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1 A Brief Background

Among many other facets of the interesting journey of the body of knowl-
edge we refer to as quantum mechanics has been its interplay with mathe-
matics, or lack there of. This has been a period whereby physics has changed
mathematics and correspondingly mathematics has led physics to new direc-
tions. It is conjectured that at no point in time this interplay has been this
pronounced and interesting.

Part of the folklore of the subject concerns the mathematical physics
textbook Methods of mathematical Physics put together by Richard Courant
from Hilbert’s Gottingen University Lectures. The story is told (by mathe-
maticians) that the physicists had dismissed the material as not interesting
in the current research areas, until the advent of Schrodinger’s Equation. At
that point it was realized that the mathematics of the new quantum mechan-
ics was already laid out in it. It was also said that Heisenberg had consulted
Hilbert about his matrix mechanics, and Hilbert observed that his own ex-
perience with infinite-dimensional matrices had originated from differential
equations, an advice which Heisenberg ignored, missing the opportunity to
unify the theory as Weyl and Dirac did a few years later. Whatever the basis
of anectodes, the mathematics of the theory was at the time unconventional
and whereas the physics was new. This forced things to be looked at under
new light: For instance, there was spectral theory before the quantum theory,
but it was based on quadratic forms rather than the new approach which was
based on linear operators.

Prior to the emergence of quantum mechanics as a separate theory, the
mathematicians used in physics consisted mainly of partial differential equa-
tions, differential geometry, and statistical mechanics. geometric intuition
played a strong role and theories of relativity were formulated entirely in
terms of geometric concepts.

The phenomenology of quantum physiscs aroese roughly between 1895-
1925 and for the next 15 years or so, before the emergence of quantum theory,
physicists continued to think of the theory within the confines of what is
now called classical mechanics, and in particular within the same math-
ematical structures. the situation has changed dramatically and rapidly in
the years between 1925-1930 wen working mathematical foundations were
found through groundbreaking work of Schrodinger, Werner Heisenberg, Paul
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Dirac, John Von Neumann, and Hermann Weyl, and became possible to unify
several different approaches. The Mathematical formulation of quantum me-
chanics is a body of mathematical formalisms which permits a rigorous de-
scription of quantum mechanics. It is distinguished from mathematical for-
malism of theories developed prior to 1900’s by use of abstract mathematical
structures, such as infinite-dimensional Hilbert Spaces and operators on these
spaces. Many of these structures were drawn from functional analysis, a re-
search area that was influenced in part by the needs of quantum mechanics.

In brief, values of physical observables such as energy amd momentum
and position were no longer considered as values of functions on phase space,
but as eigenvalues - more precisely as spectral values of linear operators in
Hilbertspace:

• point spectrum

• absolutre spectrum

• singular continuous spectrum.

1.1 Basic Postulates

At the heart of the description are ideas of quantum state and quantum
observable which are radically different from those used in previous models
of physical reality. Physical symmetries act on Hilbert space of quantum
states unitarily. The mathematical structure of quantum mechanics is gen-
erally described by three basic ingredients:

States of the System States are no longer points in the symplectic phase
spacce, but rather one-dimensional subgroups of H, which are rays.here
we have a separable complex Hilbert space H with 〈φ | ψ.〉 Separabil-
ity is rather a mathematical convenient hypothesis; with the physical
interpretation that countably many observations are sufficient enough
to uniquely determine the given state.

Observables Observables are no longer real valued functions. They are
densely represented self adjoint operators on the space of states. The
observables can be represented by operators on the Hilbert space H,
each state is represented by a density matrix. Since the representation
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of the algebra A is irreducible, the density matrix ρw associated to the
state w is unique. Expectation values are equal to the trace:

∀w ∈ S(A)∃ ρw ∀ a ∈ A : w(a) = Tr ρwa.

The postulates are necessary and sufficient to imply the standard form
of time-evolution: There is a self-adjoint operator H, the Hamiltonian,
unique except for an additive constant, generating a unitary group
Uτ := exp(−iHτ/~), which represents the time-evolution:

∀ t, τ, w, a : wt+τ (a) = Tr e−iHτ/~ρwe
iHτ/~a.

Dynamics This is also called the Law of Time Evolution. Time evolution
is given by a one-parameter group of unitary transformations on H.

