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Noncommutative pre-complex structures

Initial data: A an x-algebra over C, (Q2°(A),d) an

involutive differential calculus over A.

Q0(A) = A, d(a*) = (da)*

Definition: A pre-complex structure on A for the
differential calculus (2°(A),d) is a bigraded differ-
ential - algebra Q(**)(A) with differentials (deriva-

tions)

0 QP (A) = Prtlaca),

5. QP 4) = QPatl) )
S.t.

Q") = @ QP
ptq=n



0(a)* =0(a*), d=0+49

Also, * maps Q@9 (A4) to Q@r)(A).

Motivating example: the de Rham complex of a

complex manifold.

NC examples: Let L be a real Lie algebra with a

complex structure:
(*=1LpaIg

Given L — Der(A, A), an action of L by x-derivations
on A, then

QA = Homg(A°LE, A)
is a differential calculus for A4, and

QDA = Homg(APLo ® NI, A)



defines a pre-complex structure.

NC torus Ay: Generators Uq, Uy with
U,Us = e2™005U4
Basic derivations:
5](Uk) :27Ti5ijk, j,k: 1,2

define an action of R? on Ay. Any 7 € C\R defines

a complex structure on Ay:
R2 QR C = Lo & L—O
with Lg :=e1 + Tes.

The complex structure on Ay is then given by

1 _
8(7') — (7_ _?) <_7-51 +52)7

_ 1
Or)y = - —7) (161 — 62).




The fundamental cyclic 2-cocycle on Ay:

7
V(ap,a1,ap) = gtre (ap(d1a160a0 — d2a1d1a2))

The positive Hochschild 2-cocycle & associated
with W:

2 _
Cb(ao, aq, a2) = ;tl’g (aoa(T)ala(T>a2) :

T his cocycle gives the conformal class of a general

constant metric on the torus.

Holomorphic functions:

O(A) := ker {5 A — Q(o’l)(A)}.



Holomorphic structures on modules

Definition: Let (A,0) be an algebra with a pre-
complex structure and £ a left A-module. A holo-
morphic structure on £ with respect to (A,0) is a

flat O-connection, i.e. a connection

V-0, e

S.t.

2

F(V)=V2=0

If in addition £ is a finitely generated projective
A-module, we call the pair (£,V) a holomorphic

vector bundle.

Since V is a flat connection, we have a complex of



vector spaces:

X 0D R el Q0D (U @sE — -

Definition: The zeroth cohomology group of the
above complex is the space of holomorphic sections

of £ and denoted by HO(E, V). It is a left O(A)-

module.



Holomorphic structures on bimodules

Let £ be an A-bimodule.
Definition: A bimodule connection on £ is a left
connection V : £ — QL (A) @ 4 € for which there is

a bimodule isomorphism
(V) £E@4QMA) - Q1 (A) @4¢,
such that

V(a) = V(§)a+a(V) (£ ® da)

for all £ € £,a € A.

In particular, this definition applies to the differen-
tial calculus (©2(%*)(A4),d) thus giving a notion of

holomorphic structures on bimodules.



Tensor products of holomorphic vector bundles

Suppose we are given two A-bimodules £1,&> with

two bimodule connections V1, Vo, respectively. Let
c:=(01®1)0(1®02) : &1 ®4E @4 Q2 (A) —

QL(A) @461 @48

Lemma: The map
ViE1®aE— QN A)®4EL®4E
defined by

V=Vi®1+ (01 ®id)(1® Vy)

defines a o-compatible connection on the A-bimodule

E1 Q@4 Eo.



Note: We would like the flatness condition on holo-
morphic structures to survive under taking this ten-
sor product. This is not the case in higher dimen-
sions in the NC world! A possible way out might

be the use of a more exotic tensor product.



The quantum Hopf fibration

St 82— 52
A quantum homogeneous space:
A(S2) — A(S2) — A(SH)

S2=SUq(2), 0<g<1

A(SU4(2)):= *-algebra generated by a and ¢, with

relations

UU*=U0U =1
| a —qc*
|l e a*
Hopf algebra structure on A(SU4(2)):

AU =UQU



S(U)=U"
|10
e(U) = [ 0 1 ]
The quantum enveloping algebra Ug(su(2)): It is

the Hopf dual of SU,4(2). Generators: K, K~ E, F

Hopf pairing:
Ug(su(2)) ® A(SUg(2)) — C
(K,a) = ¢ Y2, (K71 a)=ql/?
(K,a*) = q1/2, (K1 g% = q~1/2

<E7 C> =1, (F, C*> — _q_l

Left and right actions (infinitesimal symmetries):

Ug(su(2)) ® A(SUq(2)) — A(SUq(2)),



(X, f) — X>f.
A(SUq(2)) @ Uy(su(2)) — A(SU4(2)),
(f,X)— faX
Uniquely fixed by:

(X, Ypf) = (XY, f), (X, fa¥) =X [),

T hese right and left actions are mutually commut-

ing.



