Sobolev Spaces and Garding Inequality

Yue Xu
April 27, 2015

A. Some definitions and notation

1. An open connected set 2 C R" is called a domain. We say that a domain
Q C Q C R"is a strictly interior subdomain of Q and write Q@ C C Q,if Q' C
Q.

2. x=(z1, 22, ...,2y)ER", u=u(x),
a=(ai,az,...,0n)€Z] as a multi-index, |a|=a; + az + - + ay, then
o%u olely

= o1 ] Qo
Oz, ' 0xy?---0xy

3. LP(Q)), 1<p<oo0, is the set of all measurable functions u(z) in Q such that
the norm

1
Il llze@=(fo | ul? dz)>

is finite.
LP

loc

(Q), 1<p<o0, is the set of all measurable functions u(x) in © such that
S| u|P dx<oo for any bounded strictly interior subdomain Q cca

4. Ck(€) is the class of functions in Q such that u(z) and 9%u, | a |<k, are
continous in Q.

C2°(Q) is the class of functions u(z) in Q such that

a) u(x) is infinitely smooth, which means that 9“u is uniformly continous in
Q, Va.

b) u(z) is compactly supported, supp u is a compact subset of .



B. Weak derivatives

1. Definition: Let a be a multi-index. Suppose that u,ve L;,. (Q) and
Jou @) 0% (@) du=(=1)*! o v (@)1 (x) dz, ¥ € C2 ().

Then v is called the weak partial derivative of u in €2, and is denoted by D“u.

2. Definition: Suppose that u,v € Lj,.(Q) and there exists a sequence
{um} € CF (), me N, such that

Uy — U, M — 00
0%Uy, — v, M — 0O

in L}, (Q), here a is a multi-index and | o |=k. Then v is called the weak partial
derivative of u in Q: D%u=v.

3. Example: Let n=1, 9=(0,2) and

r ifo<zx<l1
u(z) = :
1 ifl<z<?2

Define

v(x) =

1 f0<ax<1
0 f1<e<?2

Then u'=v in the weak sense. To see this, choose any 7 € C2° ().
We must demonstrate
2 2
/ undx:f/ vndx
0 0
But we easily calculate
2 ’ 1 ’ 2 1 1
Jo un dx = [y ande+ [[nde =n(1) = [ ndx+n(2) —n(1) == [, ndx =
- f02 vndx.

4. Theorem: Let u,, € L},.(Q), and u, — u in Lj,.(Q) as m — oc.
Suppose that there exists weak derivatives D*u,, € Lj,. (?) and D*u,, — v in
L},.(9) as m — co. Then v=D%u, i.e. D%u is closed.

proof: By definition 1, for D®u,,, we have [, um,m 01 dx=(—1)°! Jo D*umndz,
Vn e C* (). Let m — oo, then [, ud*n dx=(—1)*! Jo vndz, ¥y € C* ().
Hence v=D“u.



C. Sobolev Spaces

Fix 1< p < o0, and let k be a nonnegative integer. We define now certain
function spaces, whose members have weak derivatives of various orders lying
in various L? spaces.

1. Definition: The Sobolev space W*?(Q)={u € L,.() : D*u € L?(Q)}.
If u € WEP (), we define its norm to be

(Xajzr Jo D ulPdz)!/? (1< p < o0)
Zm\gk ess supg|Du| (p = 00).

ullwrr (o) = {
Remark: W97 (Q)=L"(Q).

2. Proposition: W*?(Q) is complete, in other words, W*?(Q) is a Banach
space.

proof: Let {u,,} be a Cauchy sequence in W*P(Q). Tt is quivalent to the
fact that all sequences { D%u,,} for |a] < k are Cauchy sequences in LP(Q).

Since the space L”(Q)) is complete, there exist u, v, € L?(Q) such that in
LP(Q)

Uy —> Wy DUy, — Vg, @8 M—> 00

By Theorem B.4, v, = D%u, and therefore D%u,, — D%u in LP(Q). Hence
in WFP(Q),

Uy —> U, A8 M —> OO

3. If p=2, the space W*2(Q) is a Hilbert space with the inner product
(u, v}Wk,z(Q):fQ P laj<k Du(z)Dv(z) dx
We denote Wk2(Q)=H*(Q).
4. Definition: We denote by We?(€2) the closure of C2°(Q) in W (Q).
Thus ue W} (Q) if and only if there exist functions u,, € C2°(£2) such that

Uy, — u in WEP(Q).
Similarly, we denote HE(Q) = Wg’Q Q).



D. Second-ordered Elliptic Equations

1. Definitions

1.1 Elliptic equations.
Consider the boundary-value problem

{Lu — f Q0 O

u=>0 ondf?

where § is an open, bounded subset of R™ and uw: © — R is unknown,
u=u(x). Here f: Q@ — R is given, and L denotes a second-order partial differen-
tial operator having either the form

n

Lu=— Z (aij (%) Uz, )z; + Z bz(:r)uz + c(x)u (2)
i=1

,j=1

or else
n

=1

4,j=1

for given coefficient functions a¥/, b?, ¢ (i, j=1,2,...,n).

We say the partial differential operator is (uniformly) elliptic if there exists
a constant 6 > 0 such that

n

Lu=~ Y a(2)&&; > 0¢)° (4)

ig=1
for a.e. z € Q and all £ € R™.

