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Abstract

This talk is a quick introduction to summability theory and regularization
of divergent series. Afer a quick introduction to Abel, Cesaro, and Borel
summation techniques, I shall mostly focus on one such theory of
summability: zeta function regularization. I will show how to define and
compute divergent sums like the one on the title, as well as many others
like 1 + 1 + 1 + 1 + · · · = −1/2, or 1 + 4 + 9 + 16 + 25 + · · · = 0. I shall
also discuss the closely related cutoff regularization method. One of
Euler’s goals in this area of math was to find (nowadays we say to
define!) the alternating sum of factorials 1!− 2! + 3!− 4! + 5!− · · · . I
shall explain this and will give Euler’s surprising answer!



Introduction

The title of my talk sounds like an utterly wrong statement! After all,
the infinite series 1 + 2 + 3 + 4 + · · · is divergent and in fact diverges to
infinity. So shouldn’t we just say 1 + 2 + 3 + 4 + · · · =∞? Of course we
can. But then with the same limited understanding of summation we
shall assign the same value, infinite, to a host of other very different
types of series like 1 + 1 + 1 + 1 + · · · or 1 + 4 + 9 + 16 + 25 + · · · , etc.
The point of my talk is that in doing so we are throwing away a wealth of
information hidden in such divergent series. Information that can have
practical implications for mathematics and its applications.



This situation is a bit similar to set theory and cardinal numbers.
Mathematicians used to think that there are only two types of numbers:
finite and infinite. Of course, after Cantor, we know that there is a vast
hierarchy of infinities and knowing about these different types of infinities
is often very useful.



Enter Euler

One of the first people who realized the importance of divergent series
and developed some techniques to sum divergent series was Leonhard
Euler. In fact Euler was of the opinion that any series is summable and
one should just find the right method of summing it! In the last 250
years many summation techniques have been designed and there is now a
vast summability theory: Abel summation, Cezaro summation, Borel
summation, zeta function regularization, cutoff regularization, etc.



The problem: taming infinities

I How to make sense of an infinite sum like

1 + 2 + 3 + · · ·

I Standard answer: it is certainly true that the series is divergent to
infinity and hence we can say

1 + 2 + 3 + · · · =∞

This is correct!

I But imagine we want to regularize this infinity and get a finite
number. How would you proceed? Somehow we need to extend the
class of convergent series to a larger class. There are many
possibilities.
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Abel summation

I This is in fact due to Euler. To sum a divergent series like
∑

an,
define the power series

f (x) =
∞∑
n=0

anx
n.

Assume
∑

anx
n is convergent for |x | < 1, and assume limx→1− f (x)

exists. Then we can define

∞∑
n=1

an := lim
x→1−

f (x) (Abel).

I Example: The Abel sum of 1− 1 + 1− 1 + · · · is 1
2 since

f (x) = 1− x + x2 − x3 + · · · = 1
1+x .



Abelian and Tauberian Theorems

I A Theorem of Abel (this is really due to Abel!) asserts that a
convergent sequence

∑∞
n=1 an is Abel summable and its Abel sum is

equal to its standard sum. Thus Abel summation extends the
standard summation of series, but the class of Abel summable series
is strictly larger than summable series.

I There is a kind of converse to Abel’s theorem. Tauber’s theorem
states that if a series is Abel summable and if an = o(1/n), then the
series is actualy convergent.



Cesaro summation

I Let sk = a1 + · · ·+ ak denote the kth partial sum of the series∑∞
n=1 an. The series is called Cesaro summable, with Cesaro sum C ,

if the average value of its partial sums tends to C :

lim
n→∞

1

n

n∑
k=1

sk = C .

I It is easy to see show that a convergent sequence is Cesaro
summable and its Cesaro sum is equal to its standard summation.
But the converse need not be true:

I Example: the series 1− 1 + 1− · · · is clearly not summable, but is
Cesaro summable with Cesaro sum 1/2.
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I Example: The series 1 + 2 + 3 + · · · is not Cesaro summable as can
be easily verified.



Borel summation

I To sum the divergent series
∑

n≥1(−1)nn!, Euler used the formula

n! =

∫ ∞
0

e−ttn
dt

t
,

and then wrote, quite formally,∑
n≥0

(−1)nn! =
∑
n≥1

(−1)n
∫ ∞

0

e−ttn
dt

t

=

∫ ∞
0

e−t
∑
n≥1

(−1)ntn
dt

t
=

∫ ∞
0

e−t

1 + t
dt

Notice that the last integral is convergent!This idea can be extended
to a full fledged summability theory, called Borel summation.



