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» (M, g) = closed Riemannian manifold. Laplacian on forms
A= (d+d*)?:QP(M) = QP(M),
has pure point spectrum:

0< <L -- =00

» Fact: Dimension, volume, total scalar curvature, Betti numbers, and
hence the Euler characteristic of M are fully determined by the
spectrum of A (on all p-forms).
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First examples: flat tori and round spheres

» Flat tori: M =R™/I, T CR™ a cocompact lattice;

spec(L) = {4n?|]4]|% v €T}
(,OW(X) _ e27ri('y,x) ye r*

» Round sphere S". Eigenvalues

M= k(k+n—1) k=0,1,---,

with multiplicity ("J;k) - ("1'552)



> In particular A\;(S") = n with eigenfunctions

{Xl’ R 7X"+l}

» Eigenspace of \x: Harmonic polynomials of degree k.



> In particular A\;(S") = n with eigenfunctions
{xL, o X"y
» Eigenspace of \x: Harmonic polynomials of degree k.

» Except for very few cases, no general formulas are known for
eigenvalues.



Patterns in eigenvalues

» Hard to find any pattern in eigenvalues in general, except, perhaps,
that their growth is determined by the dimension of the manifold:

M~ Ckmn k= o0



Patterns in eigenvalues

» Hard to find any pattern in eigenvalues in general, except, perhaps,
that their growth is determined by the dimension of the manifold:

M~ Ckmn k= o0

» But this is far from obviuos, and clues as to why such a statment
should be true, and what C should be, first came from from
spectroscopy, and in particular attemps to find the black body
radiation formula.



Method of proof: bring in the heat kernel

» Heat equation for functions: 9; + A =0
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Method of proof: bring in the heat kernel

» Heat equation for functions: 9; + A =0

> k(t,x,y) = kernel of e~t2. Asymptotic expansion near t = 0:

k(t, x,x) ~ (ag(x, AA) + ar(x, A)t 4 ap(x, A)t? +--+)

(4mt)m/2

> a;(x, ), Seeley-De Witt-Gilkey coefficients.



» Theorem: a;(x,/\) are universal polynomials in curvature tensor R
and its covariant derivatives:

30(X7A) =1
a(x, ) = %S(X) scalar curvature
1 .
2(x0) = 35 IREIP = 2[Ric(x)|* +5S(x)I*)

(6, A) = e



Heat trace asymptotics

Compute Trace(e™t4) in two ways:

Spectral Sum = Geometric Sum.

Z et = / k(t,x,x)dvol, ~ (4rt) 2 Z at/ (t — 0).
M

Hence
aj:/ aj(x, A)dvoly,
M

are manifestly spectral invariants:

EN / dvol, = Vol(M), = Weyl's law
M

a = 6/ S(x)dvoly, total scalar curvature



Tauberian theory and ag = 1, implies Weyl's law:

Vol (M) o
(4m)m/2T (1 + m/2)

N(A) ~ A — o0,

where
N(Y) = #{ < A}

is the eigenvalue counting function.



Simplest example: flat tori

» [ C R™ a cocompact lattice; M = R™/T

spec(A) = {47°(|[y*|]; " e T}
» Then:
1 Can?|Ix— 2
K(t,XaY): er Am| -yt I7/4t
yer

Poisson summation formula =

S el Vol(M Z —an?||y12/4t
(4rt) (4rt)m/2
yrerx yel

v

v

And from this we obtain the asymptotic expansion of the heat trace
near t =0
Vol(M)

Tre A v ——
(4mt)m/2

(t—0)



Application 1: heat equation proof of the Atiyah-Singer
index theorem

» Dirac operator
D:C>®(5;)— C>(52)

McKean-Singer formula:

Index(D) = Tr(e ™"P) — Tr(e™PP7), vt >0



Application 1: heat equation proof of the Atiyah-Singer
index theorem

» Dirac operator
D:C>®(5;)— C>(52)

McKean-Singer formula:

Index(D) = Tr(e ™"P) — Tr(e™PP7), vt >0

> Heat trace asymptotics =
Index(D) = / an(x)dx,
M

where a,(x) = af (x) — a; (x), m = 2n, can be explicitly computed
and recovers the A-S integrand (The simplest proof is due to
Getzler).



Application 2: meromorphic extension of spectral zeta
functions

N3

Mellin transform + asymptotic expansion:

_ 1 /°° el
P\l p— et Lt Re(s) > 0
) Jo (%)

als) = F(ls) /OO(Trace(e_tA) — DimKer A)t5~t dt

- r(ls {/ /

The second term defines an entire function, while the first term has a
meromorphic extension to C with simple poles within the set



m

= [ =0,1,---
5 J J )

Also: 0 is always a regular point.