The quantum projective line

There is a quantum principal U(1)-bundle:
p 1 A(SUg(2)) — A(SU4(2)) ® A(U(1))
p=(ild®mT)o A

T A(SUq(2)) — A(U(1)),
where

7

a —qc* | |z O
c aF |0 2*
IS a surjective Hopf algebra homomorphism, so that

A(U(1)) becomes a quantum subgroup of SU4(2).

Coinvariants: A subalgebra of A(SU4(2)):

A(S7) = {a € A(SUq(2)); pla) =a® 1}



The coordinate algebra of the Podles sphere S2
— the underlying topological space of the quantum

projective line (CP(}.



The canonical line bundles on (Cqu

The action of the group-like element K — a de-

composition:

A(SU4(2)) = @B Ln
neZ

where,

Ln = {f € A(SU4(2)) : Knf = qV2f)

Notice:

A(S2) = Lo, L} CLp, LnlmC Lytm

Ln: A(Sg)—bimodule; finite projective as a left mod-
ule; analogues of canonical line bundles O(n) on

CPl of degree (monopole charge) —n.



A covariant differential calculus for SU4(2)

Left covariant calculus: (A,<$2, H)
e Q=@@;>oN is a DGA with Q= A
° 2 is a left DG H-comodule algebra, i.e. there

iIs a morphism of DGA's
p.2— HRS2

s.t. Q2 is a left DG H-comodule under p.

Example (Woronowicz): Let H = A(SU4(2)) and

Q' = A(SU4(2) ® N {wy,w_,ws} 0<i<3

10



D NH{wy,w_,w.} = The g-Grassmann algebra:

w_l_/\w_|_=w_/\w_=wz/\wz=0
w_/\w_|_+q_2w_|_/\w_=O
wz/\w_—l—q4w_/\wz=0,

Wz N w —I—q_4w_|_ N wy = 0.

unique top form: w— Nwi N w;.

differential d : A(SU4(2)) — QL(SU4(2)) :

df = (Xg>f)wy + (X>f)w- + (Xobf) we,

where

_1-K*

— : X_ = _1/2FK
1—q_2 ¢

Xz

Xy =q¢'/?EK



The holomorphic calculus on (Cqu

The ‘cotangent bundle’
QY(S2) 1 Lopw_ @ Lowy

The differential d:

df = (X_>f)wo + (X1>f) wy

where X_ = ¢~1/2F and X4 = ¢1/?E.
Break d into a holomorphic and an anti-holomorphic
part, d = 0 + 0, with:

af = (X >f)w_, Of = (Xy>f)wy

The above shows that:

Q1(s2) = Q01)(s2) g (1.0)(s2)

11



where
QOD(S2) > £_5 ~ FA(S2)),

Q(l’o)(Sg) ~ Lo 3@4(55))

These modules are not free.

2-forms: Let w =w_Awy. We have wf = fw, for

all f e A(S?).

Q?(S7) 1= wA(S?) = A(S2)w
Proposition: The 2D differential calculus on the
sphere S2 is given by:

Q*(S2) = A(SD) @ (L_2® Lyp) ®ASDws Nw-
with the exterior differential d = 9 + 0:

f (g Y2Fsf, ¢Y/2Esy)



(z,y) — ¢ Y2 (Eva — g L Foy)

for f € A(S2), (z,y) € Lo ® L.



Holomorphic functions on CP(}
d: A(CPY) — Q(O’l)(@Pé)

We shall use the g-number notation:

—S

[s] = [s]g := 2 ‘qq_l

Proposition: There are no non-trivial holomorphic
polynomial functions on (CP(}.
Proof:
Of = 0 iff F>f = 0. Write f in PBW-basis {a™cFc*}
of A(SU4(2)),

f=3 fuad e,

k>0

where ¢~ ™ ‘= a*. The monomials a'~*cFc*l are

the only K-invariant elements in the PBW-basis.
12



T he vanishing of F'>f implies the following relations

between f; with 0 <[ < k:

fra K] = frgprgpra "I 1]
the solutions of which are given by

[k —1][k — 2] [k — llgFg" L - - qk_“rlf
[l] !ql—lql—2 - qO k—l

~ L—1] -
N z+1)z[ l ] [
q

Sl =

where fk—z are arbitrary. Clearly, the only polyno-
mial solution is when f; = 0 for (k,1) # (0,0).

[

Remark: In fact we prove a stronger result by look-
ing at holomorphic functions among smooth func-
tions and show that the analogue of the GAGA

principle holds.