1.2 Weak solutions.

Let us consider first the boundary-value problem (1) when L has the diver-
gence form (2).

The bilinear form B[, | associated with the divergence form elliptic operator

L defined by (2) is

Blu,v] := / Z a7 g, vy, + Zbiumiv + cuvdx (5)
Qy5=1 i=1
for u,v € H{ (D).
We say that u € H}(2) is a weak solution of the boundary-value problem
(1) if
Blu,v] := (f,v) (6)
for all v € H} (), where (, ) denotes the inner product in L?(€).



2. Existance of weak solutions

We assume for this section H is a real Hilbert space, with norm ||| and inner
product (, ). We let (,) denote the pairing of H with its dual space.

Lax-Milgram Theorem: Assume that B: HxH — R is a bilinear map-
ping, for which there exists constants «, 5 >0, such that

(i) B||ul|?; < Blu,u], for all u € H

(ii) |Blu,v]| < o|ul|g||v||a, for all u,v € H.

Finally, let f: H— R be a bounded linear functional on H. Then there exists
a unique element u € H, such that

Blu,v] = (f,v) (7)

for all v € H.

proof: 1. For each fixed ue H, the mapping v— B[u,v] is a bounded linear
functional on H. By the Riesz representation theorem, there exists a unique
element w € H satisfying

Blu,v] = (w,v) (8)

for all v € H.

Denote the operator mapping u to w by A, i.e.,, w = Au, and Blu,v] =
(Au,v), for all v €H.

2. Using the hypothesis of the theorem, one can show that the operator A
is linear, bounded, one to one, and that the range of A, R(A), is closed in H.

3. We demonstrate now

R(A)=H (9)

For if not, then, since R(A) is closed, there would exist a nonzero element x €H
with 2 € R(A)L. But this fact in turn implies the contradiction fB||z||? <
Blz,z] = (Az,z) = 0.

4. Next, we observe once more from the Riesz representation theorem for f,
we have

(f,v) = (w,v) for all v €H

for some element w €H. We then utilize (8) and (9) to find u €H satisfying
Ay = w. Then
Blu,v] = (Au,v) = (w,v) = (f,v)

and this is (7).

5. Finally, we show there is at most one element v €H verifying (7). For if
both Blu,v] = (f,v) and Blu',v] = (f,v), then Blu — v ,v] = 0 for all v €H.
We set v = u — ' to find B|ju—u'[|2 < Blu—u,u—u'] =0.



We return now to the specific bilinear form B[ , ], defined in 1.2(5) by the
formula

n n
Blu,v] = /Q Z aijuxivxj + Zbiuxiv + cuvdx
; i=1

ij=1

for u,v € H}(Q2), and try to verify the hypothesis of the Lax-Milgram Theorem.

Theorem: There exist constants «, 5 > 0 and v > 0 such that

|Blu, ]| < allull gz ollvll 1y @) (10)

and
Bl1ullyy ey < Blusu) +[ull3 o) (1)

for all u,v € Hg ().
Remark: (11) is called Garding Inequality.
proof: 1. We readily check

Blu,o]l < 3l / |Dul| Dolde

ij=1 @

3016 / |Duloldz + ||| ~ / Jul o]
=1

< aflull g o vl @)

for some appropriate constant c.
2. In view of the ellipticity condition (4) we have

0/ |Du\2dx§/ Z aijumimjdx
Q Q.

4,j=1

= Blu,u] — / Zb’(x)umu + cudx
Q=1

§B[u,u]+2\|bi||mo/ |Du|\u|dx+||c\|Loo/u2d:17
Q Q

=1

3. Now from Cauchy’s Inequality with ¢, we observe

1
/|Du||u\dx§e/ |Du|2dac+—/ u?dx
Q Q e Jo

for e > 0.



We insert this estimate into the inequation in step 2 and then choose € >0

so small that
S Il < 5.
i=1

Thus 0
f/ |Du|2dacSB[u,u]—FC’/uchaU7
2 Ja Q

where C=4 377 [|*][ L + [[c]| e
In addition we recall from Poincare’s inequality that

ull2() < C ||Dul|2(q)-
It easily follows that
5|\U||12r{5(9) < Blu, u] +7|ull72 ()

where 8 = ﬁ,'y =C.

First Existence Theorem for weak solutions: There is a number v > 0
such that for each p > « and each function f€ L?(£2), there exists a unique weak
solution u € H(Q) of the boundary-value problem

{Lu +pu=f inQd (12)
u=20 ondf)

proof: 1. Take v from the former Theorem, let ;1 > 7, and define then the
bilinear form

B [u,v] :== Blu,v] + p(u,v)
for u,v € Hg(£), which corresponds as in 1.1 L,u := Lu + pu. As before ( ,
) means the inner product in L2(£2). Then B,,[,] satisfies the hypothesis of the
Lax-Milgram Theorem.

2. Now fix f € L*(Q) and set (f,v) := (f,v)12(n). This is a bounded linear
functional on L%(Q), and thus on Hg ().

We apply the Lax-Milgram Theorem to find a unique function u € H}
satisfying

By [u,v] = (f,v)

for all v € H}(2), u is consequently the unique weak solution of (12).
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