
First Steps in Quantum Computing

Masoud Khalkhali

Undergraduate Pizza Seminar
Western University, Canada

April 2013

Abstract

In this talk we shall review some of the basic ideas behind quantum
computing and specially Shor’s integer factorization algorithm.

In RSA we trust; should we?

Public-key encryption and security of internet communications is based
on a certain mathematical hypothesis: factoring a given integer N is a
computationaly difficult problem. The best current methods take about

O(e1.9(logN)1/3(log logN)2/3)

operations. This is almost exponential in logN, the number of digits of
N.

A quantum computer, running Shor’s algorithm, can factor N in

O((logN)3)

steps! This is polynomial in logN and a huge improvement over current
methods.

In RSA we trust; should we?

Figure: RSA creators Rivest, Shamir, Adleman

Finding factors

Task: Given an integer N, find a factor of N.

Direct approach: Check see if any of 2, 3, 4, · · · divides N. This can take
about N calculations. But

N = e logN

This is expoential in number of digits of N. Exponential time. Smarter
methods don’t improve this bound that much.

Quantum computing factorization is based on some interesting
elementary number theory.

Finding periods

Pick any x , 1 < x < N. Either gcd(x ,N) > 1, in which case Euclidean
algorithm can easily produce a factor of N, or gcd(x ,N) = 1. So assume
this is the case. Then the function

f (a) = xa modN, a = 0, 1, 2, · · · ,N − 1

is periodic with some period p. So that

xp = 1 modN.

Reason: integers 1 ≤ x < N with gcd(x ,N) = 1 form a finite abelian
group. So every element x of this groups has a finite order p, which is
the period of the function f above.

Example: N = 15, x = 7. Values of f (mod 15) are

71 = 7, 72 = 4, 73 = 13, 74 = 1.

So the period is p = 4.

From periods to factors

Gauss already knew that finding p is a computationaly tough problem.
But, as we shall see, this is a polynomial time problem for a quantum
computer!

From periods to factors: Suppose p = 2r is even. Then
x2r − 1 = (x r − 1)(x r + 1) = 0 mod(N). So that (x r − 1)(x r + 1) = kN.
If k = 1 we have our factors. Similar methods work in general and give a
factor of N in polynomial time, if we know the priod p.

Upshot: to factor an integer N, suffices to find a number x , 1 < x < N,
which is relatively prime to N and find its period p.

The discrete Fourier transform is an ideal tool for finding periods.

Discrete Fourier transform

Figure: Joseph Fourier (1768-1830)

Discrete Fourier transform

A tale of two o.n. basis for CN :

Standard basis:
e1, e2, · · · en.

Fourier basis:
f1, f2, · · · , fn

(Columns of the matrix next page).

Fourier transform F : CN → CN sends the standard basis to the Fourier
basis, F (ei) = fi . Here is its matrix in standard basis:

F =
1√
N


1 1 . . . 1
1 ξ1·1 . . . ξ1·(N−1)

...
...

. . .
...

1 ξ(N−1)·1 . . . ξ(N−1)·(N−1)


ξ = e−2πi/N

FF ∗ = F ∗F = I

The so called Fast Fourier Transform (also known as Quantum Fourier
Transform), is the same transform F , performed in a more efficient way (I
won’t define it in this talk, but it plays an important role for the
efficiency of Shor’s algorithm)

Fourier transform and periods

Given f : {0, 1, · · · ,N − 1} → C, define a new function
f̂ : {0, 1, · · · ,N − 1} → C:

f̂ = Ff ,

f̂m =
1√
N

N−1∑
n=0

fne
−2πinm

N

The inverse Fourier transform F−1 is computed by a similar formula:

fm =
1√
N

N−1∑
n=0

f̂ne
2πinm

N

DFT detects the period of a periodic function

Assume N = pk and f has period p. that is

fi+p = fi , for all i

Then

f̂m =

{
k√
N

∑p−1
n=0 fne

−2πinm
N if m is multiple of k

0 otherwise

So: f̂ is non-zero only at multiples of k = N
p . Thus: Fourier transform

detects p, the period of f .

Integer factorization via DFT

Can now take fi = x i , 0 ≤ i < N, which we know has some period p.
Look at its Fourier transform f̂ and places where it is non-zero. This will
gives us the period of f , and hence an integer factorization of N = kp.

caveat: DFT can be implemented in a classical computer, but the
resulting algorithm is not polynomial time!

Shor’s discovery: DFT can be implemented in a quantum computer,
which works based on principles of quantum mechanics, and the resulting
algorithm, known as Shor’s algorithm, is polynomial time!

