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Spectral Geometry and Classical-Quantum Correspondence

One of the backbones of Alain Connes’ program of NCG, specially its
metric and spectral aspects, is Spectral Geometry and the
Correspondence Principle which relates QM to CM. The
correspondence principle has its roots in Planck’s derivation of his
celebrated Radiation Law and in Bohr-Sommerfeld Quantization
Rules.
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Figure: Black body spectrum
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Planck’s Radiation Law

From 1859 (Kirchhoff) till 1900 (Planck) a great effort went into
finding the right formula for spectral energy density function of a
radiating black body (T = temperature, ν = frequency, h= Planck’s
constant, k= Boltzmann’s constant, c = speed of light):

ρ(ν,T ) =
8πhν3

c3

1

ehν/kT − 1

Kirchhoff predicted: ρ will be independent of the shape of the cavity
and should only depend on its volume.
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Limits of Planck’s Law

Quantum Limit (high-frequency or low temperature regime;
hν/kT � 1)

ρ(ν,T ) ∼ Aν3e−Bν/T (T → 0)

Semiclassical Limit (low frequency or high temperature; hν/kT � 1)

ρ(ν,T ) =
8πν2

c3
(kT )(1 + O(h)) (T →∞)

RHS is the Rayleigh-Jeans-Einstein radiation formula. It can be
established, assuming the Weyl’s Law: “ For high frequencies there
are approximately V (8πν3dν/c3) modes of oscillations in the
frequency interval v , ν + dν.”

Masoud Khalkhali (joint work with Farzad Fathizadeh) ()Spectral Zeta Functions and Gauss-Bonnet Theorems in Noncommutative Geometry5 / 44



Limits of Planck’s Law

Quantum Limit (high-frequency or low temperature regime;
hν/kT � 1)

ρ(ν,T ) ∼ Aν3e−Bν/T (T → 0)

Semiclassical Limit (low frequency or high temperature; hν/kT � 1)

ρ(ν,T ) =
8πν2

c3
(kT )(1 + O(h)) (T →∞)

RHS is the Rayleigh-Jeans-Einstein radiation formula. It can be
established, assuming the Weyl’s Law: “ For high frequencies there
are approximately V (8πν3dν/c3) modes of oscillations in the
frequency interval v , ν + dν.”

Masoud Khalkhali (joint work with Farzad Fathizadeh) ()Spectral Zeta Functions and Gauss-Bonnet Theorems in Noncommutative Geometry5 / 44



Moral: To relate classical and quantum worlds, Weyl’s law is needed:

One can hear the volume of a cavity.

The conjecture of Lorentz (1910; proved by Weyl in 1911): ‘ It is here
that there arises the mathematical problem to prove that the number
of sufficiently high overtones which lie between ν and ν + dν is
independent of the shape of the enclosure and is simply proportional
to its volume. .......There is no doubt that it holds in general even for
multiply connected spaces’.

But the ultimate question is

What else can one hear about the shape of a cavity?
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Bohr-Sommerfeld Quantization

Stationary Schrodinger equation:

(
~2

2m
∆ + V )ϕ(x) = λϕ(x)

WKB approximation ansatz

ϕ(x) = Ae
i
~ B(x)

S =
∮

pdq, the total action; the Bohr-Sommerfeld quantization rule:
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exp { i

~
S} = 1 or

∮
pdq = 2πn~, n = 1, 2, . . .

It relates classical periodic orbits to energy levels in the corresponding
quantum system.

Can one hear the periodic orbits of a classical system?

Yes, for Riemann surfaces, In general, trace formula (Selberg, Connes)
relates lengths of periodic orbits in chaotic systems to the spectrum.
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How to Quantize?

Weyl’s law imposes some constraints.

Consider a Classical System (X , h);
X = symplectic manifold, h : X → R, Hamiltonian. Assume

{x ∈ X ; h(x) ≤ λ}

are compact for all λ (confined system).

Typical example: X = T ∗M, (M, g) = compact Riemannian
manifold, h = T + V .
T = kinetic energy, V = potential energy.
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How to quantize this?

