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Let €2 be a bounded open subset of R™ satisfying the segment property,
i.e., its topological boundary 0f2 has a finite open covering {O;} and corre-
sponding nonzero vectors {y;} such that

{r+ty; |0<t <1} CQ, Yz eQno,.

We refer to a subset of R™ with these properties as a domain. Denote by

C*(Q)) the set of smooth functions on 2 all of whose partial derivatives can
be extended continuously to 2. Consider the subspace

Dp ={f € C*(Q) | floo = 0}
of the Hilbert space L*(€2). Let
A = —div o grad (1)

be the Laplace operator on C*°(£2). If 0L is smooth, then, by Green’s theo-
rem, the restriction of A to Dp is symmetric and non-negative, i.e.,

(Af,g) = (gradf, gradg) 2 := /Q(gradf, gradg) d™z = (f,Ag), (2)

where {.,.) and (.,.) denote the inner product on L?(Q2) and the Euclidean
metric on R™, respectively. We denote (gradf, gradg);2 by Q(f, g).

Consider the Sobolev space
HY Q) :=Wh(Q) = {f € L*(Q)| Gradf € L*(Q)},

where Grad f denote the distributional gradient of f. We define the subspace
HJ(Q) of H'(2) to be the closure of the subspace C°(Q) C H'(2) under the
norm ||. |1, where [|f||5: = ||f||5> + ||Grad f||>.. The Dirichlet Laplacian
for Q, denoted by A%, is defined to be the self-adjoint non-negative Friedrichs



extension of A|p,. The domain of A% is the subspace Hg(Q2) of L?(Q2). We
have

(ABL L =Q(f. f),  VfeH(Q), (3)

where @) denote the closure of Q.

Consider the subspace Dy = {f € C®(Q) | (vf)|aa = 0} of L*(Q2), where
v denote the outward unit normal vector field on 0Q. If 02 is smooth,
then, by Green’s theorem, the restriction of A to Dy is symmetric and
non-negative. The Neumann Laplacian for €, denoted by A%, is defined

to be the self-adjoint non-negative Friedrichs extension of A|p,. The do-
main of A% is the subspace H'(Q) of L?(2). For each f € H'(Q) we have

(AL, f) = Q(f, f)-

The self-adjoint non-negative operators A% and A have compact re-
solvent [3]. Thus, their (point) spectrum consist of a discrete increasing
sequence of non-negative real numbers with no limit point in R, and each
eigenvalue has finite multiplicity. In addition, the set of corresponding eigen-
functions is an orthonormal basis for L%(€2).

Henceforth, we denote by ¢§ (respectively, ¥}) the normalized eigenfunc-
tion of A (respectively, AL) with eigenvalue A (respectively, ps}), where
k ranges over positive integers, i.e., k = 1,2,---. We arrange the eigenvalues
in an increasing sequence

with each eigenvalue repeated according to its multiplicity. For each v € R,
let N(A$,v) be the number of eigenvalues ! < v counted with multiplic-
ity. Indeed, N(A$,v) is the sum of the dimensions of the eigenspaces of A%
corresponding to the eigenvalues A < v. The quantity N(A%,v) is defined
similarly. In the following, we want to investigate the asymptotic behaviour
of N(A®,v) as v — oo,

As the first step, we need to study the asymptotic behaviour of N(A, v)
and N(A%,v) in the special case where, 2 is the open m-dimensional rect-

angle Q = (0,1;) x (0,03) x -+ x (0,1,,) C R™. In this case, the eigenvalues
of A% and A% are explicitly given by (see [3], [1]):

A% — é k2 (15)2 (4)
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. u? = i (k, - 1>2(§)2, 5)

respectively, where each k; ranges over the positive integers.

Proposition 1 Let €2 be the open m-dimensional rectangle as above. We
have

Q Q
lim N(AD,v) ~ lim N(AY,v) B wm Vol ()

V—00 ym/2 V—00 Vm/2 o (27T)m ’ <6)

where wy, is the volume of the unit ball in R™, and Vol (Q2) denotes the volume
of Q.

Proof Let I' be the lattice in R™ generated by the vectors {e1/ly,- -+ ,emn/lm},
where {e;} are the standard basis of R™. Let B™(r) C R™ be the closed
ball with radius r and centered at the origin. Considering (4), the quantity
N (A, v) equals the number of the points of T in an “octant” of B™(y/v/x).