1.2 Unitary Operator

• A unitary space V is a complex vector space with a distinguished
positive definite Hermitian form,

〈−,−〉 : V × V → C,

which serves as the inner product on V .

• A unitary transformation is a surjective linear transformation T :
V → V satisfying

〈u, v〉 = 〈Tu, Tv〉, u, v ∈ V. (1)

These are isometries of V .

• More generally, a unitary transformation is a surjective linear trans-
formation T : U −→ V between two unitary spaces U, V satisfying

〈Tv, Tu〉V = 〈v, u〉U , u, v ∈ U

In this entry will restrict to the case of the first

• A unitary matrix is a square complex-valued matrix, A, whose inverse
is equal to its conjugate transpose:

A−1 = Āt.
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• When V is a Hilbert space, a bounded linear operator T : V −→ V is
said to be a unitary operator if its inverse is equal to its adjoint:

T−1 = T ∗

In Hilbert spaces unitary transformations correspond precisely to uni-
tary operators.

1.3 Some Examples

1. A standard example of a unitary space is Cn with inner product

〈u, v〉 =
n∑
i=1

ui vi, u, v ∈ Cn. (2)

2. Unitary transformations and unitary matrices are closely related. On
the one hand, a unitary matrix defines a unitary transformation of Cn

relative to the inner product. On the other hand, the representing
matrix of a unitary transformation relative to an orthonormal basis is,
in fact, a unitary matrix.

3. A unitary transformation is an automorphism. This follows from the
fact that a unitary transformation T preserves the inner-product norm:

‖Tu‖ = ‖u‖, u ∈ V. (3)

Hence, if
Tu = 0,

then by the definition it follows that

‖u‖ = 0,

and hence by the inner-product axioms that

u = 0.

Thus, the kernel of T is trivial, and therefore it is an automorphism.

4. Moreover, relation can be taken as the definition of a unitary transfor-
mation. Indeed, using the polarization identity it is possible to show
that if T preserves the norm, then must hold as well.
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5. A simple example of a unitary matrix is the change of coordinates
matrix between two orthonormal bases. Indeed, let u1, . . . , un and
v1, . . . , vn be two orthonormal bases, and let A = (Aij) be the cor-
responding change of basis matrix defined by

vj =
∑
i

Aij ui, j = 1, . . . , n.

Substituting the above relation into the defining relations for an or-
thonormal basis,

〈ui, uj〉 = δij,

〈vk, vl〉 = δkl,

we obtain ∑
ij

δijA
i
kA

j
l =

∑
i

AikA
i
l = δkl.

In matrix notation, the above is simply

AĀt = I,

as desired.

6. Unitary transformations form a group under composition. Indeed, if
S, T are unitary transformations then ST is also surjective and

〈STu, STv〉 = 〈Tu, Tv〉 = 〈u, v〉

for every u, v ∈ V . Hence ST is also a unitary transformation.

7. Unitary spaces, transformations, matrices and operators are of funda-
mental importance in quantum mechanics.

8. For a system initially in some state ρ, the final (collapsed) state after
a measurement which yields outcome j with probability

pj = Tr(ρK†jKj)

is
ρ→ KjρK

†
j/pj
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In standard quantum mechanics the continuous (Schroedinger) evolu-
tion takes the form

ρ→ UρU †

where U is a unitary operator. If the Hamiltonian governing this evo-
lution has spectral decomposition

H =
d∑
j=1

λj|j〉〈j|

then this unitary form is given by

U =
d∑
j=1

eλjt|j〉〈j|.

9. The Fourier operator is a unitary operator, i.e. the operator which per-
forms the Fourier transform (with proper normalization). This follows
from Parseval’s theorem.

10. The spectrum of a unitary operator lies on the unit circle. That is, for
any complex number z in the spectrum, one has |z| = 1.

This can be seen as a consequence of the spectral theorem for normal
operators. By the theorem, U is unitarily equivalent to multiplication
by a Borel-measurable f on L2, for some finite measure space (X,µ).
Now UU∗ = I implies |f(x)|2 = 1 in µ a.e. This shows that the essential
range of f , therefore the spectrum of U , lies on the unit circle.