(X , h) ; (H,H),

where H = Hilbert space, H = self-adjoint operator on H. No one
knows! No functor!, but ....Dirac rules, geometric quantization,
deformation quantization, ...and the correspondence principle:
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Looking for a pair (H,H), H = Hilbert space, H = self-adjoint
operator on H, Hamiltonian, with discrete spectrum

λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞

s.t.

N(λ) ∼ c Volume (h ≤ λ) λ→∞

N(λ) = #{λi ≤ λ} Eigenvalue Counting Function

Thus:quantized energy levels are approximated by phase space
volumes.
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Apply this to X = T ∗M, (M, g) = compact Riemannian manifold,
h(q, p) = ||p||2; set

H = L2(M), H = ∆ Laplacian

obtain Weyl’s Law:

N(λ) ∼ c Vol (M)λm/2 (λ→∞)
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A Heuristic, Physical ‘Proof’ of Weyl’s Law

Classical partition function from Gibbs equilibrium state at inverse
temperature β = 1/kT

Z =

∫
X

e−h/βdvol =

∫ ∞
0

e−x/βdµ(x)

µ[0, λ] = Vol (h ≤ λ)

Quantum partition function

Zq = Trace (e−H/β) =

∫ ∞
0

e−x/βdµq(x)

Eigenvalue counting measure

µq[0, λ] = #{λi ≤ λ}
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Experimental fact: classical statistical mechanics gives good results at
high temperatures; in particular specific heat obtained from Z should
converge to its quantum value from Zq.

C =
∂〈E 〉
∂T

=
1

kT 2

∂2lnZ

∂2β

In particular, the measures µ[0, λ] and µq[0, λ] are asymptotically
proportional:

µ[0, λ]

µq[0, λ]
→ (2π~)N

(dim (X ) = 2N)
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Weyl’s Law

(M, g) = compact Riemannian manifold

∆ = d∗d : L2(M)→ L2(M), Laplacian

Is a s. a. positive operator. In local coordinates:

∆ = −gµν∂µ∂ν + Aµ∂µ + B

Spectrum of ∆ (counting multiplicities):

0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · → ∞

Eigenvalue counting function:

N(λ) := #{λi ≤ λ}
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Weyl’s Law:

N(λ) =
Vol (M)

(4π)m/2Γ(1 + m/2)
λm/2 + O(λm/2)

One can hear the Volume and Dimension of a Riemannian manifold.

Asymptotic expansion of the trace of the heat kernel:

Trace (e−t∆) ∼
∞∑
0

ant
n−m

2 (t → 0)

an =

∫
M

an(x ,∆)dVolx local invariants
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Seeley-DeWitt coefficients an(x ,∆), n ≥ 0

a0(x ,∆) = (4π)−m/2

a0 =

∫
M

a0(x ,∆)dVol = (4π)−m/2Vol(M)

Tauberian theorems ⇒ Weyl’s law.
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Spectral Triples

(A,H,D), A= involutive unital algebra, acting by bounded operators
on a Hilbert space H, D = a s.a. operator on H with compact
resolvent such that all commutators [D, a] are bounded.

Assume: an asymptotic expansion of the form

Trace (e−tD
2
) ∼

∑
aαtα (t → 0)

holds.

Let ∆ = D2. Spectral zeta function

ζD(s) = Tr (|D|−s) = Tr (∆−s/2), Re(s)� 0.
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Spectral Triples

Using the Mellin transform and the asymptotic expansion, easy to
show that: ζD has a meromorphic extension to all of C and non-zero
terms aα, α < 0, give a pole of ζD at −2α with

Ress=−2αζD(s) =
2aα

Γ(−α)
.

Also, ζD(s) is holomorphic at s = 0 and

ζD(0) + dim ker D = a0
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Gauss-Bonnet for Noncommutative Torus

Fix θ ∈ R. Aθ = C ∗-algebra generated by unitaries U and V satisfying

VU = e2πiθUV .