Axioms of quantum mechanics in Schroedinger’s picture

(Pure) States: unit vectors (up to phase) in a complex Hilbert space.
Observables: selfadjoint operators.
Dynamics: one parameter group of unitary operators.
Measurement: If the system is in state v and we measure the observable
A, we find an eigenvalue λ of A and the state v will collapse to an
eigenstate w of A, with probability

p = |〈v ,w〉|2

Combined systems: The state space of a system obtained by combining
two systems is the tensor product of the state spaces of each system:

H = H1 ⊗ H2

Example: internal spin

Hilbert space: C2

State space: unit vectors in C2 up to phase,

S3/S1 ' S2

Observables: spin operators

Sx =
~
2
σx , Sy =

~
2
σy , Sz =

~
2
σz .

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Internal spin and Hopf fibration

Figure: Bloch sphere = spin state space = S3/S1

From classical stuff to quantum stuff

Calculus (classical stuff) −→ Linear Algebra (quantum stuff)

Sets (position) −→ Vector Spaces (superposition)

Functions (observables −→ Matrices (observables)

Values of functions (measurement) −→ Eigenvalues of matrices (measurement)

Certainties (fg = gf) −→ Unceratnties (pq 6= qp)

Bit space {0, 1} −→ Qubit space C2

Cartesian product −→ Tensor product (Entanglement)

Bits versus Qubits

The unit of information in a classic computer: bit space {0, 1}. Only two
possibilities 0 or 1.

The unit of information in a quantum computer: qubit space C2. There
are uncoutably many possibilities: a unit vector (up to phase) in C2.

One single qubit space C2 can store more information than all the
computers in the world that we have now, or shall ever be built! This is
possible thanks to electron spin.

Figure: Electron spin

Qubits and Hopf fibration

Figure: Bloch sphere = space of qubits = S3/S1

n-bits and n-qubits

{0, 1}n −→ C2 ⊗ · · · ⊗ C2

Let |0〉 = (1, 0) , |1〉 = (0, 1), standard basis of C2.

1-qubits: . a|0〉+ b|1〉, |a|2 + |b|2 = 1.

2-qubits: a|00〉+ b|01〉+ c |10〉+ d |11〉, |a|2 + |b|2 + |c |2 + |d |2 = 1.

3-qubits:
a |000〉+b |001〉+ c |010〉+d |011〉+ e |100〉+ f |101〉+g |110〉+h |111〉.

States and observables in QC

States and observables in classical computers: bits and functions

f : {0, 1}n → R

States and observables in quantum computers: qubits and matrices, e.g.

H : C2 → C2.

Quantum logic gates

The Hadamard gate acts on a single qubit.

H =
1√
2

[
1 1
1 −1

]
The quantum NOT gate. It maps |0〉to|1〉 and |1〉to|0〉.

X =

[
0 1
1 0

]

More quantum logic gate

Controlled NOT gate C : C2⊗C2. it leaves the first qubit unchanged and
changes the state of the second qubit if the first qubit is in state |1 >:

|0 > ⊗|0 > 7→ |0 > ⊗|0 >

|0 > ⊗|1 > 7→ |0 > ⊗|1 >

|1 > ⊗|0 > 7→ |1 > ⊗|1 >

|1 > ⊗|1 > 7→ |1 > ⊗|0 >

Entanglement

Classical composite states:

Cartesian products {0, 1} × {0, 1} × · · · × {0, 1}

Quantum composite states:

Tensor products C2 ⊗ C2 ⊗ · · · ⊗ C2.

A 2-qubit state in C2 ⊗ C2 is not necessarily of the form X ⊗ Y ; it can
be X1 ⊗ Y1 + X2 ⊗ Y2, etc. In which case it is called entangled.

Shor’s Algorithm

Figure: Peter Shor

Shor’s algorithm-a sketch

Task: to find a factor of an integer N.

Step 1 (can be easily done on a classical computer): Pick any
x , 1 < x < N. Either gcd(x ,N) > 1, in which case Euclidean algorithm
can easily produce a factor of N, or gcd(x ,N) = 1. So assume this is the
case. Then the function

f (a) = xa modN, a = 0, 1, 2, · · · ,N − 1

is periodic with some period r . Fast Fourier transform, implemented on a
quantum computer, will detect this period and hence will give a factor of
N (as we explained in the first part) in polynomial time.

Find a q such that N2 < 2q < 2N2. Assume r |2q. Let L and R be vector
spaces (qunatum registers) of dimensions 2q and N. Let Q = 2q and
prepare the state

Q−1/2
2q−1∑
a=0

|a〉 |f (a)〉 ∈ L⊗ R.

Now apply F ⊗ 1 and get the state

Q−1
2q−1∑
a=0

2q−1∑
b=0

ξab |b〉 |f (a)〉 .

Next: Measure the register R. One of the values will appear and the
others will be lost. Assume you get f (a) = x mod N. After this
measurement you loose most of the content of the register L, except
those states which were coupled with f (a).

Shor’s algorithm

Final Step: Read the first register L. Will get a number which is a
multiple of p = 2q/r . Knowing p is the same as knowing the period r .
Repeat this several times. It can be shown that with high probability you
will get only p, not a higher multiple of it. So you are done!