The linearity requirement in the definition of a unitary operator can be
dropped without changing the meaning because it can be derived from lin-
earity and positive-definiteness of the scalar product:

〈λ · Ux− U(λ · x), λ · Ux− U(λ · x)〉

= ‖λ · Ux‖2 + ‖U(λ · x)‖2 − 〈U(λ · x), λ · Ux〉 − 〈λ · Ux, U(λ · x)〉
= |λ|2 · ‖Ux‖2 + ‖U(λ · x)‖2 − λ · 〈U(λ · x), Ux〉 − λ · 〈Ux, U(λ · x)〉
= |λ|2 · ‖x‖2 + ‖λ · x‖2 − λ · 〈λ · x, x〉 − λ · 〈x, λ · x〉

Analogously you obtain

〈U(x+ y)− (Ux+ Uy), U(x+ y)− (Ux+ Uy)〉 = 0
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2 A Few Basic Definitions

2.1 Hamiltonian

In quantum mechanics Hamiltonian H is the operator corresponding to the
total energy of the system. Its spectrum is the set of possible outcomes when
one measures the total energy of a system. It is of fundamental importance in
most formulations of quantum theory because of its close relation to the time-
evolution of a system. By analogy with the classical mechanics Hamiltonian
is commonly expressed as the sum of operators corresponding to the kinetic
potential energies of a system, in the form

H = T + V.

Although this is not the technical definition of the Hamiltonian in classical
mechanics, it is the form it most commonly takes.

The potential operator V typically takes the form of a function V (r, t)
of position and time, which simply acts on states as a multiplicative factor.
The operator T corresponding to kinetic energy is constructed by analogy
with the classical formula T = p2

2m
. Schrödinger constructed his momentum

operator using the substitution p→ −i~∇ where ∇ is the operator, i is the
unit imaginary number, and ~ is the reduced Planck constant. Combining
this with the potential term yields

H = − ~2

2m
∇2 + V (r, t)

which allows one to apply the Hamiltonian to systems described by a wave
function Ψ(r, t). This is the approach commonly taken in introductory treat-
ments of quantum mechanics, using the formalism of Schrödinger’s wave me-
chanics. However, in the more general formalism of Dirac, the Hamiltonian
is typically implemented as an operator on Hilbert space in the following
way:The eigenvectors of H, denoted | |a〉, provide an orthonormal basis for
the Hilbert space. The spectrum of allowed energy levels of the system is
given by the set of eigenvalues, denoted Eα, solving the equation:

H |a〉 = Ea |a〉

Since H is a Hermitian operator, the energy is always a real number.
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2.2 Time evolution - A Unitary Operator

Time evolution is the change of state brought about by the passage of time,
applicable to systems with internal state (also called stateful systems). In
this formulation, time is not required to be a continuous parameter, but may
be discrete or even finite. In classical physics, time evolution of a collection
of rigid bodies is governed by the principles of classical mechanics. In their
most rudimentary form, these principles express the relationship between
forces acting on the bodies and their acceleration given by Newton’s laws of
motion. These principles can also be equivalently expressed more abstractly
by Hamiltonian mechanics or Lagrangian mechanics. In quantum mechanics,
the state of any physical system is represented by a vector. Suppose that |α〉
is such a vector. Time evolution is the process

|α〉 → e−iHt|α〉

where H is the Hamiltonian operator. You can think of the state vector as
a representation of all properties of the system, in the past, present, and
future. The effect of the time evolution operator is then to transform our
state vector to the state vector that another observer would use to describe
the same system. This would be an observer whose clock shows zero t seconds
after ours does.

That point of view is called the Heisenberg picture. (If we’re using the
Heisenberg picture, we prefer to call it time translation rather than time
evolution).

Another point of view is the Schrödinger picture. Here we think of the
state vector as a time-dependent quantity:

|α〉 → e−iHt|α〉

We think of this as the state of the system at time t. It’s easy to verify that
this time dependent state vector satisfies the Schrödinger equation (because
the time evolution operator does):

i
∂

∂t
|α; t〉 = H|α; t〉

Stateful systems often have dual descriptions in terms of states or in terms
of observable values. In such systems, time evolution can also refer to the
change in observable values. This is particularly relevant in quantum me-
chanics where the Schrödinger picture and Heisenberg picture are (mostly)
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equivalent descriptions of time evolution. In quantum mechanics, the propa-
gation operators are unitary operators on a Hilbert space. The propagators
can be expressed as time-ordered exponentials of the integrated Hamiltonian.
The Hamiltonian generates the evolution of quantum states. If |ψ(t)〉 is the
state of the system at time t, then