Dense subalgebra of ‘smooth functions’:

A∞θ ⊂ Aθ,

a ∈ A∞θ iff

a =
∑

amnUmV n

where (amn) ∈ S(Z2) is rapidly decreasing:

sup
m,n

(1 + m2 + n2)k |amn| <∞

for all k ∈ N.
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Aθ has a normalized, faithful, and positive trace (unique if θ is
irrational):

τ0 : Aθ → C

τ0(
∑

amnUmV n) = a00.

Derivations δ1, δ2 : A∞θ → A∞θ ; uniquely defined by:

δ1(U) = U, δ1(V ) = 0

δ2(U) = 0, δ2(V ) = V .

We have
δ1δ2 = δ2δ1, δi (a∗) = −δi (a)∗,

Invariance property:
τ0(δi (a)) = 0.
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The Hilbert space
H0 = L2(Aθ, τ0),

completion of Aθ w.r.t. inner product

〈a, b〉 = τ0(b∗a).

The derivations
δ1, δ2 : H0 → H0

are formally selfadjoint unbounded operators (analogues of 1
i
d
dx ,

1
i
d
dy ).
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Complex structure

Metrics on Aθ will be defined through their conformal class. Fix

τ = τ1 + iτ2, τ2 > 0,

and define
∂ = δ1 + τδ2, ∂∗ = δ1 + τ̄ δ2.

Define the Hilbert space (analogue of (1, 0)-forms)

H(1,0) ⊂ H0

as the completion of the subspace spanned by finite sums
∑

a∂b,
a, b ∈ A∞θ . Connes and Tretkoff consider τ = i .
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Laplacian

View
∂ = δ1 + τδ2 : H0 → H(1,0)

as an unbounded operator with the adjoint given by

∂∗ = δ1 + τ̄ δ2.

Define the Laplacian

4 := ∂∗∂ = δ2
1 + 2τ1δ1δ2 + |τ |2δ2

2 .
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Conformal perturbation of the metric

To investigate the Gauss-Bonnet theorem for general metrics, vary the
metric by a Weyl factor eh, h = h∗ ∈ A∞θ : Define a positive linear
functional ϕ : Aθ → C by

ϕ(a) = τ0(ae−h), a ∈ Aθ.

It is a twisted trace
ϕ(ba) = ϕ(aσi (b))

which is the KMS condition at β = 1 for the automorphisms
σt : Aθ → Aθ, t ∈ R,

σt(x) = e ithxe−ith.

In fact
σt = ∆−it

with the modular operator

∆(x) = e−hxeh.
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The perturbed Laplacian

Let Hϕ = completion of Aθ w.r.t. 〈, 〉ϕ, where

〈a, b〉ϕ = ϕ(b∗a), a, b ∈ Aθ.

Let
∂ϕ = ∂ = δ1 + τδ2 : Hϕ → H(1,0).

It has a formal adjoint ∂∗ϕ given by

∂∗ϕ = R(eh)∂∗

where R(eh) is the right multiplication operator by eh

(R(eh)(x) = ehx).
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Define the new Laplacian:

4′ = ∂∗ϕ∂ϕ : Hϕ → Hϕ.

Lemma (Connes-Tretkoff; continues to hold for general τ)

4′ is anti-unitarily equivalent to the positive unbounded operator k∆k
acting on H0, where k = eh/2.
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Spectral Zeta Function

ζ(s) =
∑

λ−si = Trace (4′−s), Re(s) > 1.

Mellin transform

λ−s =
1

Γ(s)

∫ ∞
0

e−tλts−1dt

gives us

ζ(s) =
1

Γ(s)

∫ ∞
0

Trace+(e−t4
′
)ts−1dt,

where
Trace+(e−t∆′) = Trace (e−t∆′)− Dim Ker(∆′).