Simplest example: For M = S! with round metric, we have

Ca(s) = 2¢(2s) Riemann zeta function



Scalar curvature

The spectral invariants a; in the heat asymptotic expansion

Trace(e ™ *2) ~ (4mt) 7" Z ajt/ (t—0)
j=0

are related to residues of spectral zeta function by

mdl_q
Ress:aCA(S) = (477)_7 l_z(a) , o= % —j>0

Focusing on subleading pole s = 7 — 1 and u_sing ar = %fM S(x)dvoly,
we obtain a formula for scalar curvature density as follows:



Let (r(s) :==Tr(FfA™®), f € C®(M).

—m/2
Res (r(s)|s=m—1 = I'((‘:nﬁ/)2—1) /M fS(x)dvol,, m>3

H(8)]oco = % /M £S(x)dvoly — TH(fP)  m=2



Let (r(s) :==Tr(FfA™®), f € C®(M).
—m/2
Res (r(s)|s=m—1 = I'((‘:nﬁ/)2—1) /M fS(x)dvoly, m>3

H(8)]oco = % /M £S(x)dvoly — TH(fP)  m=2

log det(A) = —¢’(0), Ray-Singer regularized determinant



Noncommutative Geometry: Spectral Triples (A, H, D)

» A= involutive unital algebra, H = Hilbert space,
T A— L(H), D:H—H

D has compact resolvent and all commutators [D, 7(a)] are
bounded.

» An asymptotic expansion holds
Trace (e 27) ~ Z a,t* (t—0)
» Let A = D?. Spectral zeta function

Co(s) =Tr(|D|~%) = Tr(A~%/?), Re(s) > 0.



Curved noncommutative tori Ay

Ag = C(T3) = universal C*-algebra generated by unitaries U and V

VU = 2™V

= C2(T3) = { Z amnU™V" : (am,n) Schwartz class}.

m,n€Z



» Differential operators on Ay
01,02 1 AZ° — A,
Infinitesimal generators of the action
as(UmVN) = esmmymyn s ¢ R2,

10 190 45 2torus.

Analogues of -, P Dy

» Canonical trace t: Ay — C on smooth elements:

t( Z am,nUmV") = 40,0-

m,n€Z



Complex structures on Ay

v

Let Ho = L2(Ag)= GNS completion of Ay w.r.t. t.

> Fix 7 =7 + i, 7> = (1) > 0, and define

0 =01 + 707, % := 01 + T».

v

Hilbert space of (1,0)-forms:

H(1.0) .— completion of finite sums Y adb, a, b € AP, w.r.t.

(adb,a'Ob') := t((a'0b')*adb).

v

Flat Dolbeault Laplacian: §*0 = 62 + 271616, + |7]293.



Conformal perturbation of the metric

» Fix h = h* € A7°. Replace the volume form t by ¢ : Ay — C,
©(a) :=t(ae™™), ac A,
> It is a twisted trace (in fact a KMS state)
p(ab) = p(bA(a)), Va,b e Ap.

where
A(x) = e "xel,

is the modular automorphism of a von Neumann factor-has no
commutative counterpart.

» Warning: A and A are very different operators!



Connes- Tretkoff spectral triple

» Hilbert space H, := GNS completion of Ag w.r.t. (,),,

<3, b>§0 = @(b*a)7 a, be A@

> View 0, = 0 = 61 + 702 : Hyp, — HLO. and let

0y HOEO 5 H,

H="MH,oH,



Full perturbed Laplacian:

. 2 Ye CH H

Lemma: 030, : Hy — My, and 9,0 : HEO) — 110 are anti-unitarily
equivalent to
kD" Ok - Ho — Ho,

k20 : HEO) — H0),

where k = eh/2,



Scalar curvature for Ay

» The scalar curvature of the curved nc torus (T3, 7, k) is the unique
element R € A3° satisfying

Trace (aA™°)|_, + Trace (aP) = t(aR), Va e Ay,

where P is the projection onto the kernel of A.

» In practice this is done by finding an asymptotic expansin for the
kernel of the operator et using Connes’ pseudodifferential
calculus for nc tori. A good pseudo diff calculus for general nc
spaces is still illusive.



Connes’ pseudodifferential calculus

» Symbols: smooth maps p: R? — A%°. WDO's: P, : A — A%,

Pu(a) = @m) [ [ e epte)anla)dsd

Even for polynomial symbols these integrals are badly divergent;
make sense as Fourier integral operators.

