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Abstract

A few years ago I gave a Pizza Seminar talk where I showed how to
regularize a divergent infinite sum like 1 + 2 + 3 + 4 + 5 + · · · and get
-1/12. In this talk I shall discuss a multiplicative version and show how
one can regularize infinite products like 1.2.3.4. · · · and get a finite
number. This topic is intimately related to Stirling’s formula, and to
Riemann’s zeta function, its analytic continuation , functional equation,
and special values. Some tools of classical analysis like Euler-Maclaurin
summation formula will be introduced and used.



The problem: taming infinities

I How to make sense of an infinite product like

1× 2× 3× · · ·

I Standard answer: it is certainly true that

lim
n→∞

(1 · 2 · 3 · · · n) = lim
n→∞

(n!) =∞.

So it makes sense to put ∞! =∞. This is correct!

I But imagine we want to regularize this infinity and get a finite
number. How would you proceed? For example we want to know
how fast these numbers n! grow. But how fast with respect to
what? Can we throw away a divergent bad part and keep a finite
convergent component?
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First approach: Stirling’s formula

I How can we regularize a divergent product like 1× 2× 3× · · · and
get a finite number? Our first approach is simple enough and is
based on:

I Stirling’s formula

n! =
√

2π
√
n
(n
e

)n (
1 + O

(
1

n

))
.

It shows how fast log n! grows compared to some standard functions
like nα(log n)β :

log n! = n log n +
1

2
log n − n + log

√
2π + O(

1

n
)
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Regularizing ∞!

I To regularize limn→∞ log n!, we simply throw away all terms except
the constant term, and define

log∞! = log
√

2π

I Equivalently limn→∞
n!√

n( n
e )n =

√
2π.

So again we set ∞! =
√

2π.
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Second approach: zeta regularization

I The Riemann zeta function, originally defined as

ζ(s) =
∞∑
n=1

n−s =
1

1s
+

1

2s
+

1

3s
+ · · · R(s) > 1,

is convergent (and holomorphic) only in R(s) > 1. But it has an
analytic continuation to C \ {1}, with a simple pole at s = 1.

I A formal manipulation shows a way to regularize ∞! In fact

ζ ′(s) =
∞∑
n=1

(n−s)′ =
∞∑
n=1

− ln n

ns
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Second approach: zeta regularization

I Put s = 0 (this is illegal-why?), and get

ζ ′(0) = −
∞∑
n=1

log n = − log(1 · 2 · 3 · · · ) = − log(∞!)

I So let us define
∞! = e−ζ

′(0)

I Note that our manipulations are wrong and illegal, but the final
definition makes sense and gives a finite number! It is a mystery
that this kind of regularization is so useful in mathematics and
physics. Will it turn out to be the same number we got using
Stirling’s formula? Yes!
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What is analytic continuation and how it is done in
practice?

I Our original formula for ζ(s)

ζ(s) =
∞∑
n=1

n−s =
1

1s
+

1

2s
+

1

3s
+ · · · R(s) > 1,

is divergent in the left half plane R(s) ≤ 1, but it has an analytic
continuation to C \ {1}. How is this possible?

I Standard method to find an analytic continuation of an analytic
function f (z) : Find a different formula for f (z) which is manifestly
defined and holomorpic on a larger domain.
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Analytic continuation of ζ(s)

I A simple example: f (z) =
∑∞

n=0 z
n is only convergent and defined

for |z | < 1, but a different formula for it, f (z) = 1
1−z , is clearly

analytic in C \ {1}.

I We apply the same idea to Riemann zeta function. Is there a
different formula for ζ(s) that is manifestly analytic in a larger
domain? Yes, and in fact there are many formulas and all of them
are rather hard to find. In his 1859 magnificient paper, Riemann
gave at least two other formulas for ζ(s) that leads to its analytic
continuation. Here we give yet another formula that is based on
Euler-Maclaurin summation formula. We need to know about
Bernoulli numbers first.
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Enter Bernoulli numbers

I Bernoulli numbers Bm,m = 0, 1, 2, · · · are defined by their
generating function:

t

et − 1
=
∞∑

m=0

Bm
tm

m!

I Easy to see that

B0 = 1, B1 = −1

2
, B2n+1 = 0, n = 1, 2, 3,

These numbers are ubiquitous: they appear in analysis, geometry,
topology, and numerical analysis.
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Euler-Maclaurin Summation

I This formula turns summation into integration and vice-versa, with
a remainder term that can be effectively computed/estimated:

b−1∑
k=a

f (k) =

∫ b

a

f (x) dx +
n∑

k=1

Bk

k!

(
f (k−1)(b)− f (k−1)(a)

)
+ Rn.