Zeta function regularization

I To regularize a divergent series like
∑∞

1 an, we replace it by the
function

Z (s) =
∞∑
n=1

a−sn ,

and let
∞∑
n=1

an := Z (−1).

I For this to make sense: Z (s) must be convergent (hence
holomorphic) for Re(s) large enough and it must have an analytic
continuation to s = −1.

I Let us apply this to the series 1 + 2 + 3 + 4 + · · · .
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I In this case Z (s) = ζ(s) is the Riemann zeta function, originally
defined as

ζ(s) =
∞∑
n=1

n−s =
1

1s
+

1

2s
+

1

3s
+ · · · R(s) > 1.

It is convergent (and holomorphic) only in R(s) > 1. But it has an
analytic continuation to C \ {1}, with a simple pole at s = 1. So the
regularization

1 + 2 + 3 + · · · = ζ(−1)

is well defined and finite. How to compute ζ(−1)? Let us first
understand the idea of analytic continuation.



What is analytic continuation and how it is done in
practice?

I Our original formula for ζ(s)

ζ(s) =
∞∑
n=1

n−s =
1

1s
+

1

2s
+

1

3s
+ · · · R(s) > 1,

is divergent in the left half plane R(s) ≤ 1, but ζ(s) has an analytic
continuation to C \ {1}. How is this possible?

I Standard method to find an analytic continuation of an analytic
function f (z) : Find a different formula for f (z) which is manifestly
defined and holomorpic on a larger domain.
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Analytic continuation of ζ(s)

I A simple example: f (z) =
∑∞

n=0 z
n is only convergent and defined

for |z | < 1, but a different formula for it, f (z) = 1
1−z , is clearly

analytic in C \ {1}.

I We apply the same idea to Riemann zeta function. Is there a
different formula for ζ(s) that is manifestly analytic in a larger
domain? Yes, and in fact there are many formulas and all of them
are rather hard to find. In his 1859 magnificient paper, Riemann
gave at least two other formulas for ζ(s) that leads to its analytic
continuation. Here we give yet another formula that is based on
Euler-Maclaurin summation formula. We need to know about
Bernoulli numbers first.



Analytic continuation of ζ(s)

I A simple example: f (z) =
∑∞

n=0 z
n is only convergent and defined

for |z | < 1, but a different formula for it, f (z) = 1
1−z , is clearly

analytic in C \ {1}.

I We apply the same idea to Riemann zeta function. Is there a
different formula for ζ(s) that is manifestly analytic in a larger
domain? Yes, and in fact there are many formulas and all of them
are rather hard to find. In his 1859 magnificient paper, Riemann
gave at least two other formulas for ζ(s) that leads to its analytic
continuation. Here we give yet another formula that is based on
Euler-Maclaurin summation formula. We need to know about
Bernoulli numbers first.



Enter Bernoulli numbers

I Bernoulli numbers Bm,m = 0, 1, 2, · · · are defined by their
generating function:

t

et − 1
=
∞∑

m=0

Bm
tm

m!

I Easy to see that

B0 = 1, B1 = −1

2
, B2n+1 = 0, n = 1, 2, 3,

These numbers are ubiquitous: they appear in analysis, geometry,
topology, and numerical analysis.
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Euler-Maclaurin Summation

I This formula turns summation into integration and vice-versa, with
a remainder term that can be effectively computed/estimated:

b−1∑
k=a

f (k) =

∫ b

a

f (x) dx +
n∑

k=1

Bk

k!

(
f (k−1)(b)− f (k−1)(a)

)
+ Rn.

I A heuristic proof: look for a function g s.t.

g(x + 1)− g(x) = f (x)

Then

f (a)+f (a+1)+· · ·+f (b−1) = g(a+1)−g(a)+· · ·+g(b)−g(b−1)

= g(b)− g(a)
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Euler-Maclaurin Summation

I How to find this g? Let D = d
dx . Taylor’s formula gives:

f (x) = g(x + 1)− g(x) = (
∑ Dn

n!
)g(x) = (eD − 1)g(x)

I Rewrite it as

g(x) =
D

eD − 1
h(x), Dh(x) = f (x), h(x) =

∫ x

a

f (t)dt.

