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• Pre-complex structres on ∗-algebras

• Holomorphic structures on NC vector bundles

• A holomorphic structure on the quantum projec-

tive line CP1
q

• Canonical line bundles on CP1
q and their holomor-

phic structure

• The quantum homogeneous ring of CP1
q

• Positive Hoschschild cocycles and uniqueness
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Noncommutative pre-complex structures

Initial data: A an ∗-algebra over C, (Ω•(A),d) an

involutive differential calculus over A.

Ω0(A) = A, d(a∗) = (da)∗

Definition: A pre-complex structure on A for the

differential calculus (Ω•(A),d) is a bigraded differ-

ential ∗- algebra Ω(•,•)(A) with differentials (deriva-

tions)

∂ : Ω(p,q)(A) → Ωp+1,q(A),

∂̄ : Ω(p,q)(A) → Ω(p,q+1)(A)

s.t.

Ωn(A) =
⊕

p+q=n

Ω(p,q)(A)
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∂(a)∗ = ∂̄(a∗), d = ∂ + ∂̄

Also, ∗ maps Ω(p,q)(A) to Ω(q,p)(A).

Motivating example: the de Rham complex of a

complex manifold.

NC examples: Let L be a real Lie algebra with a

complex structure:

LC = L0 ⊕ L0

Given L → Der(A,A), an action of L by ∗-derivations

on A, then

Ω•A = HomC(Λ•LC,A)

is a differential calculus for A, and

Ω(p,q)A = HomC(ΛpL0 ⊗ ΛqL0,A)



defines a pre-complex structure.

NC torus Aθ: Generators U1, U2 with

U1U2 = e2πiθU2U1

Basic derivations:

δj(Uk) = 2πi δjkUk, j, k = 1,2

define an action of R2 on Aθ. Any τ ∈ C\R defines

a complex structure on Aθ:

R2 ⊗ C = L0 ⊕ L0

with L0 := e1 + τe2.

The complex structure on Aθ is then given by

∂(τ) =
1

(τ − τ)
(−τδ1 + δ2),

∂(τ) =
1

(τ − τ)
(τδ1 − δ2).



The fundamental cyclic 2-cocycle on Aθ:

Ψ(a0, a1, a2) =
i

2π
trθ (a0(δ1a1δ2a2 − δ2a1δ1a2))

The positive Hochschild 2-cocycle Φ associated

with Ψ:

Φ(a0, a1, a2) =
2

π
trθ

(
a0∂(τ)a1∂(τ)a2

)
.

This cocycle gives the conformal class of a general

constant metric on the torus.

Holomorphic functions:

O(A) := ker
{
∂̄ : A → Ω(0,1)(A)

}
.



Holomorphic structures on modules

Definition: Let (A, ∂̄) be an algebra with a pre-

complex structure and E a left A-module. A holo-

morphic structure on E with respect to (A, ∂̄) is a

flat ∂̄-connection, i.e. a connection

∇ : E → Ω(0,1)(A)⊗A E

s.t.

F (∇) = ∇2 = 0

If in addition E is a finitely generated projective

A-module, we call the pair (E,∇) a holomorphic

vector bundle.

Since ∇ is a flat connection, we have a complex of
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vector spaces:

E ∇→ Ω(0,1)(A)⊗A E
∇→ Ω(0,2)(A)⊗A E → · · ·

Definition: The zeroth cohomology group of the

above complex is the space of holomorphic sections

of E and denoted by H0(E,∇). It is a left O(A)-

module.



Holomorphic structures on bimodules

Let E be an A-bimodule.

Definition: A bimodule connection on E is a left

connection ∇ : E → Ω1(A) ⊗A E for which there is

a bimodule isomorphism

σ(∇) : E ⊗A Ω1(A) → Ω1(A)⊗A E,

such that

∇(ξa) = ∇(ξ)a + σ(∇) (ξ ⊗ da)

for all ξ ∈ E, a ∈ A.