I A heuristic proof: look for a function g s.t.

g(x + 1)− g(x) = f (x)

Then

f (a)+f (a+1)+· · ·+f (b−1) = g(a+1)−g(a)+· · ·+g(b)−g(b−1)

= g(b)− g(a)
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Euler-Maclaurin Summation

I How to find this g? Let D = d
dx . Taylor’s formula gives:

f (x) = g(x + 1)− g(x) = (
∑ Dn

n!
)g(x) = (eD − 1)g(x)

I Rewrite it as

g(x) =
D

eD − 1
h(x), Dh(x) = f (x), h(x) =

∫ x

a

f (t)dt.

I Solution (Bernoulli numbers appear!)

g(x) = (
∞∑
n=0

Bn
Dn

n!
)h(x).

Notice that g(b)− g(a) = h(b)− h(a) =
∫ b

a
f (x)dx .
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Bernoulli polynomials

Bernoulli polynomials Bk(x), k = 0, 1, 2 · · · are defined recursively:

B0(x) = 1

B ′n(x) = nBn−1(x) and

∫ 1

0

Bn(x) dx = 0 for n ≥ 1

Here are the first few

B0(x) = 1

B1(x) = x − 1/2

B2(x) = x2 − x + 1/6

B3(x) = x3 − 3

2
x2 +

1

2
x
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Bernoulli polynomials

I Alternatively, they can be defined by their generating function

text

et − 1
=
∞∑

m=0

Bm(x)
tm

m!
.

In particular
Bm = Bm(0).

I The periodic Bernoulli functions are defined by

B̄n(x) = Bn (x − bxc)
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Remainder term for EM summation

I Periodic Bernoulli functions are defined by

B̄n(x) = Bn (x − bxc)

Using these, the very important formula for Rn is given by

Rn =
(−1)n−1

n!

∫ b

a

f (n)(x)B̄n(x) dx

I Example: for n = 1, we get

b−1∑
k=a

f (k) =

∫ b

a

f (x) dx − 1

2
(f (b)− f (a))) +

∫ b

a

f ′(x)(x − [x ])dx

Proof: Integration by parts!
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Example: for n = 2, we get

b−1∑
k=a

f (k) =

∫ b

a

f (x) dx − 1

2
(f (b)− f (a))) +

1

12
(f ′(b)− f ′(a)))

−1

2

∫ b

a

f ”(x)B̄2(x)dx



Faulhaber-Bernoulli formulae

I As a first application we get a formula for power sums. Let
f (x) = xp. Then the remainder Rn = 0 for n > p and we get an
exact formula

n∑
k=1

kp =
1

p + 1

p∑
j=0

(−1)j
(
p + 1

j

)
Bjn

p+1−j .

=
1

p + 1
np+1 +

1

2
np +

p

2
B2n

p−1 + · · · .

I Example:

15 + 25 + 35 + · · ·+ n5 =
2n6 + 6n5 + 5n4 − n2

12
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A new formula for ζ(s)

I As a second application of Euler-Maclaurin summation we obtain a
new formula for ζ(s) that is manifestly extendible to larger domains.
Let f (x) = x−s . We get, for s 6= 1,

N∑
m=1

1

ms
=

1− N1−s

s − 1
+

1 + N−s

2

+
n∑

k=2

Bks(s + 1) · · · (s + k − 2)(1− N−s−k+1)/k! + Rn

I Let N →∞ with Re(s) > 1 fixed. We get

ζ(s) =
1

s − 1
+

1

2
+

n∑
k=2

Bks(s + 1) · · · (s + k − 2)/k!

− 1

n!
s(s + 1) · · · (s + n − 1)

∫ ∞
1

B̄n(x)x−s−ndx
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I Example: for n = 1, we get

ζ(s) =
1

s − 1
+

1

2
− s

∫ ∞
1

(x − [x ]− 1/2)x−s−1dx .

The integral is convergent if Re(s) > 0. This already extends zeta to
the larger domain Re(s) > 0 (with a simple pole at s=1).

I In general, since B̄n(x) is periodic, it is bounded on [1,∞] and hence∫∞
1

B̄n(x)x−s−ndx is convergent if Re(s) > 1− n.

I Thus the new expression for ζ(s) shows that it can be analytically
continued to the larger domain Re(s) > 1− n. By choosing larger
and larger values of n we see that ζ(s) has an analytic continuation
to C \ {1}.
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Special zeta values

The formula that we obtained before,

ζ(s) =
1

s − 1
+

1

2
− s

∫ ∞
1

(x − [x ]− 1/2)x−s−1dx ,

shows that ζ has a simple pole at s = 1 with residue equal to one.