H |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉

This equation is known as the Schrödinger equation. (It takes the same
form as the Hamilton-Jacobi equation, which is one of the reasons H is also
called the Hamiltonian.) Given the state at some initial time (t = 0), we can
integrate it to obtain the state at any subsequent time. In particular, if H
is independent of time, then

|ψ(t)〉 = exp

(
− iHt

~

)
|ψ(0)〉

.The exponential operator on the right hand side of the Schrödinger equa-
tion is usually defined by the corresponding a power series in H. One might
notice that taking polynomials of unbounded and not everywhere defined
operators may not make mathematical sense, much less power series. Rig-
orously, to take functions of unbounded operators, a functional calculus is
required. In the case of the exponential function, the continuous, or just
the holomorphic functional calculus suffices. We note again, however, that
for common calculations the physicists’ formulation is quite sufficient.By the
homomorphism¡/a¿ property of the functional calculus, the operator

U = exp

(
− iHt

~

)
is a unitary operator. It is the time evolution operator, or propagator, of a
closed quantum system. If the Hamiltonian is time-independent, U(t) form
a one parameter unitary group; this gives rise to the physical principle of
detailed balance.

2.3 One-parameter group

Let G be a Lie Group. A one-parameter subgroup of G is a group homomor-
phism

φ : R→ G
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that is also a differentiable map at the same time. We view R additively and
G multiplicatively, so that φ(r + s) = φ(r)φ(s).

Examples.

1. If G = GL(n, k), where k = R or C, then any one-parameter subgroup
has the form

φ(t) = etA,

where A = dφ
dt

(0) is an n × n matrix over k. The matrix A is just a
tangent vector to the Lie group GL(n, k). This property establishes the
fact that there is a one-to-one correspondence between one-parameter
subgroups and tangent vectors of GL(n, k). The same relationship
holds for a general Lie group. The one-to-one correspondence between
tangent vectors at the identity (the Lie algebra) and one-parameter
subgroups is established via the exponential map instead of the matrix
exponential.

2. If G = O(n,R) ⊆ GL(n,R), the orthogonal group over R, then any
one-parameter subgroup has the same form as in the example above,
except that A is skew-symmetric: AT = −A.

3. If G = SL(n,R) ⊆ GL(n,R), the special linear group over R, then any
one-parameter subgroup has the same form as in the example above,
except that tr(A) = 0, where tr is the trace operator.

4. If G = U(n) = O(n,C) ⊆ GL(n,C), the unitary group over C, then any
one-parameter subgroup has the same form as in the example above,

except that A is skew-Hermitian: A = −A∗ = −AT
and tr(A) = 0.

3 Stone’s theorem

In mathematics, Stone’s theorem on one-parameter unitary groups is a basic
theorem of functional analysis which establishes a one-to-one correspondence
between self-adjoint operators on a Hilbert space H and one-parameter fam-
ilies of unitary operators

{Ut}t∈R
which are strongly continuous, that is

lim
t→t0

Utξ = Ut0ξ ∀t0 ∈ R, ξ ∈ H
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and are homomorphisms
Ut+s = UtUs.

Such one-parameter families are ordinarily referred to as strongly continuous
one-parameter unitary groups. The theorem is named after Marshall Stone
who formulated and proved this theorem in 1932.

Let U be a strongly continuous 1-parameter unitary group, then there
exists a unique self-adjoint operator A such that

Ut := eitA t ∈ R.

Conversely, let A be a self-adjoint operator on a Hilbert space H. Then

Ut := eitA t ∈ R

is a strongly continuous one-parameter family of unitary operators.The in-
finitesimal generator of Utt is the operator iA. This mapping is a bijective
correspondence. A will be a bounded operator the operator-valued function
t 7→ Ut continuous.

Example: The family of translation operators

[Ttψ](x) = ψ(x+ t)

is a one-parameter unitary group of unitary operators; the infinitesimal gen-
erator of this family is an extension of the differential operator

d

dx
= i

1

i

d

dx

defined on the space of complex-valued continuously differentiable functions
of compact support on R. Thus

Tt = et d/dx.

In other words, motion on the line is generated by the momentum operator.