In particular, this definition applies to the differen-

tial calculus (Ω(0,•)(A), ∂̄) thus giving a notion of

holomorphic structures on bimodules.
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Tensor products of holomorphic vector bundles

Suppose we are given two A-bimodules E1, E2 with

two bimodule connections ∇1,∇2, respectively. Let

σ := (σ1 ⊗ 1) ◦ (1⊗ σ2) : E1 ⊗A E2 ⊗A Ω1(A) →

Ω1(A)⊗A E1 ⊗A E2

Lemma: The map

∇ : E1 ⊗A E2 7→ Ω1(A)⊗A E1 ⊗A E2

defined by

∇ = ∇1 ⊗ 1 + (σ1 ⊗ id)(1⊗∇2)

defines a σ-compatible connection on the A-bimodule

E1 ⊗A E2.
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Note: We would like the flatness condition on holo-

morphic structures to survive under taking this ten-

sor product. This is not the case in higher dimen-

sions in the NC world! A possible way out might

be the use of a more exotic tensor product.



The quantum Hopf fibration

S1 ↪→ S3
q ↪→ S2

q

A quantum homogeneous space:

A(S2
q ) → A(S3

q ) → A(S1)

S3
q = SUq(2), 0 < q ≤ 1

A(SUq(2)):= ∗-algebra generated by a and c, with

relations

UU∗ = U∗U = 1

U =

[
a −qc∗

c a∗

]

Hopf algebra structure on A(SUq(2)):

∆U = U ⊗ U
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S(U) = U∗

ε(U) =

[
1 0
0 1

]

The quantum enveloping algebra Uq(su(2)): It is

the Hopf dual of SUq(2). Generators: K, K−1, E, F

Hopf pairing:

Uq(su(2))⊗A(SUq(2)) → C

〈K, a〉 = q−1/2, 〈K−1, a〉 = q1/2

〈K, a∗〉 = q1/2, 〈K−1, a∗〉 = q−1/2

〈E, c〉 = 1, 〈F, c∗〉 = −q−1

Left and right actions (infinitesimal symmetries):

Uq(su(2))⊗A(SUq(2)) → A(SUq(2)),



(X, f) 7→ X.f.

A(SUq(2))⊗ Uq(su(2)) → A(SUq(2)),

(f, X) 7→ f/X

Uniquely fixed by:

〈X, Y .f〉 = 〈XY, f〉 , 〈X, f/Y 〉 = 〈Y X, f〉 ,

These right and left actions are mutually commut-

ing.



The quantum projective line

There is a quantum principal U(1)-bundle:

ρ : A(SUq(2)) 7→ A(SUq(2))⊗A(U(1))

ρ = (id⊗π) ◦∆

π : A(SUq(2)) → A(U(1)),

where

π

[
a −qc∗

c a∗

]
=

[
z 0
0 z∗

]
is a surjective Hopf algebra homomorphism, so that

A(U(1)) becomes a quantum subgroup of SUq(2).

Coinvariants: A subalgebra of A(SUq(2)):

A(S2
q ) := {a ∈ A(SUq(2)); ρ(a) = a⊗ 1}
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The coordinate algebra of the Podleś sphere S2
q

= the underlying topological space of the quantum

projective line CP1
q .



The canonical line bundles on CP1
q

The action of the group-like element K =⇒ a de-

composition:

A(SUq(2)) =
⊕
n∈Z

Ln

where,

Ln := {f ∈ A(SUq(2)) : K.f = qn/2f}

Notice:

A(S2
q ) = L0, L∗n ⊂ L−n, LnLm ⊂ Ln+m

Ln: A(S2
q )-bimodule; finite projective as a left mod-

ule; analogues of canonical line bundles O(n) on

CP1 of degree (monopole charge) −n.

9



A covariant differential calculus for SUq(2)

Left covariant calculus: (A,Ω, H)

• Ω =
⊕

i≥0 Ωi is a DGA with Ω0 = A

• Ω is a left DG H-comodule algebra, i.e. there

is a morphism of DGA’s

ρ : Ω −→ H ⊗Ω

s.t. Ω is a left DG H-comodule under ρ.