I Solution (Bernoulli numbers appear!)

g(x) = (
∞∑
n=0

Bn
Dn

n!
)h(x).

Notice that g(b)− g(a) = h(b)− h(a) =
∫ b

a
f (x)dx .
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Bernoulli polynomials

Bernoulli polynomials Bk(x), k = 0, 1, 2 · · · are defined recursively:

B0(x) = 1

B ′n(x) = nBn−1(x) and

∫ 1

0

Bn(x) dx = 0 for n ≥ 1

Here are the first few

B0(x) = 1

B1(x) = x − 1/2

B2(x) = x2 − x + 1/6

B3(x) = x3 − 3

2
x2 +

1

2
x
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Bernoulli polynomials

I Alternatively, they can be defined by their generating function

text

et − 1
=
∞∑

m=0

Bm(x)
tm

m!
.

In particular
Bm = Bm(0).

I The periodic Bernoulli functions are defined by

B̄n(x) = Bn (x − bxc)
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Remainder term for EM summation

I Periodic Bernoulli functions are defined by

B̄n(x) = Bn (x − bxc)

Using these, the very important formula for Rn is given by

Rn =
(−1)n−1

n!

∫ b

a

f (n)(x)B̄n(x) dx

I Example: for n = 1, we get

b−1∑
k=a

f (k) =

∫ b

a

f (x) dx − 1

2
(f (b)− f (a))) +

∫ b

a

f ′(x)(x − [x ])dx

Proof: Integration by parts!



Remainder term for EM summation

I Periodic Bernoulli functions are defined by

B̄n(x) = Bn (x − bxc)

Using these, the very important formula for Rn is given by

Rn =
(−1)n−1

n!

∫ b

a

f (n)(x)B̄n(x) dx

I Example: for n = 1, we get

b−1∑
k=a

f (k) =

∫ b

a

f (x) dx − 1

2
(f (b)− f (a))) +

∫ b

a

f ′(x)(x − [x ])dx

Proof: Integration by parts!



Example: for n = 2, we get

b−1∑
k=a

f (k) =

∫ b

a

f (x) dx − 1

2
(f (b)− f (a))) +

1

12
(f ′(b)− f ′(a)))

−1

2

∫ b

a

f ”(x)B̄2(x)dx



Faulhaber-Bernoulli formulae

I As a first application we get a formula for power sums. Let
f (x) = xp. Then the remainder Rn = 0 for n > p and we get an
exact formula

n∑
k=1

kp =
1

p + 1

p∑
j=0

(−1)j
(
p + 1

j

)
Bjn

p+1−j .

=
1

p + 1
np+1 +

1

2
np +

p

2
B2n

p−1 + · · · .

I Example:

15 + 25 + 35 + · · ·+ n5 =
2n6 + 6n5 + 5n4 − n2

12
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A new formula for ζ(s)

I As a second application of Euler-Maclaurin summation we obtain a
new formula for ζ(s) that is manifestly extendible to larger domains.
Let f (x) = x−s . We get, for s 6= 1,

N∑
m=1

1

ms
=

1− N1−s

s − 1
+

1 + N−s

2

+
n∑

k=2

Bks(s + 1) · · · (s + k − 2)(1− N−s−k+1)/k! + Rn

I Let N →∞ with Re(s) > 1 fixed. We get

ζ(s) =
1

s − 1
+

1

2
+

n∑
k=2

Bks(s + 1) · · · (s + k − 2)/k!

− 1

n!
s(s + 1) · · · (s + n − 1)

∫ ∞
1

B̄n(x)x−s−ndx
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I Example: for n = 1, we get

ζ(s) =
1

s − 1
+

1

2
− s

∫ ∞
1

(x − [x ]− 1/2)x−s−1dx .

The integral is convergent if Re(s) > 0. This already extends zeta to
the larger domain Re(s) > 0 (with a simple pole at s=1).

I In general, since B̄n(x) is periodic, it is bounded on [1,∞] and hence∫∞
1

B̄n(x)x−s−ndx is convergent if Re(s) > 1− n.

