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A. Some definitions and notation

1. An open connected set Ω ⊂ Rn is called a domain. We say that a domain
Ω

′ ⊂ Ω ⊂ Rn is a strictly interior subdomain of Ω and write Ω
′ ⊂ ⊂ Ω, if Ω′ ⊂

Ω.

2. x=(x1, x2, . . . , xn)∈Rn, u=u(x),
α=(α1, α2, . . . , αn)∈Zn+ as a multi-index, |α|=α1 + α2 + · · ·+ αn, then

∂αu= ∂|α|u
∂x
α1
1 ∂x

α2
2 ···∂x

αn
n

3. Lp(Ω), 1≤p≤∞, is the set of all measurable functions u(x) in Ω such that
the norm

‖ u ‖Lp(Ω)=
(∫

Ω
| u |p dx

) 1
p

is finite.

Lploc(Ω), 1≤p≤∞, is the set of all measurable functions u(x) in Ω such that∫
Ω′ | u |p dx<∞ for any bounded strictly interior subdomain Ω

′ ⊂ ⊂ Ω.

4. Ck(Ω) is the class of functions in Ω such that u(x) and ∂αu, | α |≤k, are
continous in Ω.

C∞c (Ω) is the class of functions u(x) in Ω such that
a) u(x) is infinitely smooth, which means that ∂αu is uniformly continous in

Ω, ∀α.
b) u(x) is compactly supported, supp u is a compact subset of Ω.
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B. Weak derivatives

1. Definition: Let α be a multi-index. Suppose that u,v∈ L1
loc (Ω) and∫

Ω
u (x) ∂αη (x) dx=(−1)

|α| ∫
Ω
v (x) η (x) dx, ∀η ∈ C∞c (Ω).

Then v is called the weak partial derivative of u in Ω, and is denoted by Dαu.

2. Definition: Suppose that u,v ∈ L1
loc (Ω) and there exists a sequence

{um} ∈ Ck (Ω), m∈ N, such that

um → u, m →∞
∂αum → v, m →∞

in L1
loc (Ω), here α is a multi-index and | α |=k. Then v is called the weak partial

derivative of u in Ω: Dαu=v.

3. Example: Let n=1, Ω=(0,2) and

u(x) =

{
x if 0 < x < 1

1 if 1 ≤ x < 2

Define

v(x) =

{
1 if 0 < x < 1

0 if 1 ≤ x < 2

Then u
′
=v in the weak sense. To see this, choose any η ∈ C∞c (Ω).

We must demonstrate ∫ 2

0

uη
′
dx = −

∫ 2

0

vηdx

But we easily calculate∫ 2

0
uη

′
dx =

∫ 1

0
xη

′
dx +

∫ 2

1
η

′
dx =η(1) −

∫ 1

0
ηdx + η(2) − η(1) =−

∫ 1

0
ηdx =

−
∫ 2

0
vηdx.

4. Theorem: Let um ∈ L1
loc (Ω), and um → u in L1

loc (Ω) as m → ∞.
Suppose that there exists weak derivatives Dαum ∈ L1

loc (Ω) and Dαum → v in
L1
loc (Ω) as m →∞. Then v=Dαu, i.e. Dαu is closed.

proof: By definition 1, for Dαum, we have
∫

Ω
um∂

αη dx=(−1)
|α| ∫

Ω
Dαumηdx,

∀η ∈ C∞c (Ω). Let m → ∞, then
∫

Ω
u∂αη dx=(−1)

|α| ∫
Ω
vηdx, ∀η ∈ C∞c (Ω).

Hence v=Dαu.
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C. Sobolev Spaces

Fix 1≤ p ≤ ∞, and let k be a nonnegative integer. We define now certain
function spaces, whose members have weak derivatives of various orders lying
in various Lp spaces.

1. Definition: The Sobolev space Wk,p(Ω)=
{
u ∈ L1

loc(Ω) : Dαu ∈ Lp(Ω)
}

.
If u ∈W k,p (Ω), we define its norm to be

||u||Wk,p(Ω) :=

{
(
∑
|α|≤k

∫
Ω
|Dαu|pdx)1/p (1 ≤ p <∞)∑

|α|≤k ess supΩ|Dαu| (p =∞).

Remark: W0,p(Ω)=Lp(Ω).