Holomorphic vector bundles on CP(}

The ‘line bundle’ L,, is represented by a projection
pn in M, 41(A(SZ)). So we have a Grassmannian

connection on £, = (A(S2)I"+1p,.

Equivalently, a connection is defined by a covariant

splitting

Q1 (SUg(2)) = Q0er(SUg(2)) @ 0, (SUg(2))

Let: w, to be vertical, and w+ to be horizontal.

Now let € = L,,. We have:
Vo = (X+>¢) wi + (X_pg)w_

= ¢ "Pwy (X408) + 07" Pw (X pe)

13



Split V into holomorphic and anti-holomorphic parts:
v =v4vo
with
Vo =q " 2wy (Xyo9)

V¢ = ¢ " 20 (X_be)

Definition: The standard holomorphic structure on
Ly 1S given by

V=V = g " TPw_ (X_p-)

the anti-holomorphic part of V.

Theorem: With notation as above,
1. For n positive, H(L,, V) is an O(CP})-module

of rank O.



2. For n negative, H(L,, V) is an O(CP})-module
of rank |n| 4+ 1. O

Remark: In fact we prove a stronger result by look-
ing at holomorphic sections among smooth sec-
tions and show that the analogue of the GAGA

principle holds.

We next study the tensor product of two noncom-

mutative holomorphic line bundles.
Proposition: For any integer n there is a ‘twisted
flip' isomorphism

: 0,1) ~ 0,1
Cb(n) : Ln ®A(CP(}) Q( ) ™, Q( ) ®A((CPC}) Lo,

as A(CP})-bimodules.



Proof: Q(0:1) is generated (as a A(CP})-module)

2

by a“w_, acw_ and c2w_. Define

¢(n)(¢1 04 a2w_ _I_ QSQ X acw_— —|— q53 X 02w_)

=q " (aQw_ R 1 + acw_ ® Po + Cu_ ® @3)

with ¢1 satisfying ¢1a? = a?$1 as elements of

A(SUg4(2)) and similarly for ¢», ¢3.

Proposition: The holomorphic structure V on L,
is a bimodule connection with o(V) = &, i.e. it
satisfies the left Leibniz rule and the twisted right

L_eibniz rule:

V(EF) = V() f 4 () (€ ® TF)

for all ¢ € Ly, f € A(CPY)).

So now we can consider the tensor product of these



holomorphic line bundles (Lp;, Vn,),t = 1,2.

Proposition: The tensor product connection

Vi, @1+ (D) @ 1)(1® Vi)

coincides with the standard holomorphic structure

on Lp, ®A(CPC}) Ln, when identified with £, 1,.,.



The quantum homogeneous coordinate ring

Classical situation: X a projective variety and L a
very ample line bundle on X. The homogeneous
coordinate ring of (X, L) is the graded algebra
rR= @ HO(X, L®")
n>0
For the quantum projective line (CPl, using the line
bundles L,,, we define

R =& HO(L_,, V)
n>0

Where now the n-th component has dimension n-+
1. Notice that thanks to the twisting maps ¢y, R

IS an algebra. What is the structure of this algebra?

14



Describe £_,: right A(SZ)-module basis:

Describe HO(L_,,,V): {a ™ HcH} form a basis over

C

R is generated by a,c in degree one with one rela-

tion
ac = qca

which is one of the defining relation of the quantum

group SU4(2)

Corollary: The homogeneous coordinate ring of
Cqu is isomorphic to the coordinate ring of the
quantum plane.

15



Twisted positivity

An approach to NC complex geometry suggested
by Alain Connes [Book, 1994]: Let A be an x-
algebra, A Hochschild 2m-cocycle ¢ € Z2m( A, A*)

is called positive if

(w, ) 2=/wn*
©
iS a positive sesquilinear form on Q2MA. Let
ZZM(A, A*) C Z2™(A, A¥)

denote the set of positive 2m-Hochschild cocycles

on A. It is a convex cone.

Let M= 2-dimensional compact oriented manifold,

A= C(M), and define a 2-current C on M by

C(ortar?) = - [ fOdrtas?

16



Let
C C C?(A, A

denote the Hochschild class representing the cur-

rent C. It is an affine subspace of C2(A, A*).

