(a Z B,(a,D*)t =, a€ AP,
n>0



Final Formula for the Scalar Curvature of T3

Theorem. (Connes-Moscovici; Fathizadeh-Kh.) Up to an overall
factor of % R is equal to

RV +2m () 4 12 53(2)
(9, 9) (51 4 B e (D), s

HW(V,V) (3(7) [51(2),52(2)1).



1 _ sinh(z/2)
R _ 2 T
1) = e/
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RQ(S, t) =

(14-cosh((s+t)/2))(—t(s+t) cosh s+s(s+t) cosh t—(s—t)(s+t+sinh s+sinh t—sinh(s+t

st(s+t) sinh(s/2) sinh(t/2) sinh?((s+t)/2)
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Wi(s,t) =

(—s —t+tcosh s+ scosht + sinh s + sinh ¢ — sinh(s + t))

stsinh(s/2) sinh(¢/2) sinh((s 4 t)/2)




Derivation of the Asymptotic Expansion

Approximate e~ tD? by pseudodifferential operators:

eftD2 _ L/ 67t)\ (D2 _ A)fl d)\,
C

- 2mi
By (D?* —\) ~1,

U(B)\):b0+b1+b2+



Connes’ pseudodifferential calculus (1980)

e Symbols p: R* = AX = P, : AX — A%

= (2m) 2 /R2 /]Rz e "8 p(€) as(a) ds dé, a € Ag°.

e Differential operators:

p(&1,62) Zamflfm ai; € Ag° = Pp:zaijfsi(g

e WDO's on AZ° form an algebra:

HPQ)~ 3 OO (p(€) 3185 (4 (€)).
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Rearrangement Lemma

1
For any m = (mg, m1,...,my) EZZ;B and p1,...,p¢ € Ag°

oo )4
/ ul™=2(ehy 4 1) 7m0 Hpj (ehu+1)"™i du
0 1

— e (ml=Dh R (AL A) ( 11 Pj>7

1

where

m|m\ 2

Fm(uh...,ug):/ooowjl_[( H“k+1) mj do.



Examples of F,,

~ 60u”log(u) + (v — 1) (u(u(3(u — 9)u — 47) 4 13) — 2)
Fiz4 (u) = 6(u— 1)0u3

F(2,2,1)(Ua U) =

('u—1)((u—l)(u'u—1)(u(u(v—1)+v)—1)—u2(v—1)(2u'u+u—3) log(uv))+(u(2v—3)+1)(uv
(u—1)3u2(v—1)2(uv—1)2
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Identities Relating J;(c") and §;(h)

e 5i(e") = g1(8) (8:(h)),

e " 67(e") = gi(A) (67(R)) + 292(A1y, A2)) (6:(h) 65(h)),

where

u—1

g1(u) =

~ logu’

u(v — 1) log(u) — (u — 1) log(v)
log(u) log(v)(log(u) + log(v))

g2 (uv U) =



Noncommutative 4-Torus T}

C(Tj) is the universal C*-algebra generated by 4 unitaries

U17 U27 U37 U47
satisfying

UpUp = e*™% UyUy,
for a skew symmetric matrix

0 = (Oxe) € Ma(R).



Action of T* = (R/27Z)* on C(T})
RS s a, € Aut(C’(Tg)),
as (U™) i=esmyum™, U™ :=U™ U= Uy U,

_o@s 1 C%(Tg) = C*=(Ty),

(5j(Uk) = Uy, if k=7,
=0 if k # j.

ijZ.



Complex Structure on T}

0 =01 P 0s, 5251@5%

1 1
61 = 5 ((51 — i53), 82 = 5 ((52 — i(54),

_ 1 - 1
= 5 ((51 + i(53)7 Oy = 5 (52 + Z'(54).



Volume Form on T}

@Yo : C(Tg) — (C7
wo(1) :=1,

900([]?11 Ugnz Ugls UZM) = Ov (m17m27m3’m4) # (0,0,0,0)

vo(abd) = po(ba), a,bEC(Tg).

wo(a™a) >0, a # 0.



Conformal Perturbation (Connes-Tretkoff)

Let h = h* € C>°(T}) and replace the trace ¢q by
@ :C(Ty) — C,

o(a) = po(ae ), a€ C(Tg).

@ is a KMS state with the modular group
oi(a) = e g e=2ith, a € C(Ty),
and the modular automorphism
A(a) == oi(a) = e 2 ae®h, a € O(Tp).

plab) = gp(b A(a)), a,be C(Tg).



Perturbed Laplacian on T}

_ 3. 1,0 0,1
d=0®0:H, = HIO o HOY,
A, = d*d.

Remark. If h =0 then ¢ = ¢ and
Ny =07+ 035 + 03 + 05 = 9%0

(the underlying manifold is Kahler).



Scalar Curvature for T}

It is the unique element R € C°°(T}) such that
Ress—1(u(s) = po(a R), a € C*(Ty),

where
Ca(s) := Trace(a A*), R(s) > 0.



Explicit Formula for A,
Lemma. (Fathizadeh-Kh.) Up to an anti-unitary equivalence A,
is given by
eOre"drel + e Bre "y e + e Ore ™" Bre + e Bre " De,

where 01, 0> are analogues of the Dolbeault operators.