2. Proposition: Wk,p(Ω) is complete, in other words, Wk,p(Ω) is a Banach
space.

proof: Let {um} be a Cauchy sequence in Wk,p(Ω). It is quivalent to the
fact that all sequences {Dαum} for |α| ≤ k are Cauchy sequences in Lp(Ω).

Since the space Lp(Ω) is complete, there exist u, vα ∈ Lp(Ω) such that in
Lp(Ω)

um → u,Dαum → vα, as m→∞

By Theorem B.4, vα = Dαu, and therefore Dαum → Dαu in LP (Ω). Hence
in Wk,p(Ω),

um → u, as m →∞

3. If p=2, the space Wk,2(Ω) is a Hilbert space with the inner product

〈u, v〉Wk,2(Ω)=
∫

Ω

∑
|α|≤kD

αu(x)Dαv(x) dx

We denote Wk,2(Ω)=Hk(Ω).

4. Definition: We denote by Wk,p
0 (Ω) the closure of C∞c (Ω) in Wk,p(Ω).

Thus u∈W k,p
0 (Ω) if and only if there exist functions um ∈ C∞c (Ω) such that

um → u in Wk,p(Ω).

Similarly, we denote Hk
0(Ω) = W k,2

0 (Ω).

3



D. Second-ordered Elliptic Equations

1. Definitions

1.1 Elliptic equations.
Consider the boundary-value problem{

Lu = f inΩ

u = 0 on∂Ω
(1)

where Ω is an open, bounded subset of Rn and u: Ω → R is unknown,
u=u(x). Here f: Ω→ R is given, and L denotes a second-order partial differen-
tial operator having either the form

Lu = −
n∑

i,j=1

(aij(x)uxi)xj +

n∑
i=1

bi(x)uxi + c(x)u (2)

or else

Lu = −
n∑

i,j=1

aij(x)uxixj +

n∑
i=1

bi(x)uxi + c(x)u (3)

for given coefficient functions aij , bi, c (i, j=1,2,...,n).

We say the partial differential operator is (uniformly) elliptic if there exists
a constant θ > 0 such that

Lu = −
n∑

i,j=1

aij(x)ξiξj ≥ θ|ξ|2 (4)

for a.e. x ∈ Ω and all ξ ∈ Rn.

1.2 Weak solutions.
Let us consider first the boundary-value problem (1) when L has the diver-

gence form (2).
The bilinear form B[ , ] associated with the divergence form elliptic operator

L defined by (2) is

B[u, v] :=

∫
Ω

n∑
i,j=1

aijuxivxj +

n∑
i=1

biuxiv + cuvdx (5)

for u, v ∈ H1
0 (Ω).

We say that u ∈ H1
0 (Ω) is a weak solution of the boundary-value problem

(1) if
B[u, v] := (f, v) (6)

for all v ∈ H1
0 (Ω), where ( , ) denotes the inner product in L2(Ω).

4



2. Existance of weak solutions

We assume for this section H is a real Hilbert space, with norm ‖‖ and inner
product ( , ). We let 〈, 〉 denote the pairing of H with its dual space.

Lax-Milgram Theorem: Assume that B: H×H → R is a bilinear map-
ping, for which there exists constants α, β >0, such that

(i) β||u||2H ≤ B[u, u], for all u ∈ H
(ii) |B[u, v]| ≤ α||u||H ||v||H , for all u, v ∈ H.
Finally, let f: H→ R be a bounded linear functional on H. Then there exists

a unique element u ∈ H, such that

B[u, v] = 〈f, v〉 (7)

for all v ∈ H.
proof: 1. For each fixed u∈ H, the mapping v 7→ B[u,v] is a bounded linear

functional on H. By the Riesz representation theorem, there exists a unique
element w ∈ H satisfying

B[u, v] = (w, v) (8)

for all v ∈ H.
Denote the operator mapping u to w by A, i.e., w = Au, and B[u, v] =

(Au, v), for all v ∈H.
2. Using the hypothesis of the theorem, one can show that the operator A

is linear, bounded, one to one, and that the range of A, R(A), is closed in H.
3. We demonstrate now

R(A) = H (9)

For if not, then, since R(A) is closed, there would exist a nonzero element x ∈H
with x ∈ R(A)⊥. But this fact in turn implies the contradiction β||x||2 ≤
B[x, x] = (Ax, x) = 0.