ζ has a moromorphic extension to C \ 1 with a simple pole at s = 1.
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The Gauss-Bonnet theorem

Theorem (Gauss-Bonnet for classical Riemann surfaces)

Let Σ = compact connected oriented Riemann surface with metric g .
Then

ζ(0) + 1 =
1

12π

∫
Σ

R =
1

6
χ(Σ),

where ζ is the zeta function associated to the Laplacian 4g = d∗d, and R
is the (scalar) curvature. In particular ζ(0) is a topological invariant; e.g.
is invariant under conformal perturbations of the metric g 7→ ef g.
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Theorem (Gauss-Bonnet for NC torus)

Let k ∈ A∞θ be an invertible positive element. Then the value ζ(0) of the
zeta function ζ of the operator 4′ ∼ k4k is independent of k.
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Pseudodifferential calculus

Recall: Connes (1980; C ∗-algebras and Noncommutative Differential
Geometry)

Differential operators of order n:

P : A∞θ → A∞θ , P =
∑
j

ajδ
j1
1 δ

j2
2

with aj ∈ A∞θ , j = (j1, j2), |j | ≤ n.

Operator valued symbols of order n ∈ Z: smooth maps

ρ : R2 → A∞θ
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s.t.
||δi11 δ

i2
2 (∂j11 ∂

j2
2 ρ(ξ))|| ≤ c(1 + |ξ|)n−|j |,

where ∂i = ∂
∂ξi

, and ρ is homogeneous of order n at infinity:

limλ−nρ(λξ1, λξ2), λ→∞

exists and is smooth.
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Given a symbol ρ, define a pseudodifferential operator

Pρ : A∞θ → A∞θ

by

Pρ(a) = (2π)−2

∫
R2

∫
R2

e−is.ξρ(ξ)αs(a)dsdξ,

where
αs(UnV m) = e is.(n,m)UnV m.

For pseudodifferential operators P,Q, with symbols σ(P) = ρ, σ(Q) = ρ′:

σ(PQ) ∼
∑ 1

`1!`2!
∂`1

1 ∂
`2
2 (ρ(ξ))δ`1

1 δ
`2
2 (ρ′(ξ)).

Masoud Khalkhali (joint work with Farzad Fathizadeh) ()Spectral Zeta Functions and Gauss-Bonnet Theorems in Noncommutative Geometry33 / 44



Elliptic Symbols: A symbol ρ(ξ) of order n is called elliptic if ρ(ξ) is
invertible for ξ 6= 0, and, for |ξ| large enough,

||ρ(ξ)−1|| ≤ c(1 + |ξ|)−n.

Example:
4 = δ2

1 + 2τ1δ1δ2 + |τ |2δ2
2

is an elliptic operator with an elliptic symbol

σ(∆) = ξ2
1 + 2τ1ξ1ξ2 + |τ |2ξ2

2 .
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Computing ζ(0)

Recall:

ζ(s) =
1

Γ(s)

∫ ∞
0

(Trace(e−t4
′
)ts−1 − 1)dt,

1 = Dim Ker(4′).
Cauchy integral formula:

e−t∆′ =
1

2πi

∫
C

e−tλ(∆′ − λ1)−1dλ

gives the asymptotic expansion as t → 0+:

Trace(e−t4
′
) ∼ t−1

∞∑
0

B2n(4′)tn.
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It follows that:
ζ(0) = B2(4′),

B2(∆′) =
1

2πi

∫
R2

∫
C

e−λτ0(b2(ξ, λ))dλdξ

where
(b0(ξ, λ) + b1(ξ, λ) + b2(ξ, λ) + · · · )σ(∆′ − λ) ∼ 1,

bj(ξ, λ) is a symbol of order − 2− j .

Can assume λ = −1:

ζ(0) = −
∫
τ0(b2(ξ,−1))dξ.
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σ(∆′ + 1) = σ(k∆k + 1) = (a2 + 1) + a1 + a0

where
a2 = k2ξ2

1 + 2τ1k2ξ1ξ2 + |τ |2k2ξ2
2

a1 = (2kδ1(k) + 2τ1kδ2(k))ξ1+

(2τ1kδ1(k) + 2|τ |2kδ2(k))ξ2

a0 = kδ2
1(k) + 2τ1kδ1δ2(k) + |τ |2kδ2

2(k).