Example (Woronowicz): Let H = A(SUq(2)) and

Ωi = A(SUq(2))⊗
∧i{ω+, ω−, ωz} 0 ≤ i ≤ 3
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⊕ ∧i{ω+, ω−, ωz} = The q-Grassmann algebra:

ω+ ∧ ω+ = ω− ∧ ω− = ωz ∧ ωz = 0

ω− ∧ ω+ + q−2ω+ ∧ ω− = 0

ωz ∧ ω− + q4ω− ∧ ωz = 0,

ωz ∧ ω+ + q−4ω+ ∧ ωz = 0.

unique top form: ω− ∧ ω+ ∧ ωz.

differential d : A(SUq(2)) → Ω1(SUq(2)) :

df = (X+.f)ω+ + (X−.f)ω− + (Xz.f)ωz,

where

Xz =
1−K4

1− q−2
, X− = q−1/2FK

X+ = q1/2EK



The holomorphic calculus on CP1
q

The ‘cotangent bundle’

Ω1(S2
q ) : L−2ω− ⊕ L2ω+

The differential d:

df = (X−.f)ω− + (X+.f)ω+

where X− = q−1/2F and X+ = q1/2E.

Break d into a holomorphic and an anti-holomorphic

part, d = ∂̄ + ∂, with:

∂̄f = (X−.f)ω−, ∂f =
(
X+.f

)
ω+

The above shows that:

Ω1(S2
q ) = Ω(0,1)(S2

q )⊕Ω(1,0)(S2
q )
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where

Ω(0,1)(S2
q ) ' L−2 ' ∂̄(A(S2

q )),

Ω(1,0)(S2
q ) ' L+2 ' ∂(A(S2

q ))

These modules are not free.

2-forms: Let ω = ω− ∧ ω+. We have ωf = fω, for

all f ∈ A(S2
q ).

Ω2(S2
q ) := ωA(S2

q ) = A(S2
q )ω

Proposition: The 2D differential calculus on the

sphere S2
q is given by:

Ω•(S2
q ) = A(S2

q )⊕
(
L−2 ⊕ L+2

)
⊕A(S2

q )ω+ ∧ ω−

with the exterior differential d = ∂̄ + ∂:

f 7→ (q−1/2F.f, q1/2E.f)



(x, y) 7→ q−1/2(E.x− q−1F.y)

for f ∈ A(S2
q ), (x, y) ∈ L−2 ⊕ L+2.



Holomorphic functions on CP1
q

∂̄ : A(CP1
q ) → Ω(0,1)(CP1

q )

We shall use the q-number notation:

[s] = [s]q :=
qs − q−s

q − q−1

Proposition: There are no non-trivial holomorphic

polynomial functions on CP1
q .

Proof:

∂̄f = 0 iff F.f = 0. Write f in PBW-basis {amckc∗l}

of A(SUq(2)),

f =
∑

k,l≥0

fkl al−kckc∗l,

where a−m := a∗m. The monomials al−kckc∗l are

the only K-invariant elements in the PBW-basis.
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The vanishing of F.f implies the following relations

between fkl with 0 ≤ l < k:

fklq
−l[k] = fk+1,l+1q−k−1[l + 1]

the solutions of which are given by

fkl =
[k − 1][k − 2] · · · [k − l]qkqk−1 · · · qk−l+1

[l]!ql−1ql−2 · · · q0
f̃k−l

= q(k−l+1)l
[
k − 1

l

]
q

f̃k−l

where f̃k−l are arbitrary. Clearly, the only polyno-

mial solution is when fkl = 0 for (k, l) 6= (0,0).

2

Remark: In fact we prove a stronger result by look-

ing at holomorphic functions among smooth func-

tions and show that the analogue of the GAGA

principle holds.