I Thus the new expression for ζ(s) shows that it can be analytically
continued to the larger domain Re(s) > 1− n. By choosing larger
and larger values of n we see that ζ(s) has an analytic continuation
to C \ {1}.
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Special zeta values

The formula that we obtained before,

ζ(s) =
1

s − 1
+

1

2
− s

∫ ∞
1

(x − [x ]− 1/2)x−s−1dx ,

shows that ζ has a simple pole at s = 1 with residue equal to one.

The formula

ζ(s) =
1

s − 1
+

1

2
+

1

12
s − 1

2
s(s + 1)

∫ ∞
1

B̄2(x)x−s−2dx ,

shows that

ζ(0) = −1

2
.
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The formula ,
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1

2
+

1

12
s − 1

2
s(s + 1)(s + 2)

∫ ∞
1

B̄3(x)x−s−3dx ,

shows that

ζ(−1) = − 1

12

And in general we get

ζ(−m) = − Bm+1

m + 1
, m ≥ 0
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Special zeta values

These are usually written in a mystifying way:

1 + 1 + 1 + · · · = −1

2

1 + 2 + 3 + · · · = − 1

12

12 + 22 + 32 + · · · = 0

13 + 23 + 33 + · · · =
1

120
· · · · · ·

1m + 2m + 3m + · · · = − Bm+1

m + 1

These formulas were obtained by Euler in 18th century. His interpretation
of the sums were different though.



Cutoff Regularization

I Here is another method to regularize divergent sums.

I Fix a smooth rapidly decreasing function f : [0,∞)→ R, with
f (0) = 1. f is called a cutoff or regulator. Replace

∑∞
n=0 an by

S(Λ) =
∞∑
n=0

anf (
n

Λ
), Λ > 0.

Very often it happens that S(Λ) is convergent, and has an
asymptotic expansion near ∞

S(Λ) =
∞∑

k=−N

CkΛk , Λ→∞.



Cutoff summation

I In good cases, C0 is independent of the choice of the cutoff function
f . We then define the regularized sum by

a0 + a1 + a2 + · · · = C0.

I Example. If the series is convergent in the usual sense, then C0 is
equal to its limit.

I To compute the constant C0, we can try using Euler-Maclaurin
summation formula, as we explain next.
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Cutoff and Euler-Maclaurin

I In our original Euler-Maclaurin formula, if we let
a = 0, b =∞, n =∞, for a rapid decay function g we get an
asymptotic expansion

∞∑
k=0

g(k) ∼
∫ ∞

0

g(x) dx −
∞∑
k=1

Bk

k!
g (k−1)(0).

I For g(x) = xf ( x
Λ ), we get an asymptotic expansion

∞∑
k=0

kf (
k

Λ
) ∼ Λ2

∫ ∞
0

xf (x) dx − B2

2
+ O(

1

Λ
).
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Cutoff Regularization

I For g(x) = x2f ( x
Λ ), we get an asymptotic expansion

∞∑
k=0

k2f (
k

Λ
) ∼ Λ3

∫ ∞
0

xf (x) dx − B3

3
+ O(

1

Λ
).

I In genral, for g(x) = xmf ( x
Λ ), we get an asymptotic expansion

∞∑
k=0

kmf (
k

Λ
) ∼ Λm+1

∫ ∞
0

xf (x) dx − Bm+1

m + 1
+ O(

1

Λ
).
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I Thus according to our cutoff regularization scheme, the constant
term should give the regularized sum:

1m + 2m + 3m + · · · = − Bm+1

m + 1

which coincides with our zeta function regularization. This is not
accidental.

I As a direct check, we evaluate, with cutoff f (x) = e−x ,

S(Λ) =
∞∑
n=1

ne−
n
Λ =

a

(1− a)2
, a = e−

1
Λ ,

which has the expansion

S(Λ) = Λ2 − 1

12
+

1

Λ2

1

240
+ O(

1

Λ4
).
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I This matches perfectly with what we got from Euler-Maclaurin
summation formula.

I As a good excercise, one should check by a direct calculation as
above that for the cutoff f (x) = e−x one obtains the same result for∑∞

k=1 k
m as we found using Euler-Maclaurin summation formula.



Summary

I We sketched several approaches to regularizing divergent series like
1 + 2 + 3 + · · · : Abel summation, Cesaro summation, Borel
summation, zeta function regularization, and cutoff regularization.
The zeta regularization needed more sophisticated tools like analytic
continuation, and computing special zeta values which was done
using Euler-Maclaurin summation formula.
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