Using the calculus for symbols:

b0 = (a2 + 1)−1

b1 = −(b0a1b0 + ∂i (b0)δi (a2)b0)

b2 = −(b0a0b0 + b1a1b0 + ∂i (b0)δi (a1)b0

+∂i (b1)δi (a2)b0 + (1/2)∂i∂j(b0)δiδj(a2)b0).
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Integrating b2(ξ,−1) over the plane

Pass to these coordinates:

ξ1 = r cos θ − r
τ1

τ2
sin θ

ξ2 =
r

τ2
sin θ

where θ ranges from 0 to 2π and r ranges from 0 to ∞.
After integrating

∫ 2π
0 • dθ we have terms such as

4τ1r 3b3
0k2δ2(k)δ1(k),

2r 3b2
0k2δ1(k)b0δ1(k),

−2r 5b2
0k2δ1(k)b2

0k2δ1(k),

where
b0 = (1 + r 2k2)−1.
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Lemma (Connes-Tretkoff)

For ρ ∈ A∞θ and every non-negative integer m:∫ ∞
0

k2m+2um

(k2u + 1)m+1
ρ

1

(k2u + 1)
du = Dm(ρ)

where
Dm = Lm(∆),

∆ = the modular automorphism,

Lm(u) =

∫ ∞
0

xm

(x + 1)m+1

1

(xu + 1)
dx =

(−1)m(u − 1)−(m+1)
(
log u −

m∑
j=1

(−1)j+1 (u − 1)j

j

)
(modified logarithm).
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Lemma

Let k be an invertible positive element of A∞θ . Then the value ζ(0) of the
zeta function ζ of the operator 4′ ∼ k4k is given by

ζ(0) + 1 =
2π

τ2
ϕ(f (∆)(δ1(k))δ1(k)) +

2π|τ |2

τ2
ϕ(f (∆)(δ2(k))δ2(k))+

2πτ1

τ2
ϕ(f (∆)(δ1(k))δ2(k)) +

2πτ1

τ2
ϕ(f (∆)(δ2(k))δ1(k)),

where ϕ(x) = τ0(xk−2), τ0 is the unique trace on Aθ, ∆ is the modular
automorphism, and

f (u) =
1

6
u−1/2 − 1

3
+ L1(u)− 2(1 + u1/2)L2(u) + (1 + u1/2)2L3(u).

(Lm is the modified logarithm.)
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The following theorem was proved by Alain Connes and Paula Tretkoff for
conformal parameter τ = i , and then for all conformal parameters by
Farzad Fathizadeh and M.K.

Theorem (Gauss-Bonnet for NC torus)

Let k ∈ A∞θ be an invertible positive element. Then the value ζ(0) of the
zeta function ζ of the operator 4′ ∼ k4k is independent of k.
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Proof.

ϕ(f (∆)(δj(k))δj(k)) = 0 for j = 1, 2,

ϕ(f (∆)(δ1(k))δ2(k)) = −ϕ(f (∆)(δ2(k))δ1(k)).

Therefore

ζ(0) + 1 =
2π

τ2
ϕ(f (∆)(δ1(k))δ1(k)) +

2π|τ |2

τ2
ϕ(f (∆)(δ2(k))δ2(k))+

2πτ1

τ2
ϕ(f (∆)(δ1(k))δ2(k)) +

2πτ1

τ2
ϕ(f (∆)(δ2(k))δ1(k))

= 0

.
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An argument of Moscovici: variational method. A technique of
Branson-Orsted in the commutative case can be extended to the NC case,
when there is a good pseudodifferential calculus and good resolvent
approximation. Write, for P= a NC polynomial in D and elements of A,

Tr (Pe−tD
2
sh) ∼

∞∑
j=0

aj(P, s)t
j−n−p

2 (t → 0)

Term by term differentiate w.r.t. s and observe that d
ds ap(s) = 0. This

brings you back to h = 0 (still you have to evaluate a zeta value using the
spectrum of 4′ on Aθ).
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Back to the Scalar Curvature

But: we are really interested in computing the scalar curvature as a
variable function on T2

θ. Gauss-Bonnet computes its total integral. Let
(A,H,D) be a finitely summable regular spectral triple. Consider the zeta
function

ζD(P, z) = Tr (P|D|−z), P ∈ Ψ(A,H,D)

For the NC torus, the scalar curvature can be defined as the functional on
the NC torus:

a 7→ ζ4′(a, 0)

Ongoing work: compute the scalar curvature!
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