Holomorphic vector bundles on CP1
q

The ‘line bundle’ Ln is represented by a projection

pn in M|n|+1(A(S2
q )). So we have a Grassmannian

connection on Ln = (A(S2
q ))

|n|+1pn.

Equivalently, a connection is defined by a covariant

splitting

Ω1(SUq(2)) = Ω1
ver(SUq(2))⊕Ω1

hor(SUq(2))

Let: ωz to be vertical, and ω± to be horizontal.

Now let E = Ln. We have:

∇φ =
(
X+.φ

)
ω+ + (X−.φ)ω−

= q−n−2ω+

(
X+.φ

)
+ q−n+2ω− (X−.φ)
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Split ∇ into holomorphic and anti-holomorphic parts:

∇ = ∇∂ +∇∂̄

with

∇∂φ = q−n−2ω+

(
X+.φ

)
∇∂̄φ = q−n+2ω− (X−.φ)

Definition: The standard holomorphic structure on

Ln is given by

∇ := ∇∂̄ = q−n+2ω− (X−.−)

the anti-holomorphic part of ∇.

Theorem: With notation as above,

1. For n positive, H0(Ln,∇) is an O(CP1
q )-module

of rank 0.



2. For n negative, H0(Ln,∇) is an O(CP1
q )-module

of rank |n|+ 1. 2

Remark: In fact we prove a stronger result by look-

ing at holomorphic sections among smooth sec-

tions and show that the analogue of the GAGA

principle holds.

We next study the tensor product of two noncom-

mutative holomorphic line bundles.

Proposition: For any integer n there is a ‘twisted

flip’ isomorphism

Φ(n) : Ln ⊗A(CP1
q )

Ω(0,1) ∼−→ Ω(0,1) ⊗A(CP1
q )
Ln

as A(CP1
q )-bimodules.



Proof: Ω(0,1) is generated (as a A(CP1
q )-module)

by a2ω−, acω− and c2ω−. Define

Φ(n)(φ1 ⊗ a2ω− + φ2 ⊗ acω− + φ3 ⊗ c2ω−)

= q−n
(
a2ω− ⊗ φ̃1 + acω− ⊗ φ̃2 + c2ω− ⊗ φ̃3

)
with φ̃1 satisfying φ1a2 = a2φ̃1 as elements of

A(SUq(2)) and similarly for φ̃2, φ̃3.

Proposition: The holomorphic structure ∇ on Ln

is a bimodule connection with σ(∇) = Φ(n), i.e. it

satisfies the left Leibniz rule and the twisted right

Leibniz rule:

∇(ξf) = ∇(ξ)f + Φ(n)(ξ ⊗ ∂̄f)

for all ξ ∈ Ln, f ∈ A(CP1
q )).

So now we can consider the tensor product of these



holomorphic line bundles (Lni,∇ni), i = 1,2.

Proposition: The tensor product connection

∇n1 ⊗ 1 + (Φ(n1)
⊗ 1)(1⊗∇n2)

coincides with the standard holomorphic structure

on Ln1 ⊗A(CP1
q )
Ln2 when identified with Ln1+n2

.



The quantum homogeneous coordinate ring

Classical situation: X a projective variety and L a

very ample line bundle on X. The homogeneous

coordinate ring of (X, L) is the graded algebra

R =
⊕
n≥0

H0(X, L⊗n)

For the quantum projective line CP1
q , using the line

bundles Ln, we define

R :=
⊕
n≥0

H0(L−n,∇)

Where now the n-th component has dimension n+

1. Notice that thanks to the twisting maps φ(n), R

is an algebra. What is the structure of this algebra?
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Describe L−n: right A(S2
q )-module basis:

a−n−µcµ, µ = 0,1, · · · , n

Describe H0(L−n,∇): {a−n−µcµ} form a basis over

C

R is generated by a, c in degree one with one rela-

tion

ac = qca

which is one of the defining relation of the quantum

group SUq(2)