Connes’ Pseudodifferential Calculus (1980)

A smooth map p : R* — C°°(T}) is a symbol of order m € Z, if
for any i,j € Z‘éo, there exists a constant ¢ such that

1076 (p(€))1] < e(1 + g™ 1,

and if there exists a smooth map k : R*\ {0} — C°°(T}) such that

lim A""p(AE) = k(€), €€ R\ {0},

A—00



e Given a symbol p : R* — C°°(T3}), the corresponding ¥DO is:

(2m)~ // —ist (a) ds dE, a € C(T}).

e Differential operators:
O=> arl’, aeCT)) = P,=> ad".

e UDO's on T} form an algebra:

o(PQ) ~ Y 5 0ole) 5 ().

ezl



e A symbol p : R* — C>(T}) of order m is elliptic if p(¢) is
invertible for any £ # 0, and if there exists a constant ¢ such that

1p(&) 7| < (1 + |€)) ™,

when [¢] is sufficiently large.

e Example of an elliptic operator:

Ny = e"dre el +el 9170y el +e" Dy Dyel+eM s Dy
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Final Formula for the Scalar Curvature of T}

Theorem. (Fathizadeh-Kh.) We have

4
J‘k 52 hH(V,V) §i(h)2 |
where
V(a) = [~h,a], [(AS O(T4)
o= g
H(s,t) = e (e =) s (e - D4 (e - DB+ D)

Ast(s+1)



12

s3

48Jr

st s°

240 1440

+O(56).
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l 5 ¢t t2

H(s,t) = (i+24+0(t3)) +5<2416+80+O(t3))

2 —i ﬁ,i 3 3
s ( 12 7210 144+O(t)>+0(5)-




e=2 (ef —1)°

452
1 S 752 s3 315t s°
= — - _ - - O 6 .
171 48 T 16 1aa0 e TO )
e 5 P
-05}+
=10+
,1.5,
20+

-25
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—4s —3e " * +e®+2

82 83

S
6 18 T120 1210 "
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Einstein-Hilbert Action for T}

Theorem. (Fathizadeh-Kh.) We have the local expression (up to
a factor of 72)

¢o(R) = *Z@(’W )

Ny (GV) e o,(m) di(h) ).
i=1



Extremum of the Einstein-Hilbert Action

Theorem. (Fathizadeh-Kh.) For any Weyl factor e~ € C>°(T%)
SOO(R) < Oa

and the equality happens if and only if h is a constant.

Proof.
4
po(R) =D wo(e "T(V)(8:(h)) 6i(h)),
where
T(s):le_s 1 G(s):—2s+es—e_s(2$+3)+2



S

12

2 88

16 80

st s?

288 2016 T

0] (56) .
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Analogue of Weyl’s Law for T}

Theorem. (Fathizadeh-Kh.) For the eigenvalue counting function
N(A) =#{N < A}

of the Laplacian A, on Tj, we have

2 —2h
N(A) ~ %/\2 (A — 00).
Corollary.
V2 1 .
Aij o —— =2 1)2
J 7TL,00(€_2}L)1/2 J (] - OO),
-2 i —2h
Trw((l—i—A@) ) = 7(,00(6 ).



Karamata’s Tauberian theorem

Let i be a positive measure on R, such that
oo
/ e du(\) < oo, vt > 0,
0

and -
lim ¢* / e Pdu(\) =C
0

t—0+

for some positive constants a and C'. Then for any continuous
function f on [0,1] we have

lim toz/ f —tA _t)\dﬂ / f —t ta 1 et dt.

t—0+
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The Dixmier trace Tr,, : L1°(H) — C

For any T € K(H), let
p1(T) > po(T) = --- >0

be the sequence of eigenvalues of |T| = (T*T)z.

. LY (H) == {T € K(H); Z tin(T) = O (logN)}.

N
1
o T(M)i=lin (g D ua(T),  0<TeLV®(H).
n=1



Noncommutative Residue (Wodzicki)

Let P be a classical DO acting on smooth sections of a vector
bundle E over a closed smooth manifold M of dimension n.

e Definition:

Res(P) = (2r) " / t(pn(z,€)) dr d,

S*M

where S*M C T*M is the unit cosphere bundle on M and p_,, is
the component of order —n of the complete symbol of P.

e Theorem: Res is the unique trace on U(M, E).



A Noncommutative Residue for T}

Classical symbols: p: R* — C>°(T3)
p&) ~ D pmi§) (£ o0),
i=0

pm—i(t E) = tm_i an—i(g)v t> 0) g € R4'

Proposition. The linear functional
Res(P,) := /S‘; wo(p-a(€)) d¢

is the unique trace on classical pseudodifferential operators on ']I“;.



Analogue of Connes’ Trace Theorem for T}

Theorem. (Fathizadeh-Kh.) For any classical symbol p of order
—4 on T}, we have

P, € LY (Hy),
and 1
Tr,(P,) = ZRes(Pp).

Remark. Weyl's law is a special case of this theorem: let

1

p(§) = W
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