4 An important one: Stone von Neumann

One might ask ’why bother?’...Historically this result was significant because
it was a key step in proving that Heisenberg’s matrix mechanics, which rep-
resents quantum mechanical observables and dynamics in terms of infinite
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matrices, is unitarily equivalent to Schrödinger’s wave mechanical formula-
tion. Stone’s theorem was extended to Stone-von Neumann. In mathematics
and in theoretical physics, the Stone–von Neumann theorem is any one of
a number of different formulations of the uniqueness of the canonical com-
mutation relations between position and momentum operators. The name is
for Marshall Stone and John von Neumann. In quantum mechanics, physical
observables are represented mathematically by linear operators on Hilbert
spaces. For a single particle moving on the real line R, there are two im-
portant observables: position and momentum. In the quantum-mechanical
description of such a particle, the position operator Q and momentum oper-
ator P are respectively given by

[Qψ](x) = xψ(x)

[Pψ](x) =
~
i
ψ′(x)

on the domain V of infinitely differentiable functions of compact support on
R. We assume ~ is a fixed non-zero real number — in quantum theory ~ is
(up to a factor of 2p) Planck’s const ant, which is not dimensionless; it takes
a small numerical value in terms of units in the m acroscopic world. The
operators P , Q satisfy the commutation relation

QP − PQ = −~
i
1.

Already in his classic volume, Hermann Weyl observed that this commutation
law was impossible for linear operators P , Q acting on finite dimensional
spaces (as is clear by applying the trace of a matrix, unless ~ vanishes. A
little analysis shows that in fact any two self-adjoint operators satisfying the
above commutation relation cannot be both bounded.

One would like to classify representations of the canonical commutation
relation by two self-adjoint operators acting on separable Hilbert spaces, up
to unitary equivalence. By Stone’s theorem, there is a one-to-one correspon-
dence between self-adjoint operators and (strongly continuous) one parame-
ter unitary groups. Let Q and P be two self-adjoint operators satisfying the
canonical commutation relation, and eitQ and eisP be the corresponding uni-
tary groups given by functional calculus. A formal computation with power
series shows that

eitQ eisP − eist eisP eitQ = 0.
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Conversely, given two one parameter unitary groups U(t) and V (s) satisfying
the relation

U(t)V (s) = eist V (s)U(t) ∀s, t, (∗)

formally differentiating at 0 shows that the two infinitesmal generators satisfy
the canonical commutation relation. These formal calculations can be made
rigorous. Therefore there is a one-to-one correspondence between representa-
tions of the canonical commutation relation and two one parameter unitary
groups ¡U(t) and ¡V (s) satisfying (*). This formulation of the canonical com-
mutation relations for one parameter unitary groups is called the Weyl form
of the CCR.The problem now thus becomes classifying two jointly irreducible
one parameter unitary groups U(t) and V (s) satisfying the Weyl relation on
separable Hilbert spaces. The answer is the content of the ¡b¿Stone-von Neu-
mann theorem: all such pairs of one parameter unitary groups are unitarily
equivalent. In other words, for any two such U(t) and V (s) acting jointly ir-
reducibly on a Hilbert space H, there is a unitary operatorW : L2(R)→ Hso
that

W ∗U(t)W = eisQ and W ∗V (t)W = eisP ,

where P and Q are the position and momentum operators from above
The question was:
Can we classify two jointly irreducible one-parameter unitary groups U(t)

and V (s) satisfying Weyl relation on Hilbert spaces?
The answer was the content of Stone-von Neumann theorem. We list the
theorem and two consequences, giving the proof of only one.

Theorem: Let A be a C∗-algebra with a unique irreducible representation
in a separable Hilbert space H. Let {Tτ |τ ∈ R} be a one-parameter group of
affine invertible mappings S(A)→ S(A), such that ∀w ∈ S(A), ∀ a ∈ A the
function τ 7→ (Tτw)(a) is measurable, then τ 7→ Tτw is strongly continuous.

Theorem: Given a one parameter group of mappings of the states of B(H),
H a Hilbert space,

Tτ : w 7→ Tτw, T0 = identity, ∀ {σ, τ} ⊂ R : TσTτ = Tσ+τ ,

where each mapping can be represented by a unitary transformation,

∀ τ ∈ R ∃Uτ = U∗−τ = U−1−τ ∀ a ⊂ B(H) : (Tτw)(a) = w(U−τaUτ ),
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and which acts weakly continuous on pure states applied to finite rank oper-
ators:

for a of finite rank, w pure, τ 7→ (Tτw)(a) is a continuous function,

then the unitary operators Uτ can be chosen in such a way that they form a
strongly continuous group,

U0 = 1, ∀ {σ, τ} ⊂ R : UσUτ = Uσ+τ , ∀ψ ∈ H : τ 7→ ‖Uτψ‖ is a continuous function.

Proof:

(a) We choose some reference vector |ψ〉 ∈ H, fixed throughout the proof.
Since for any operator a = |ψ〉〈ϕ| and all pure states represented by
the vectors |ψ+ inη〉 the expectation values of U−τaUτ are continuous,
we know that

1

4

3∑
n=0

i−n〈ψ + inη|U−τaUτ |ψ + inη〉 = 〈ψ|U−τ |ψ〉〈ϕ|Uτ |η〉

is a continuous function. If we have constructed a group Uτ such that
τ 7→ 〈ψ|Uτ |ψ〉 is continuous (that will be achieved in (b) to (g)), then
we know that there is some interval around τ = 0, where 〈ψ|Uτ |ψ〉 6= 0,
and therefore also 〈ϕ|Uτ |η〉 is continuous. This property holds for all
vectors |ϕ〉, |η〉, extends to all τ ∈ R by the group property and implies
the strong continuity.

(b) Setting |ϕ〉 = |η〉 = |ψ〉 in the formula in (a), we see that |〈ψ|Uτ |ψ〉|2
is a continuous function and is independent of the chosen phases for
Uτ . For some ε, which shall be smaller than 2−10, there exists a τ0 > 0,
such that

∀ {σ, τ} ⊂ [−τ0, τ0] : ||〈ψ|Uσ|ψ〉| − |〈ψ|Uτ |ψ〉|| ≤ ε < 1/210.

(c) Uτ0 considered as fixed, there is a phase α ∈ [−π, π], such that for

V0 := e−iαUτ0

the expectation value 〈ψ|V0|ψ〉 is real and positive. Two of the rep-
resentatives for Tτ0/2 are square roots of V0. We choose the one with
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non-negative real part of the expectation value and denote it V1. In
this way we go on and construct a family {Vn}:

V 2
n+1 = Vn, Re 〈ψ|Vn|ψ〉 ≥ 0.

Since w(V −1n aVn) = (Tτw)a for τ = 2−nτ0, we have constructed a group
of unitaries Uτ , representing Tτ for all time differences τ = bτ0, where
b is a binary digit with finite length:

b = bI +
N∑
n=1

δn2−n, bI ∈ Z, δn ∈ {0, 1},

Ubτ0 := eibαV
(2N b)
N .

(d) Next we have to show that the continuity of the absolute value of
〈ψ|Uτ |ψ〉 implies a spectral concentration of |ψ〉. We represent each VN
as the exponential of a quasi-Hamiltonian HN (here we assume units,
where τ0/~ = 1):

VN = exp(−i2−NHN), −2Nπ < HN ≤ 2Nπ, for n ≤ N : Vn = exp(−i2−nHN).

We conclude from (b) and the definition of V0 that 〈ψ|V0|ψ〉 ≥ 1 − ε,
and, using the spectral representation of HN ,

〈ψ|f(HN)|ψ〉 =

∫
f(E)dµN(E),

that

1− ε ≤ 〈ψ|V0|ψ〉 = 〈ψ| cosHN |ψ〉 ≤
∑

n,|n|≤2N−1

an + (1−
∑
n

an) cosϑ,

where

an :=

∫ 2πn+ϑ

2πn−ϑ
dµN(E).

So 1 ≥
∑

n an ≥ 1− ε/(1− cosϑ) > 1−
√
ε for ϑ = 2ε1/4.
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(e) We specify the spectral concentration further, using ε ≥ 1−〈ψ|V −νN |ψ〉〈ψ|V ν
N |ψ〉

for all ν ≤ 2N − 1:

1− ε ≤ 1

2N

2N−1∑
ν=0

〈ψ| exp(iν2−NHN)|ψ〉〈ψ| exp(−iν2−N |ψ〉 =

=
1

2N

∑
ν

∫ ∫
exp(iν2−N(E − E ′)dµN(E)dµN(E ′) =

=

∫ ∫
1

2N

∑
ν

cos(ν2−N(E − E ′))dµN(E)dµN(E ′) =

=

∫ ∫
cos

(
(1− 2−N)

E − E ′

2

)
sin E−E′

2

2N sin 2−N E−E′
2

dµN(E)dµN(E ′) ≤

≤
∑
n

a2n +
ϑ

π

∑
n6=n′

ana
′
n + ε ≤ a2max + (1− amax)

2 + ε1/4 + ε.