Corollary: The homogeneous coordinate ring of

CP1
q is isomorphic to the coordinate ring of the

quantum plane.
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Twisted positivity

An approach to NC complex geometry suggested

by Alain Connes [Book, 1994]: Let A be an ∗-

algebra, A Hochschild 2m-cocycle ϕ ∈ Z2m(A,A∗)

is called positive if

〈ω, η〉 :=
∫
ϕ

ωη∗

is a positive sesquilinear form on ΩmA. Let

Z2m
+ (A,A∗) ⊂ Z2m(A,A∗)

denote the set of positive 2m-Hochschild cocycles

on A. It is a convex cone.

Let M= 2-dimensional compact oriented manifold,

A = C∞(M), and define a 2-current C on M by

C(f0df1df2) =
−1

2πi

∫
f0df1df2
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Let

C ⊂ C2(A,A∗)

denote the Hochschild class representing the cur-

rent C. It is an affine subspace of C2(A,A∗).

Theorem (Connes; Book, 1994): There is a 1-1

correspondence between conformal structures on

M and the extreme points of Z2
+ ∩ C defined by

g 7→ ϕg, where

ϕg(f
0, f1, f2) =

−1

πi

∫
M

f0∂f1∂̄f2

How can we extend all this to our CP1
q ? There are

no interesting 2-dimensional Hochschild classes on

A(S2
q ) (dimension drop in quantization), but there

are interesting twisted cocycles. In general Let σ :



A → A be an automorphism of A. Twisted n-

cochains on (A, σ):

ϕ : A⊗(n+1) → C

ϕ(a0, · · · , an) = ϕ(σ(a0), · · · , σ(an))

Twisted Hochschild coboundary

bσ : Cn
σ(A) → Cn+1

σ (A)

bσϕ(a0, · · · , an+1) =

n∑
i=0

(−1)iϕ(a0, · · · , aiai+1, · · · , an+1)

+(−1)n+1ϕ(σ(an+1)an, a0, · · · , an).



Let us now go back to the quantum projective line.

Let h : A(SUq(2)) → C denote the normalized Haar

state of SUq(2). It is a positive twisted trace obey-

ing

h(xy) = h(σ(y)x), for x, y ∈ A(SUq(2)),

with (modular) automorphism σ : A(SUq(2)) →

A(SUq(2)) given by

σ(x) = K−2.x/K2.

When restricted to CP1
q , it induces the automor-

phism

σ : CP1
q → CP1

q , σ(x) = x/K2.

The bi-invariance of h on A(SUq(2)) reduces to left

invariance on A(CP1
q ). Dually, there is invariance



for the right action of Uq(su(2)) on A(CP1
q ):

h(x/v) = ε(v)h(x),

for x ∈ A(CP1
q ), v ∈ Uq(su(2)).

With ω− ∧ ω+ the central generator of Ω2(CP1
q ), h

the Haar state on A(CP1
q ) and σ its above modular

automorphism, the linear functional∫
h
: Ω2(CP1

q ) → C,
∫
h

f ω− ∧ ω+ := h(f),

defines a non-trivial twisted cyclic 2-cocycle τ on

A(CP1
q ) by

τ(f0, f1, f2) :=
∫
h

f0 df1 ∧ df2.

The non-triviality means that there is no 1-cochain

α on A(CP1
q ) such that bσα = τ and λσα = α. Thus

τ is a non-trivial class in HC2
σ(CP1

q ).



Proposition .1. The cochain ϕ ∈ C2(A(CP1
q )) de-

fined by

ϕ(a0, a1, a2) =
∫
h

a0 ∂a1 ∂̄a2

is a twisted Hochschild 2-cocycle on A(CP1
q ), that

is to say bσϕ = 0 and λ3
σϕ = ϕ; it is also positive,

with positivity expressed as:∫
h

a0 ∂a1(a0 ∂a1)
∗ ≥ 0

for all a0, a1 ∈ A(CP1
q ).

