First Steps in Quantum Computing

Masoud Khalkhali

Undergraduate Pizza Seminar Western University, Canada April 2013

Abstract

In this talk we shall review some of the basic ideas behind quantum computing and specially Shor's integer factorization algorithm.

In RSA we trust; should we?

Public-key encryption and security of internet communications is based on a certain mathematical hypothesis: factoring a given integer N is a computationaly difficult problem. The best current methods take about

$$O(e^{1.9(\log N)^{1/3}(\log \log N)^{2/3}})$$

operations. This is almost exponential in $\log N$, the number of digits of N.

A quantum computer, running Shor's algorithm, can factor N in

 $O((\log N)^3)$

steps! This is polynomial in $\log N$ and a huge improvement over current methods.

In RSA we trust; should we?

Figure: RSA creators Rivest, Shamir, Adleman

(日)、(四)、(E)、(E)、(E)

Finding factors

Task: Given an integer N, find a factor of N.

Direct approach: Check see if any of $2, 3, 4, \cdots$ divides *N*. This can take about *N* calculations. But

$$N = e^{\log N}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This is expoential in number of digits of N. Exponential time. Smarter methods don't improve this bound that much.

Quantum computing factorization is based on some interesting elementary number theory.

Finding periods

Pick any x, 1 < x < N. Either gcd(x, N) > 1, in which case Euclidean algorithm can easily produce a factor of N, or gcd(x, N) = 1. So assume this is the case. Then the function

$$f(a) = x^a \mod N, \qquad a = 0, 1, 2, \cdots, N-1$$

is periodic with some period p. So that

$$x^p = 1 \mod N.$$

Reason: integers $1 \le x < N$ with gcd(x, N) = 1 form a finite abelian group. So every element x of this groups has a finite order p, which is the period of the function f above.

Example: N = 15, x = 7. Values of f (mod 15) are

$$7^1=7,\ 7^2=4,\ 7^3=13,\ 7^4=1.$$

So the period is p = 4.

From periods to factors

Gauss already knew that finding p is a computationaly tough problem. But, as we shall see, this is a polynomial time problem for a quantum computer!

From periods to factors: Suppose p = 2r is even. Then $x^{2r} - 1 = (x^r - 1)(x^r + 1) = 0 \mod(N)$. So that $(x^r - 1)(x^r + 1) = kN$. If k = 1 we have our factors. Similar methods work in general and give a factor of N in polynomial time, if we know the priod p.

Upshot: to factor an integer N, suffices to find a number x, 1 < x < N, which is relatively prime to N and find its period p.

The discrete Fourier transform is an ideal tool for finding periods.

Discrete Fourier transform

Figure: Joseph Fourier (1768-1830)

< □ > < □ > < □ > < □ > < □ > < □ > = □

Discrete Fourier transform

A tale of two o.n. basis for \mathbb{C}^N :

Standard basis:

$$e_1, e_2, \cdots e_n$$
.

Fourier basis:

$$f_1, f_2, \cdots, f_n$$

(Columns of the matrix next page).

Fourier transform $F : \mathbb{C}^N \to \mathbb{C}^N$ sends the standard basis to the Fourier basis, $F(e_i) = f_i$. Here is its matrix in standard basis:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\mathbf{F} = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & \dots & 1\\ 1 & \xi^{1 \cdot 1} & \dots & \xi^{1 \cdot (N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \xi^{(N-1) \cdot 1} & \dots & \xi^{(N-1) \cdot (N-1)} \end{bmatrix}$$
$$\xi = e^{-2\pi i/N}$$
$$FF^* = F^*F = I$$

The so called Fast Fourier Transform (also known as Quantum Fourier Transform), is the same transform F, performed in a more efficient way (I won't define it in this talk, but it plays an important role for the efficiency of Shor's algorithm)