» For example:

p(&1,6) Z auglfza aj € Ay = P, = Zaijdidjz.

» Multiplication of symbol.

o Y OO 8 ().

£1,6,>0



Local expression for the scalar curvature

» Cauchy integral formula:

1
et =_— [ eNA-N)TTd\
2mi Jc

> B,\%(A—/\)_li

a(By) ~ bo(&,\) + b (&, A\) + ba(E,N) + - --

each b;j(¢, \) is a symbol of order —2 — j, and
o(Br(A — X)) ~ 1.

(Note: X is considered of order 2.)



Proposition: The scalar curvature of the spectral triple attached to
(Ag, T, k) is equal to

s /R 2 /C e by(€, ) dA de,

where b, is defined as above.



The computations for k0*0k

» The symbol of k0*0k is equal to

a2(§) + a1(§) + ao(§)

where
(&) = G+ |TPEK + 216 6K2,

a1(&) = 261k61(k) + 2|7|2E2kda (k) + 211€1kda (k) + 211E2kd1 (K),
a0(&) = k62 (k) + |7|*kd3(k) + 211 kb162(k).
» The equation
(bo+b1+b2+"')((32+1)+31+80)N1,

has a solution with each b; a symbol of order —2 — j.



bo = (a + 1) = (&K + |TPEK + 2n& &k + 1) 7

by = —(bgaiby + 01(bo)d1(a2)bo + 92(bo)d2(a2)bo),

by = —(boaobo + braibg + 01(bo)d1(a1)bo + 02(bo)d2(a1)bo +
1(b1)61(a2) bo + D2(b1)d2(a2) bo + (1/2)011(bo )63 (a2) bo +
(1/2)022(bo)d3(a2) bo + O12(bo)d12(a2)bo)

= BEIBIK303(k)by + 263 bokdy(k)body(k)bok
+about 800 terms.



Final formula for the scalar curvature (Connes-Moscovici,
Fathizadeh-K, Oct. 2011)

Theorem: The scalar curvature of (Ag, 7, k), up to an overall factor of

-7
oo s equal to

Ri(log A)(Ao(log k))+

Rax(log A1), log A(z)) (51(Iog k)?+|7[*62(log k)*+71 {1 (log k), 5(log k)}) +

W (log A ry,log Ay) (72 [61(log k). da(log k)] )



where

1 _ sinh(x/2)
Ri(x) = —2—5—>x
10 sinh?(x/4)

R>(s,t) = (1 + cosh((s + t)/2))x

—t(s + t)coshs + s(s+ t)cosht — (s — t)(s + t + sinh s + sinh t — sinh(s + t))

st(s + t) sinh(s/2) sinh(t/2) sinh?((s + t)/2)

(—s — t 4 tcoshs + scosh t + sinh s + sinh t — sinh(s + t))

W(s, t) = - stsinh(s/2) sinh(t/2) sinh((s + t)/2)




The limiting case

In the commutative case, the above modular curvature reduces to a
constant multiple of the formula of Gauss:

s

1
= 82(log k) + - §2(log k) + 25,6, (log k).
T2 T2 T2



First application: Ray-Singer determinant and conformal
anomaly (Connes-Moscovici)

Recall: log Det'(A) = —(/\(0), where A is the perturbed Laplacian on

T3. One has the following conformal variation formula. Let V; = log A
which acts on the /-th factor of products.
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which acts on the /-th factor of products.

Lemma
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Second application: the Gauss-Bonnet theorem for Ay

» Heat trace asymptotic expansion relates geometry to topology,
thanks to MacKean-Singer formula:

m

D (-1)PTr(e ™) =x(M)  Vt>0
p=0

» This gives the spectral formulation of the Gauss-Bonnet theorem:

1 1



Theorem (Connes-Tretkoff; Fathizadeh-K.): Let 6 € R, 7 € C\ R,
k € Ag° be a positive invertible element. Then

Trace(A7°)_, +2=t(R) =0,

‘5:0

where A is the Laplacian and R is the scalar curvature of the spectral
triple attached to (Ag, 7, k).



The geometry in noncommutative geometry

» Geometry starts with metric and curvature. While there are a good
number of ‘soft’ topological tools in NCG, like cyclic cohomology, K
and KK-theory, and index theory, a truly noncommutative theory of
curvature is still illusive. The situation is better with scalar
curvature, but computations are quite tough at the moment.

» Metric aspects of NCG are informed by Spectral Geometry. Spectral
invariants are the only means by which we can formulate metric
ideas of NCG.



v

v
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