The formula

ζ(s) =
1

s − 1
+

1

2
+

1

12
s − 1

2
s(s + 1)

∫ ∞
1

B̄2(x)x−s−2dx ,

shows that

ζ(0) = −1

2
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The formula ,

ζ(s) =
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s − 1
+

1

2
+

1

12
s − 1

2
s(s + 1)(s + 2)

∫ ∞
1

B̄3(x)x−s−3dx ,

shows that

ζ(−1) = − 1

12

And in general we get

ζ(−m) = − Bm+1

m + 1
, m ≥ 0



Special zeta values

The formula ,

ζ(s) =
1

s − 1
+

1

2
+

1

12
s − 1

2
s(s + 1)(s + 2)

∫ ∞
1

B̄3(x)x−s−3dx ,

shows that

ζ(−1) = − 1

12

And in general we get

ζ(−m) = − Bm+1

m + 1
, m ≥ 0



Special zeta values

These are usually written in a mystifying way:

1 + 1 + 1 + · · · = −1

2

1 + 2 + 3 + · · · = − 1

12

12 + 22 + 32 + · · · = 0

13 + 23 + 33 + · · · =
1

120
· · · · · ·

1m + 2m + 3m + · · · = − Bm+1

m + 1

These formulas were obtained by Euler in 18th century. His interpretation
of the sums were different though.



Derivative of zeta at s = 0

I Recal the regularization scheme we are using:

1× 2× 3× · · · = e−ζ
′(0)

Calculating ζ ′(0) is much harder! I don’t know of any derivation that
does not use the functional equation for zeta. So let me recall it.

I First we need to know about Euler’s constant γ, and his Gamma
function Γ(s). The first is defined through Taylor expansion of
(s − 1)ζ(s) at s = 1

(s − 1)ζ(s) = 1 + γ(s − 1) + · · ·

Equivalently,
γ = (log(s − 1)ζ(s))′|s=1
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The Gamma function

I It is an analytic extension of the factorial function n 7→ (n − 1)!
defined by

Γ(s) =

∫ ∞
0

e−tts
dt

t
, Re(s) > 0.

I It is easy to see, using integration by parts, that Γ(n) = (n− 1)! and
Γ(s + 1) = sΓ(s). The latter relation in turn implies that Γ(s) has a
meromorphic extension to C with simple poles at
s = 0,−1,−2,−3, · · · .
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Γ(s + 1) = sΓ(s). The latter relation in turn implies that Γ(s) has a
meromorphic extension to C with simple poles at
s = 0,−1,−2,−3, · · · .



In the course of computing ζ ′(0), we need the following two formulas for
Gamma, known as reflection formula and duplication formula:

Γ(1− z)Γ(z) =
π

sin (πz)
,

Γ(z)Γ
(
z + 1

2

)
= 21−2z

√
π Γ(2z).

And here is a graph of Γ(s) for real s.



The functional equation

I This is the relation
Z (s) = Z (1− s)

where Z (s) = π−s/2Γ
(
s
2

)
ζ(s) is the completed zeta function.

Assuming this, we can proceed as follows. The functional equation
can be written as

(s − 1)ζ(s) = −2sπs−1 sin
(πs

2

)
Γ(2− s) ζ(1− s)

I Log differentiate this at s = 1. We get

γ = −Γ′(1)

Γ(1)
+ log 2π − ζ ′(0)

ζ(0)

= γ + log 2π − ζ ′(0)

ζ(0)
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So:
ζ ′(0)

ζ(0)
= log 2π.

Since we already know that ζ(0) = − 1
2 , we obtain

ζ ′(0) = −1

2
log 2π,

or,
1× 2× 3× · · · = e−ζ

′(0) =
√

2π.



Summary

I We sketched two approaches to regularize divergent infinite products
like 1× 2× 3× · · · : via Stirling’s formula and via the zeta
faunction. The zeta regularization needed more sophisticated tools:
analytic continuation (which was done thanks to Euler-Maclaurin
summation formula), and evaluation of ζ ′(0) which used the
functional equation for ζ(s).

I The zeta regularization has the advantage of being systematic and
can be applied in far more general situations to regularize a
divergent infinite product like

∏
λi . For a sequence

Λ : 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · λn →∞,
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Summary-continued

I If the series

ζΛ(s) =
∑ 1

λsi
,

is convergent (hence analytic) for Re(s) large enough, and if it has
analytic continuation and is regular at s = 0, we can define∏

λi := e−ζ
′
Λ(0)

I Is regularization a useful concept? Absolutely! Determinant of
Laplacians, analytic torsion, regularization in quantum field theory
and the Casimir effect, are a few examples of its vast applications in
mathematics and physics.




	Spectral Geometry
	Trace of the heat kernel of Laplacian