Fourier transform and periods

Given
$$f : \{0, 1, \dots, N-1\} \to \mathbb{C}$$
, define a new function
 $\hat{f} : \{0, 1, \dots, N-1\} \to \mathbb{C}$:
 $\hat{f} = Ff$,
 $\hat{f}_m = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} f_n e^{\frac{-2\pi i n m}{N}}$

The inverse Fourier transform F^{-1} is computed by a similar formula:

$$f_m = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \hat{f}_n e^{\frac{2\pi i n m}{N}}$$

DFT detects the period of a periodic function

Assume N = pk and f has period p. that is

$$f_{i+p} = f_i,$$
 for all i

Then

$$\hat{f}_m = \begin{cases} \frac{k}{\sqrt{N}} \sum_{n=0}^{p-1} f_n e^{\frac{-2\pi i n m}{N}} & \text{if m is multiple of k} \\ 0 & \text{otherwise} \end{cases}$$

So: \hat{f} is non-zero only at multiples of $k = \frac{N}{p}$. Thus: Fourier transform detects p, the period of f.

(日) (日) (日) (日) (日) (日) (日) (日)

Integer factorization via DFT

Can now take $f_i = x^i$, $0 \le i < N$, which we know has some period p. Look at its Fourier transform \hat{f} and places where it is non-zero. This will gives us the period of f, and hence an integer factorization of N = kp.

caveat: DFT can be implemented in a classical computer, but the resulting algorithm is not polynomial time!

Shor's discovery: DFT can be implemented in a quantum computer, which works based on principles of quantum mechanics, and the resulting algorithm, known as Shor's algorithm, is polynomial time!

(日) (同) (三) (三) (三) (○) (○)

Axioms of quantum mechanics in Schroedinger's picture

(Pure) States: unit vectors (up to phase) in a complex Hilbert space. Observables: selfadjoint operators.

Dynamics: one parameter group of unitary operators.

Measurement: If the system is in state v and we measure the observable A, we find an eigenvalue λ of A and the state v will collapse to an eigenstate w of A, with probability

$$p = |\langle v, w \rangle|^2$$

Combined systems: The state space of a system obtained by combining two systems is the tensor product of the state spaces of each system:

$$H = H_1 \otimes H_2$$

Example: internal spin

Hilbert space: \mathbb{C}^2 State space: unit vectors in \mathbb{C}^2 up to phase,

$$S^3/S^1 \simeq S^2$$

Observables: spin operators

$$S_{x} = \frac{\hbar}{2}\sigma_{x}, \quad S_{y} = \frac{\hbar}{2}\sigma_{y}, \quad S_{z} = \frac{\hbar}{2}\sigma_{z}.$$
$$\sigma_{x} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad \sigma_{y} = \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}, \quad \sigma_{z} = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.$$

Internal spin and Hopf fibration

Figure: Bloch sphere = spin state space = S^3/S^1

From classical stuff to quantum stuff

Calculus (classical stuff) \rightarrow Linear Algebra (quantum stuff)

 $\begin{array}{l} {\rm Sets \ (position) \longrightarrow Vector \ Spaces \ (superposition)} \\ {\rm Functions \ (observables \longrightarrow Matrices \ (observables)} \\ {\rm Values \ of \ functions \ (measurement) \longrightarrow Eigenvalues \ of \ matrices \ (measurement)} \\ {\rm Certainties \ } (fg = gf) \longrightarrow {\rm Unceratnties \ } (pq \neq qp) \\ {\rm Bit \ space \ } \{0,1\} \longrightarrow {\rm Qubit \ space \ } \mathbb{C}^2 \\ {\rm Cartesian \ product \ \longrightarrow Tensor \ product \ (Entanglement)} \end{array}$

The unit of information in a classic computer: bit space $\{0,1\}$. Only two possibilities 0 or 1.

The unit of information in a quantum computer: qubit space \mathbb{C}^2 . There are uncoutably many possibilities: a unit vector (up to phase) in \mathbb{C}^2 .