The last two inequalities are consequences of (d) and the convexity of
the function a 7→ a2. Consequently, for the maximum of the concen-
tration weights an:

(1− amax)
2 ≤ ε1/4

amax ≥ 1− ε1/8 > 3/4.

With this inequality, the definition of the Vn, and their representations
as functions of HN , we conclude that amax = a0.

(f) We consider the phases:

∀n < 2N : |Im 〈ψ|V n
N |ψ〉| ≤ 2ε1/4 + ε1/8 ≤ 2ε1/8.

Combined with the inequality for the absolute value in (b):

‖ψ − V n
Nψ‖2 ≤ (ε2 + 4ε1/4)1/2 ≤ 5ε1/4.

N was finite, but arbitrary, so

|b| ≤ 1 =⇒ ‖ψ − Ubτ0ψ‖ ≤ |bα|+ 3ε1/8.

By unitary equivalence

|b1 − b2| ≤ 1 =⇒ ‖Ub1τ0ψ − Ub2τ0ψ‖ ≤ |(b1 − b2)α|+ 3ε1/8,

and, since |α| ≤ π,

‖Ub1τ0ψ − Ub2τ0ψ‖ ≤ 4ε1/8 if |b1τ0 − b2τ0| ≤ ετ0(ε).
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(g) Now for any smaller ε we can do the same argument starting with some
τ0(ε) = bτ0 instead of τ0. Because of the inequalities already proven for
the first chosen ε, the Ubτ0 will not change in the construction (c). So we
have proven that τ 7→ 〈ψ|Uτ |ψ〉 is equicontinuous for {τ = bτ0} (which
is dense in R), and can thus be extended to a continuous function for
all real τ .

5 Heisenberg Group

The commutation relations for P , Q look very similar to the commutation
relations that define the of general Heisenberg group Hn for n a positive
integer. This is the Lie group of (n+ 2)× (n+ 2) square matrices of the form

M(a, b, c) =

 1 a c
0 1n b
0 0 1


In fact, using the Heisenberg group, we can formulate a far-reaching gener-
alization of the Stone von Neumann theorem. Note that the center of Hn

consists of matrices M [0, 0, c]. Theorem For each non-zero real number h
there is an irreducible representation Uh acting on the Hilbert space

[Uh(M(a, b, c))]ψ(x) = ei(b·x+hc)ψ(x+ ha).

All these representations are unitarily inequivalent and any irreducible rep-
resentation which is not trivial on the center of Hn is unitarily equivalent
to exactly one of these.Note that Uh is a unitary operator because it is the
composition of two operators which are easily seen to be unitary: the trans-
lation to the left by h and multiplication by a function of absolute value 1.
To show Uhis multiplicative is a straightforward calculation.

6 Relating to Fourier Transform

For any non-zero h, the mapping

αh : M(a, b, c)→ M(−h−1b, ha, c− ab)

is an automorphism of Hn which is the identity on the center of Hn. In
particular, the representations Uhα and Uhα a are unitarily equivalent. This

18



means that there is a unitary operator W on L2(Rn) such that for any g in
Hn

WUh(g)W ∗ = Uhα(g).

Moreover, by irreducibility of the representations Uh, it follows that up to a
scalar, such an operator W is unique (Schur’s lemma)

6.0.1 Theorem: Unitary again

The operatorW is, up to a scalar multiple, the Fourier transform on L2(Rn).This
means that (ignoring the factor of (2p)n/2 in the definition of the Fourier
transform)∫

Rn

e−ix·pei(b·x+hc)ψ(x+ ha) dx = ei(ha·p+h(c−b·a))
∫
Rn

e−iy·(p−b)ψ(y) dy.

The previous theorem can actually be used to prove the unitary nature of
the Fourier transform, also known as the Plancherel theorem. Moreover, note
that

(αh)
2 M(a, b, c) = M(−a,−b, c).

The operator W1 such that

W1UhW
∗
1 = Uhα

2(g)

[W1ψ](x) = ψ(−x).

From this fact the Fourier inversion formula easily follows.
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