Before giving the proof we prove a preliminary re-

sult.

Lemma .2. For any a0, a1, a2, a3 ∈ A(CP1
q ) it holds

that: ∫
h

a0(∂a1∂̄a2)a3 =
∫
h

σ(a3)a0∂a1∂̄a2.



Proof. Write ∂a1∂̄a2 = y ω− ∧ ω+, for some y ∈

A(CP1
q ). Using the fact that ω− ∧ ω+ commutes

with elements in A(CP1
q ), we have∫

h
a0(∂a1∂̄a2)a3 −

∫
h

σ(a3)a0∂a1∂̄a2 =

∫
h

a0y ω− ∧ ω+a3 −
∫
h

σ(a3)a0y ω− ∧ ω+ =

∫
h

a0ya3 ω− ∧ ω+ −
∫
h

σ(a3)a0y ω− ∧ ω+ =

h(a0ya3)− h(σ(a3)a0y) = 0.

from the twisted property of the Haar state.

Proof. of Proposition ??.

Using the derivation property of ∂ and ∂̄ we have

(bσϕ)(a0, a1, a2, a3) =
∫
h

a0a1∂a2∂̄a3−
∫
h

a0∂(a1a2)∂̄a3



+
∫
h

a0∂a1∂̄(a2a3)−
∫
h

σ(a3)a0∂a1∂̄a2 =

∫
h

a0(∂a1∂̄a2)a3 −
∫
h

σ(a3)a0∂a1∂̄a2 = 0.

using the previous Lemma.

Next, the cyclic condition follows from invariance

of the Haar state and of the calculus. Indeed, from

the commutativity of the left and right Uq(su(2))-

actions it holds that:

ϕ(σ(a0), σ(a1), σ(a2)) =
∫
h

σ(a0) ∂σ(a1) ∂̄σ(a2) =

∫
h

σ
(
a0 ∂a1 ∂̄a2

)
;

writing a0 ∂a1 ∂̄a2 = y ω−∧ω+, for some y ∈ A(CP1
q ),

left Uq(su(2))invariance of the forms ω±, yields

σ
(
a0 ∂a1 ∂̄a2

)
= σ(y)ω− ∧ ω+



and in turn,

ϕ(σ(a0), σ(a1), σ(a2)) =

∫
h

σ(y)ω− ∧ ω+ = h(σ(y) = h(y/K2)

= h(y) =
∫
h

y ω− ∧ ω+

=
∫
h

a0 ∂a1 ∂̄a2 = ϕ(a0, a1, a2).

Finally, for the twisted positivity of ϕ, the hermitian

scalar product on Ω(1,0)(CP1
q ),

〈a0∂a1, b0∂b1〉 := ϕ(σ(b∗0)a0, a1, b∗1)

=
∫
h

σ(b∗0)a0 ∂a1 ∂̄b∗1,

determines a positive sesquilinear form if for all

a0, a1 ∈ A(CP1
q ) it holds that∫

h
σ(a∗0)a0∂a1 ∂̄a∗1 =

∫
h

a0 ∂a1(a0 ∂a1)
∗ ≥ 0.



The first equality follows again from the Lemma.

Indeed,∫
h

a0∂a1(a0∂a1)
∗ =

∫
h

a0∂a1(∂a1)
∗a∗0

=
∫
h

σ(a∗0)a0∂a1∂̄a∗1.

Then, if ∂a1 = yω+ it follows that ∂̄a∗1 = (∂a1)
∗ =

−ω−y∗; then

∫
h

σ(a∗0)a0 ∂a1 ∂̄a∗1 = −
∫
h

σ(a∗0)a0 y ω+ ∧ ω−y∗

= q2
∫
h

σ(a∗0)a0 y y∗ ω− ∧ ω+

= q2h(σ(a∗0)a0 yy∗) = q2h(a0yy∗(a0)
∗)

= q2h(a0y(a0y∗)∗) ≥ 0,

the positivity being evident.