One single qubit space \mathbb{C}^2 can store more information than all the computers in the world that we have now, or shall ever be built! This is possible thanks to electron spin.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Figure: Electron spin

Qubits and Hopf fibration

Figure: Bloch sphere = space of qubits = S^3/S^1

n-bits and n-qubits

$$\{0,1\}^n \longrightarrow \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$$

Let $|0\rangle = (1,0), |1\rangle = (0,1)$, standard basis of \mathbb{C}^2 .
1-qubits: $|0\rangle + b|1\rangle, \quad |a|^2 + |b|^2 = 1$.
2-qubits: $|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle, \quad |a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$.
3-qubits:
 $|000\rangle + b|001\rangle + c|010\rangle + d|011\rangle + e|100\rangle + f|101\rangle + g|110\rangle + h|111\rangle.$

States and observables in QC

States and observables in classical computers: bits and functions

 $f: \{0,1\}^n \to \mathbb{R}$

States and observables in quantum computers: qubits and matrices, e.g.

 $H: \mathbb{C}^2 \to \mathbb{C}^2.$

Quantum logic gates

The Hadamard gate acts on a single qubit.

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

The quantum NOT gate. It maps $|0\rangle to |1\rangle$ and $|1\rangle to |0\rangle$.

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

More quantum logic gate

Controlled NOT gate $C : \mathbb{C}^2 \otimes \mathbb{C}^2$. it leaves the first qubit unchanged and changes the state of the second qubit if the first qubit is in state |1 >:

$$\begin{split} |0>\otimes|0>\mapsto|0>\otimes|0>\\ |0>\otimes|1>\mapsto|0>\otimes|1>\\ |1>\otimes|0>\mapsto|1>\otimes|1>\\ |1>\otimes|0>\mapsto|1>\otimes|1>\\ \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Entanglement

Classical composite states:

Cartesian products $\{0,1\} \times \{0,1\} \times \cdots \times \{0,1\}$

Quantum composite states:

Tensor products
$$\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$$
.

A 2-qubit state in $\mathbb{C}^2 \otimes \mathbb{C}^2$ is not necessarily of the form $X \otimes Y$; it can be $X_1 \otimes Y_1 + X_2 \otimes Y_2$, etc. In which case it is called entangled.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Shor's Algorithm

Figure: Peter Shor

・ロト ・四ト ・ヨト ・ヨト 三日

Shor's algorithm-a sketch

Task: to find a factor of an integer N.

Step 1 (can be easily done on a classical computer): Pick any x, 1 < x < N. Either gcd(x, N) > 1, in which case Euclidean algorithm can easily produce a factor of N, or gcd(x, N) = 1. So assume this is the case. Then the function

$$f(a) = x^a \mod N, \qquad a = 0, 1, 2, \cdots, N-1$$

is periodic with some period r. Fast Fourier transform, implemented on a quantum computer, will detect this period and hence will give a factor of N (as we explained in the first part) in polynomial time.

Find a q such that $N^2 < 2^q < 2N^2$. Assume $r|2^q$. Let L and R be vector spaces (qunatum registers) of dimensions 2^q and N. Let $Q = 2^q$ and prepare the state

$$Q^{-1/2}\sum_{a=0}^{2^q-1}\ket{a}\ket{f(a)}\in L\otimes R.$$

Now apply $F \otimes 1$ and get the state

$$Q^{-1}\sum_{a=0}^{2^{q}-1}\sum_{b=0}^{2^{q}-1}\xi^{ab}\ket{b}\ket{f(a)}.$$

Next: Measure the register R. One of the values will appear and the others will be lost. Assume you get $f(a) = x \mod N$. After this measurement you loose most of the content of the register L, except those states which were coupled with f(a).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Shor's algorithm

Final Step: Read the first register *L*. Will get a number which is a multiple of $p = 2^q/r$. Knowing *p* is the same as knowing the period *r*. Repeat this several times. It can be shown that with high probability you will get only *p*, not a higher multiple of it. So you are done!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <