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Laplace spectrum; commutative background

I (M, g) = closed Riemannian manifold. Laplacian on forms

4 = (d + d∗)2 : Ωp(M)→ Ωp(M),

has pure point spectrum:

0 ≤ λ1 ≤ λ2 ≤ · · · → ∞

I Fact: Dimension, volume, total scalar curvature, Betti numbers, and
hence the Euler characteristic of M are fully determined by the
spectrum of ∆ (on all p-forms).
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First examples: flat tori and round spheres

I Flat tori: M = Rm/Γ, Γ ⊂ Rm a cocompact lattice;

spec(4) = {4π2||γ||2; γ ∈ Γ∗}

ϕγ(x) = e2πi〈γ,x〉 γ ∈ Γ∗

I Round sphere Sn. Eigenvalues

λ̄k = k(k + n − 1) k = 0, 1, · · · ,

with multiplicity
(
n+k
k

)
−
(
n+k−2
k−2

)
.
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I In particular λ̄1(Sn) = n with eigenfunctions

{x1, · · · , xn+1}

I Eigenspace of λ̄k : Harmonic polynomials of degree k.

I Except for very few cases, no general formulas are known for
eigenvalues.
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Patterns in eigenvalues

I Hard to find any pattern in eigenvalues in general, except, perhaps,
that their growth is determined by the dimension of the manifold:

λk ∼ Ck
2
m k →∞

I But this is far from obviuos, and clues as to why such a statment
should be true, and what C should be, first came from from
spectroscopy, and in particular attemps to find the black body
radiation formula.
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Method of proof: bring in the heat kernel

I Heat equation for functions: ∂t +4 = 0

I k(t, x , y) = kernel of e−t4. Asymptotic expansion near t = 0:

k(t, x , x) ∼ 1

(4πt)m/2
(a0(x ,4) + a1(x ,4)t + a2(x ,∆)t2 + · · · )

I ai (x ,4), Seeley-De Witt-Gilkey coefficients.
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I Theorem: ai (x ,4) are universal polynomials in curvature tensor R
and its covariant derivatives:

a0(x ,4) = 1

a1(x ,4) =
1

6
S(x) scalar curvature

a2(x ,4) =
1

360
(2|R(x)|2 − 2|Ric(x)|2 + 5|S(x)|2)

a3(x ,4) = · · · · · ·



Heat trace asymptotics

Compute Trace(e−t4) in two ways:

Spectral Sum = Geometric Sum.

∑
e−tλi =

∫
M

k(t, x , x)dvolx ∼ (4πt)
−m

2

∞∑
j=0

aj t
j (t → 0).

Hence

aj =

∫
M

aj(x ,4)dvolx ,

are manifestly spectral invariants:

a0 =

∫
M

dvolx = Vol(M), =⇒ Weyl’s law

a1 =
1

6

∫
M

S(x)dvolx , total scalar curvature



Tauberian theory and a0 = 1, implies Weyl’s law:

N(λ) ∼ Vol (M)

(4π)m/2Γ(1 + m/2)
λm/2 λ→∞,

where
N(λ) = #{λi ≤ λ}

is the eigenvalue counting function.



Simplest example: flat tori

I Γ ⊂ Rm a cocompact lattice; M = Rm/Γ

spec(4) = {4π2||γ∗||2; γ∗ ∈ Γ∗}
I Then:

K (t, x , y) =
1

(4πt)m/2

∑
γ∈Γ

e−4π2||x−y+γ||2/4t

I Poisson summation formula =⇒∑
γ∗∈Γ∗

e−4π2||γ∗||2t =
Vol(M)

(4πt)m/2

∑
γ∈Γ

e−4π2||γ||2/4t

I And from this we obtain the asymptotic expansion of the heat trace
near t = 0

Tre−t∆ ∼ Vol(M)

(4πt)m/2
(t → 0)



Application 1: heat equation proof of the Atiyah-Singer
index theorem

I Dirac operator
D : C∞(S+)→ C∞(S−)

McKean-Singer formula:

Index(D) = Tr(e−tD
∗D)− Tr(e−tDD∗

), ∀t > 0

I Heat trace asymptotics =⇒

Index(D) =

∫
M

an(x)dx ,

where an(x) = a+
n (x)− a−n (x),m = 2n, can be explicitly computed

and recovers the A-S integrand (The simplest proof is due to
Getzler).