Theorem (Connes; Book, 1994): There is a 1-1
correspondence between conformal structures on
M and the extreme points of ZfL N C defined by

g — ©g, where

0 ;1 ;2y_ —1 0qpl5 2
po(0, 11, 1) = — [ fP0r10f

How can we extend all this to our (Cqu? T here are
no interesting 2-dimensional Hochschild classes on
A(S2) (dimension drop in quantization), but there

are interesting twisted cocycles. In general Let o :



A — A be an automorphism of A. Twisted n-

cochains on (A, o0):

© A®(+1) _

So(a’Oa "t 7an) — SO(O(CLO)a T ,O'(Cbn))

Twisted Hochschild coboundary

by 1 C(A) — CPT1(A)

ngO(CLO, U 7an—|—1) —

n

ST (1) 0(ag, -+ @11, 5 Gpat)
i=0

—I—(—l)n'l'lgp(a(an_l_l)an, ag, - - 7a’n)'



Let us now go back to the quantum projective line.
Let h: A(SUy(2)) — C denote the normalized Haar

state of SU4(2). It is a positive twisted trace obey-

ing
h(zy) = h(o(y)z), for z,y € A(SUq(2)),

with (modular) automorphism o : A(SUq(2)) —
A(SUq4(2)) given by

o(x) = K ?paaK?.

When restricted to Cqu, it induces the automor-

phism
o (Cqu — (Cqu, o(x) = z<K?.

The bi-invariance of h on A(SU4(2)) reduces to left

invariance on A(CP}). Dually, there is invariance



for the right action of U (su(2)) on A(CP}):
h(z<w) = e(v)h(x),

for =z ¢ A((CP(:JL), v € Ug(su(2)).

With w_ Aw4 the central generator of Q2(CP}), k
the Haar state on A(CPC}) and o its above modular

automorphism, the linear functional

/h: Q2(CP) - ¢, /hfw_ijL = h(f),
defines a non-trivial twisted cyclic 2-cocycle 7 on

A(CP}) by

T(fo, f1, f2) = /hfo dfi Adfo.

T he non-triviality means that there is no 1-cochain
a on A(CP}) such that bpa = 7 and Agar = . Thus

T is a non-trivial class in HCZ(CP;).



Proposition .1. The cochain ¢ € C?(A(CP})) de-

fined by

¢(ag,a1,an) = /hao day day

is a twisted Hochschild 2-cocycle on A(CP(}), that
IS to say b = 0 and )\g’go = ¢, it is also positive,

with positivity expressed as:

/hao day(agdai)* >0

for all ag,a1 € A(CP}).

Before giving the proof we prove a preliminary re-
sult.
Lemma .2. For any ag,a1,ap,az € A(CPZ) it holds

that:

/hao(aa,lgag)ag, =/ha(a3)a08a15a2.



Proof. Write da1dap = yw— A wy, for some y €
A(CP}). Using the fact that w_ A wj commutes

with elements in A(CP;), we have
/hao(aalgw)% — /hff(%)ao@algaz =
/haoy w- Awiaz — /ha(a3)aoy wo ANwp =
/haoyag, w— ANwyg — /ha(ag,)aoy wo ANwp =

h(agyaz) — h(o(a3)agy) = 0.
from the twisted property of the Haar state. [ ]

Proof. of Proposition ?7.

Using the derivation property of & and 0 we have

(bow)(ag,a1,an,a3) = /}Laoa13a25a3—/h agd(aiaz)das



—I-/hao(?alg(agcg) —/ha(a3)a08a15a2 =

/hao((?algag)cg — /ha(a3)a08a15a2 = 0.

using the previous Lemma.

Next, the cyclic condition follows from invariance
of the Haar state and of the calculus. Indeed, from
the commutativity of the left and right U;(su(2))-

actions it holds that:

¢(o(ag),o(a1),o(az)) = /ha(&o) do(a1) 0o (an) =

/hO' (ao 8&1 5&2) :

Writing ag 8aq 0as = yw_Aw., for somey € A((CPl),
+ q

left U,(su(2))invariance of the forms w4, yields

o (ao daq 5@2) =o(y)w- Awy



and in turn,
o(o(ag), o(ay),0(az)) =
| o@)w- Awy = h(o(y) = h(y<K?)
= h(y) = /hyw— ANwy
— /hao Gl GG ),

Finally, for the twisted positivity of ¢, the hermitian

scalar product on Q(1:0)(CPY),
(agday,b70b") := (o (bp)ao, a1, b7)

=/ha(b6)a,o daq ObY,

determines a positive sesquilinear form if for all

ag,a1 € A(CPZ) it holds that

/ha(a?s)aoﬁal da] = /hao daq1(agOay)™ > 0.



The first equality follows again from the Lemma.

Indeed,
/hao(‘?al(ao(‘?al)* = /haof)al(aal)*aé

=/ha(a6)a08a15a>{.
Then, if da; = ywy it follows that da} = (Baq)* =

—w_y*; then

/ha(aé)ao daq Oaj = —/ha(aé)aoyw_k Aw_y*
= qQ/hJ(aE)aoyy* w— Nwy
= ¢°h(o(ad)aogyy™) = ¢*h(aoyy*(ap)*)

= ¢°h(agy(agy™)*) > 0,

the positivity being evident. [ ]