4. Next, we observe once more from the Riesz representation theorem for f,
we have

〈f, v〉 = (w, v) for all v ∈H

for some element w ∈H. We then utilize (8) and (9) to find u ∈H satisfying
Au = w. Then

B[u, v] = (Au, v) = (w, v) = 〈f, v〉

and this is (7).
5. Finally, we show there is at most one element u ∈H verifying (7). For if

both B[u, v] = 〈f, v〉 and B[u
′
, v] = 〈f, v〉, then B[u − u′

, v] = 0 for all v ∈H.
We set v = u− u′

to find β||u− u′ ||2 ≤ B[u− u′
, u− u′

] = 0.

5



We return now to the specific bilinear form B[ , ], defined in 1.2(5) by the
formula

B[u, v] =

∫
Ω

n∑
i,j=1

aijuxivxj +

n∑
i=1

biuxiv + cuvdx

for u, v ∈ H1
0 (Ω), and try to verify the hypothesis of the Lax-Milgram Theorem.

Theorem: There exist constants α, β > 0 and γ ≥ 0 such that

|B[u, v]| ≤ α||u||H1
0 (Ω)||v||H1

0 (Ω) (10)

and
β||u||2H1

0 (Ω) ≤ B[u, u] + γ||u||2L2(Ω) (11)

for all u, v ∈ H1
0 (Ω).

Remark: (11) is called Garding Inequality .
proof: 1. We readily check

|B[u, v]| ≤
n∑

i,j=1

||aij ||L∞

∫
Ω

|Du||Dv|dx

+

n∑
i=1

||bi||L∞

∫
Ω

|Du||v|dx+ ||c||L∞

∫
Ω

|u||v|dx

≤ α||u||H1
0 (Ω)||v||H1

0 (Ω),

for some appropriate constant α.
2. In view of the ellipticity condition (4) we have

θ

∫
Ω

|Du|2dx ≤
∫

Ω

n∑
i,j=1

aijuxixjdx

= B[u, u]−
∫

Ω

n∑
i=1

bi(x)uxiu+ cu2dx

≤ B[u, u] +

n∑
i=1

||bi||L∞

∫
Ω

|Du||u|dx+ ||c||L∞

∫
Ω

u2dx

3. Now from Cauchy’s Inequality with ε, we observe∫
Ω

|Du||u|dx ≤ ε
∫

Ω

|Du|2dx+
1

4ε

∫
Ω

u2dx

for ε > 0.
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We insert this estimate into the inequation in step 2 and then choose ε >0
so small that

ε

n∑
i=1

||bi||L∞ <
θ

2
.

Thus
θ

2

∫
Ω

|Du|2dx ≤ B[u, u] + C

∫
Ω

u2dx,

where C= 1
4ε

∑n
i=1 ||bi||L∞ + ||c||L∞ .

In addition we recall from Poincare’s inequality that

||u||L2(Ω) ≤ C
′
||Du||L2(Ω).

It easily follows that

β||u||2H1
0 (Ω) ≤ B[u, u] + γ||u||2L2(Ω)

where β = θ
2(C′2+1)

, γ = C.

First Existence Theorem for weak solutions: There is a number γ ≥ 0
such that for each µ ≥ γ and each function f∈ L2(Ω), there exists a unique weak
solution u ∈ H1

0 (Ω) of the boundary-value problem{
Lu+ µu = f inΩ

u = 0 on∂Ω
(12)

proof: 1. Take γ from the former Theorem, let µ ≥ γ, and define then the
bilinear form

Bµ[u, v] := B[u, v] + µ(u, v)

for u, v ∈ H1
0 (Ω), which corresponds as in 1.1 Lµu := Lu + µu. As before ( ,

) means the inner product in L2(Ω). Then Bµ[, ] satisfies the hypothesis of the
Lax-Milgram Theorem.

2. Now fix f ∈ L2(Ω) and set 〈f, v〉 := (f, v)L2(Ω). This is a bounded linear
functional on L2(Ω), and thus on H1

0 (Ω).
We apply the Lax-Milgram Theorem to find a unique function u ∈ H1

0

satisfying
Bµ[u, v] = 〈f, v〉

for all v ∈ H1
0 (Ω), u is consequently the unique weak solution of (12).
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