Application 1: heat equation proof of the Atiyah-Singer
index theorem

I Dirac operator
D : C∞(S+)→ C∞(S−)

McKean-Singer formula:

Index(D) = Tr(e−tD
∗D)− Tr(e−tDD∗

), ∀t > 0

I Heat trace asymptotics =⇒

Index(D) =

∫
M

an(x)dx ,

where an(x) = a+
n (x)− a−n (x),m = 2n, can be explicitly computed

and recovers the A-S integrand (The simplest proof is due to
Getzler).



Application 2: meromorphic extension of spectral zeta
functions

ζ4(s) :=
∑
λj 6=0

λ−sj , Re(s) >
m

2

Mellin transform + asymptotic expansion:

λ−s =
1

Γ(s)

∫ ∞
0

e−tts−1 dt Re(s) > 0

ζ4(s) =
1

Γ(s)

∫ ∞
0

(Trace(e−t4)− Dim Ker4)ts−1 dt

=
1

Γ(s)
{
∫ c

0

· · ·+
∫ ∞
c

· · · }

The second term defines an entire function, while the first term has a
meromorphic extension to C with simple poles within the set



m

2
− j , j = 0, 1, · · ·

Also: 0 is always a regular point.

Simplest example: For M = S1 with round metric, we have

ζ4(s) = 2ζ(2s) Riemann zeta function



Scalar curvature

The spectral invariants ai in the heat asymptotic expansion

Trace(e−t4) ∼ (4πt)
−m

2

∞∑
j=0

aj t
j (t → 0)

are related to residues of spectral zeta function by

Ress=αζ4(s) = (4π)−
m
2
am

2 −α

Γ(α)
, α =

m

2
− j > 0

Focusing on subleading pole s = m
2 − 1 and using a1 = 1

6

∫
M
S(x)dvolx ,

we obtain a formula for scalar curvature density as follows:



Let ζf (s) := Tr (f4−s), f ∈ C∞(M).

Res ζf (s)|s= m
2 −1 =

(4π)−m/2

Γ(m/2− 1)

∫
M

fS(x)dvolx , m ≥ 3

ζf (s)|s=0 =
1

4π

∫
M

fS(x)dvolx − Tr(fP) m = 2

log det(4) = −ζ ′(0), Ray-Singer regularized determinant
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Noncommutative Geometry: Spectral Triples (A,H,D)

I A= involutive unital algebra, H = Hilbert space,

π : A → L(H), D : H → H

D has compact resolvent and all commutators [D, π(a)] are
bounded.

I An asymptotic expansion holds

Trace (e−tD
2

) ∼
∑

aαt
α (t → 0)

I Let 4 = D2. Spectral zeta function

ζD(s) = Tr (|D|−s) = Tr (∆−s/2), Re(s)� 0.



Curved noncommutative tori Aθ

Aθ = C (T2
θ) = universal C∗-algebra generated by unitaries U and V

VU = e2πiθUV .

A∞θ = C∞(T2
θ) =

{ ∑
m,n∈Z

am,nU
mV n : (am,n) Schwartz class

}
.



I Differential operators on Aθ

δ1, δ2 : A∞θ → A∞θ ,

Infinitesimal generators of the action

αs(UmV n) = e is.(m,n)UmV n s ∈ R2.

Analogues of 1
i
∂
∂x ,

1
i
∂
∂y on 2-torus.

I Canonical trace t : Aθ → C on smooth elements:

t(
∑

m,n∈Z

am,nU
mV n) = a0,0.



Complex structures on Aθ

I Let H0 = L2(Aθ)= GNS completion of Aθ w.r.t. t.

I Fix τ = τ1 + iτ2, τ2 = =(τ) > 0, and define

∂ := δ1 + τδ2, ∂∗ := δ1 + τ̄ δ2.

I Hilbert space of (1, 0)-forms:

H(1,0) := completion of finite sums
∑

a∂b, a, b ∈ A∞θ , w.r.t.

〈a∂b, a′∂b′〉 := t((a′∂b′)∗a∂b).

I Flat Dolbeault Laplacian: ∂∗∂ = δ2
1 + 2τ1δ1δ2 + |τ |2δ2

2 .