Denote by N (r) the number of the points of I in B™(r). Let 3 be the
fundamental domain for the action of I" on R™. Denote by P(r) the number
of copies of ¥ contained in B™(r). Let d = /> ;" 1/I? be the diameter of
Y. We have

P(r) <N(r) <P(r+d). (7)
Thus, using
W (r —d)™ < P(r)Vol(2) < wp,r™, ()
we get . .
% <N(r) < %, (9)
which implies
fim M) _m W Vol () . (10)

oo Vol(%)

So we have N(A$%,v) = N(\/v/m)/2™ + ¢, where the “error” term € cor-
responds to the points of the (m — 1)-dimensional lattices resulted from in-
tersection of I" with each coordinate hyperplane in R™. Since € is of order
v(m=1/2 “using (10), we get (6) for N(A%,v). A similar argument yields to
(6) for N(A,v).

[

The next step is to show the domain monotonicity of the eigenvalues of
Ap and Ay, and also, find a relation between the corresponding eigenvalues
of A% and A% on the same domain €.
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We recall the max-min principle for the eigenvalues of self-adjoint positive
operators. Consider a domain Q in R™. Let E(f) := Q(f, f)/||f|[3> be the
Rayleigh quotient. Denote by (gi,---,g,) the span of the the functions

gi € L*(Q), i =1,--+ ,n. According to the max-min principle, we have
L
L

Lemma 2 Consider the domains Q and Q, where Q C Q C R™. We have
A<\ (13)
for each k =1,2,---.

Proof Note that each f € L*(Q) can be viewed as as an element of L(Q)
by setting it equal to zero in Q\. Consider the linear map

T: <¢?> 7¢2> — <¢?a 7¢I?—1>*

¢?'_><7¢Q>7 Z:L?k

(2

Since Ker(T') # (), there exist a function fo = S2% | a;0%, a; € R such that
fo € (@S- ,gb%fl)L N Hg(Q). Considering (11), we have

Q k Q2 -
A< By = BRI Za il ja (14)
I foll 72 D i1 @
[ |
Lemma 3 Let Q) be a domain in R™. We have
e <AL (15)

for each k =1,2,---.

Proof Since H}(Q) C H'(Q), there exist a function fy = Zle a;¢, a; € R
such that fo € (W2, -+ 2 )" N HY(Q). Considering (12), we have

<A%f0’f0> . Zf:l )\? a’lz < )\Q 16
2 - k 2 —= Yk ( )
| foll 72 D e G

py < E(fo) =



Consider the disjoint domains €21,y in the domain 2 C R™ such that
Q =int(2; UQy), and Q\Q; U Qs has Lebesgue measure zero. (Intuitively,
one gets ; UQy by eliminating a “surface” (Q\Q; Uy) C int) from Q).
Note that, since H'(Q; UQy) = HY(Q) @ H'(Qy), we have

AR = AT @ AT
A — AU @ A (17)
Lemma 4 Let 2,y C Q be as above. We have
e < (18)
AR < A (19)
for each k =1,2,---.

Proof If f € H'(Q), its restriction to O U Qy is in H'(Q) & H'(Q2). So
there exist a function fy = Zle a; s, a; € R such that

fo € (YU . ,?iﬁj%)L N H'(Q UQy). In addition, since Q\Q; U ), has
Lebesgue measure zero, we have
/ (Grad fo|2d™z — / (Grad fo|2d™ (20)
Q1UQ Q

Thus, considering (12), we get

W Il < [

Q1UQ

|Grad fo|*d™x = / |Grad fo|*d™x
0
= <A§]\2/'f0 ) f0>
k
=Y ula <yl foll- (21)
i=1
The inequality (19) is a special case of (13).
|
Definition A standard 27" cube in R™ is a cube of the form
by by +1 by, b, +1
an’ X X 57
PAVAL 2n° 2n
with by, --- , b, integers. Given a Lebesgue measurable set 2 C R™, denote
by Q. (respectively, Q) those standard 27" cubes contained in € (respec-

tively, those standard 27" cubes that intersect 2). Let W*(Q2) = Vol(Q).
The set Q is called a contented (Jordan measurable) set if we have

lim W (Q) = lim W (Q) = Vol(9). (22)
n—oo n—oo
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Theorem 5 Let Q) be a contented domain in R™. We have

Q
lim N(AL, V) wnVol(Q)

vooo  pm/2 N (27T)m

(23)

Proof Let {C’jE } be the interiors of the cubes in the definition of QF so that
=U,;C i By (13) and (19) we have

A2 < A2 < A (24)
which implies
N(AD,v) = N(AY v) = N(@,Ap",v) = Y N(AG,v). (25)
J
Thus, by (6), we have
. N(AB,v) N(AL™,v) win Vol (Cr ;)
ipnint S0 > ZJE&W =2
j
wm W, (Q)
L 26
tee (26)
On the other hand, by (15) and (18), we have
+
D > A > > g (27)
which implies
N(AL ) <ZNA ’” (28)
Therefore, by (6), we have
. N(Ay M V) _ Wm W, ()
lim Soljp o /2 ) < Z }LI& = o (29)

Since € is contented, if we let n — oo, then, using (26) and (29), we get (23).
|
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