Conformal perturbation of the metric

I Fix h = h∗ ∈ A∞θ . Replace the volume form t by ϕ : Aθ → C,

ϕ(a) := t(ae−h), a ∈ Aθ.

I It is a twisted trace (in fact a KMS state)

ϕ(ab) = ϕ(b∆(a)), ∀a, b ∈ Aθ.

where
∆(x) = e−hxeh,

is the modular automorphism of a von Neumann factor-has no
commutative counterpart.

I Warning: 4 and ∆ are very different operators!



Connes-Tretkoff spectral triple

I Hilbert space Hϕ := GNS completion of Aθ w.r.t. 〈, 〉ϕ,

〈a, b〉ϕ := ϕ(b∗a), a, b ∈ Aθ

I View ∂ϕ = ∂ = δ1 + τδ2 : Hϕ → H(1,0). and let

∂∗ϕ : H(1,0) → Hϕ

H = Hϕ ⊕H(1,0),

D =

(
0 ∂∗ϕ
∂ϕ 0

)
: H → H.



Full perturbed Laplacian:

4 := D2 =

(
∂∗ϕ∂ϕ 0

0 ∂ϕ∂
∗
ϕ

)
: H → H.

Lemma: ∂∗ϕ∂ϕ : Hϕ → Hϕ, and ∂ϕ∂
∗
ϕ : H(1,0) → H(1,0) are anti-unitarily

equivalent to
k∂∗∂k : H0 → H0,

∂∗k2∂ : H(1,0) → H(1,0),

where k = eh/2.



Scalar curvature for Aθ

I The scalar curvature of the curved nc torus (T2
θ, τ, k) is the unique

element R ∈ A∞θ satisfying

Trace (a4−s)|s=0
+ Trace (aP) = t (aR), ∀a ∈ A∞θ ,

where P is the projection onto the kernel of 4.

I In practice this is done by finding an asymptotic expansin for the
kernel of the operator e−t4, using Connes’ pseudodifferential
calculus for nc tori. A good pseudo diff calculus for general nc
spaces is still illusive.



Connes’ pseudodifferential calculus

I Symbols: smooth maps ρ : R2 → A∞θ . ΨDO’s: Pρ : A∞θ → A∞θ ,

Pρ(a) = (2π)−2

∫
R2

∫
R2

e−is.ξρ(ξ)αs(a)dsdξ.

Even for polynomial symbols these integrals are badly divergent;
make sense as Fourier integral operators.

I For example:

ρ(ξ1, ξ2) =
∑

aijξ
i
1ξ

j
2, aij ∈ A∞θ ⇒ Pρ =

∑
aijδ

i
1δ

j
2.

I Multiplication of symbol.

σ(PQ) ∼
∑

`1,`2≥0

1

`1!`2!
∂`1

1 ∂
`2
2 (ρ(ξ))δ`1

1 δ
`2
2 (ρ′(ξ)).



Local expression for the scalar curvature

I Cauchy integral formula:

e−t4 =
1

2πi

∫
C

e−tλ(4− λ)−1 dλ.

I Bλ ≈ (4− λ)−1 :

σ(Bλ) ∼ b0(ξ, λ) + b1(ξ, λ) + b2(ξ, λ) + · · · ,

each bj(ξ, λ) is a symbol of order −2− j , and

σ(Bλ(4− λ)) ∼ 1.

(Note: λ is considered of order 2.)



Proposition: The scalar curvature of the spectral triple attached to
(Aθ, τ, k) is equal to

1

2πi

∫
R2

∫
C

e−λb2(ξ, λ) dλ dξ,

where b2 is defined as above.



The computations for k∂∗∂k

I The symbol of k∂∗∂k is equal to

a2(ξ) + a1(ξ) + a0(ξ)

where
a2(ξ) = ξ2

1k
2 + |τ |2ξ2

2k
2 + 2τ1ξ1ξ2k

2,

a1(ξ) = 2ξ1kδ1(k) + 2|τ |2ξ2kδ2(k) + 2τ1ξ1kδ2(k) + 2τ1ξ2kδ1(k),

a0(ξ) = kδ2
1(k) + |τ |2kδ2

2(k) + 2τ1kδ1δ2(k).

I The equation

(b0 + b1 + b2 + · · · )((a2 + 1) + a1 + a0) ∼ 1,

has a solution with each bj a symbol of order −2− j .



b0 = (a2 + 1)−1 = (ξ2
1k

2 + |τ |2ξ2
2k

2 + 2τ1ξ1ξ2k
2 + 1)−1,

b1 = −(b0a1b0 + ∂1(b0)δ1(a2)b0 + ∂2(b0)δ2(a2)b0),

b2 = −(b0a0b0 + b1a1b0 + ∂1(b0)δ1(a1)b0 + ∂2(b0)δ2(a1)b0 +

∂1(b1)δ1(a2)b0 + ∂2(b1)δ2(a2)b0 + (1/2)∂11(b0)δ2
1(a2)b0 +

(1/2)∂22(b0)δ2
2(a2)b0 + ∂12(b0)δ12(a2)b0)

= 5ξ2
1b

2
0k

3δ2
1(k)b0 + 2ξ2

1b0kδ1(k)b0δ1(k)b0k

+about 800 terms.



Final formula for the scalar curvature (Connes-Moscovici,
Fathizadeh-K, Oct. 2011)

Theorem: The scalar curvature of (Aθ, τ, k), up to an overall factor of
−π
τ2

, is equal to

R1(log ∆)
(
40(log k)

)
+

R2(log ∆(1), log ∆(2))
(
δ1(log k)2+|τ |2δ2(log k)2+τ1

{
δ1(log k), δ2(log k)

})
+

iW (log ∆(1), log ∆(2))
(
τ2

[
δ1(log k), δ2(log k)

])



where

R1(x) = −
1
2 −

sinh(x/2)
x

sinh2(x/4)
,

R2(s, t) = (1 + cosh((s + t)/2))×

−t(s + t) cosh s + s(s + t) cosh t − (s − t)(s + t + sinh s + sinh t − sinh(s + t))

st(s + t) sinh(s/2) sinh(t/2) sinh2((s + t)/2)
,

W (s, t) = − (−s − t + t cosh s + s cosh t + sinh s + sinh t − sinh(s + t))

st sinh(s/2) sinh(t/2) sinh((s + t)/2)
.



The limiting case

In the commutative case, the above modular curvature reduces to a
constant multiple of the formula of Gauss:

1

τ2
δ2

1(log k) +
|τ |2

τ2
δ2

2(log k) + 2
τ1

τ2
δ1δ2(log k).



First application: Ray-Singer determinant and conformal
anomaly (Connes-Moscovici)

Recall: log Det′(4) = −ζ ′4(0), where 4 is the perturbed Laplacian on

T2
θ. One has the following conformal variation formula. Let ∇i = log ∆

which acts on the i-th factor of products.

Lemma
(analogue of Plyakov’s formula) The log-determinant of the perturbed
Laplacian 4 on T2

θ is given by

logDet′(4) = logDet′40 + logϕ(1)− π

12τ2
ϕ0(h40h)−

π

4τ2
ϕ0 (K2(∇1)(�<(h))) ,
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Second application: the Gauss-Bonnet theorem for Aθ

I Heat trace asymptotic expansion relates geometry to topology,
thanks to MacKean-Singer formula:

m∑
p=0

(−1)pTr (e−t∆p ) = χ(M) ∀t > 0

I This gives the spectral formulation of the Gauss-Bonnet theorem:

ζ(0) + 1 =
1

12π

∫
Σ

R dv =
1

6
χ(Σ)



Theorem (Connes-Tretkoff; Fathizadeh-K.): Let θ ∈ R, τ ∈ C \ R,
k ∈ A∞θ be a positive invertible element. Then

Trace(4−s)|s=0
+ 2 = t (R) = 0,

where 4 is the Laplacian and R is the scalar curvature of the spectral
triple attached to (Aθ, τ, k).



The geometry in noncommutative geometry

I Geometry starts with metric and curvature. While there are a good
number of ‘soft’ topological tools in NCG, like cyclic cohomology, K
and KK-theory, and index theory, a truly noncommutative theory of
curvature is still illusive. The situation is better with scalar
curvature, but computations are quite tough at the moment.

I Metric aspects of NCG are informed by Spectral Geometry. Spectral
invariants are the only means by which we can formulate metric
ideas of NCG.
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I F. Fathizadeh and M. Khalkhali, Scalar Curvature for the
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