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Let Ω be a bounded open subset of Rm satisfying the segment property,
i.e., its topological boundary ∂Ω has a finite open covering {Oi} and corre-
sponding nonzero vectors {yi} such that

{x+ tyi | 0 < t < 1} ⊂ Ω , ∀x ∈ Ω ∩Oi .

We refer to a subset of Rm with these properties as a domain. Denote by
C∞(Ω) the set of smooth functions on Ω all of whose partial derivatives can
be extended continuously to Ω. Consider the subspace

DD = {f ∈ C∞(Ω) | f |∂Ω = 0}

of the Hilbert space L2(Ω). Let

∆ = −div ◦ grad (1)

be the Laplace operator on C∞(Ω). If ∂Ω is smooth, then, by Green’s theo-
rem, the restriction of ∆ to DD is symmetric and non-negative, i.e.,

〈∆f, g〉 = 〈gradf, gradg〉L2 :=

∫
Ω

(gradf, gradg) dmx = 〈f,∆g〉 , (2)

where 〈. , .〉 and (. , .) denote the inner product on L2(Ω) and the Euclidean
metric on Rm, respectively. We denote 〈gradf, gradg〉L2 by Q(f, g).

Consider the Sobolev space

H1(Ω) := W 1,2(Ω) = {f ∈ L2(Ω) |Gradf ∈ L2(Ω)} ,

where Gradf denote the distributional gradient of f . We define the subspace
H1

0 (Ω) of H1(Ω) to be the closure of the subspace C∞c (Ω) ⊂ H1(Ω) under the
norm || . ||H1 , where ||f ||2H1 = ||f ||2L2 + ||Gradf ||2L2 . The Dirichlet Laplacian
for Ω, denoted by ∆Ω

D, is defined to be the self-adjoint non-negative Friedrichs
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extension of ∆|DD
. The domain of ∆Ω

D is the subspace H1
0 (Ω) of L2(Ω). We

have
〈∆Ω

Df, f〉 = Q(f, f) , ∀f ∈ H1
0 (Ω) , (3)

where Q denote the closure of Q.

Consider the subspace DN = {f ∈ C∞(Ω) | (vf)|∂Ω = 0} of L2(Ω), where
v denote the outward unit normal vector field on ∂Ω. If ∂Ω is smooth,
then, by Green’s theorem, the restriction of ∆ to DN is symmetric and
non-negative. The Neumann Laplacian for Ω, denoted by ∆Ω

N , is defined
to be the self-adjoint non-negative Friedrichs extension of ∆|DN

. The do-
main of ∆Ω

N is the subspace H1(Ω) of L2(Ω). For each f ∈ H1(Ω) we have
〈∆Ω

Nf, f〉 = Q(f, f).

The self-adjoint non-negative operators ∆Ω
D and ∆Ω

N have compact re-
solvent [3]. Thus, their (point) spectrum consist of a discrete increasing
sequence of non-negative real numbers with no limit point in R, and each
eigenvalue has finite multiplicity. In addition, the set of corresponding eigen-
functions is an orthonormal basis for L2(Ω).

Henceforth, we denote by φΩ
k (respectively, ψΩ

k ) the normalized eigenfunc-
tion of ∆Ω

D (respectively, ∆Ω
N) with eigenvalue λΩ

k (respectively, µΩ
k ), where

k ranges over positive integers, i.e., k = 1, 2, · · ·. We arrange the eigenvalues
in an increasing sequence

0 ≤ λΩ
1 ≤ λΩ

2 ≤ · · ·
0 ≤ µΩ

1 ≤ µΩ
2 ≤ · · ·

with each eigenvalue repeated according to its multiplicity. For each ν ∈ R>0,
let N(∆Ω

D, ν) be the number of eigenvalues λΩ
k ≤ ν counted with multiplic-

ity. Indeed, N(∆Ω
D, ν) is the sum of the dimensions of the eigenspaces of ∆Ω

D

corresponding to the eigenvalues λΩ
k ≤ ν. The quantity N(∆Ω

N , ν) is defined
similarly. In the following, we want to investigate the asymptotic behaviour
of N(∆Ω

D, ν) as ν →∞.

As the first step, we need to study the asymptotic behaviour of N(∆Ω
D, ν)

and N(∆Ω
N , ν) in the special case where, Ω is the open m-dimensional rect-

angle Ω = (0, l1)× (0, l2)× · · · × (0, lm) ⊂ Rm. In this case, the eigenvalues
of ∆Ω

D and ∆Ω
N are explicitly given by (see [3], [1]):

λΩ =
m∑
i=1

k2
i

(
π

li

)2

(4)
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and

µΩ =
m∑
i=1

(ki − 1)2

(
π

li

)2

, (5)

respectively, where each ki ranges over the positive integers.

Proposition 1 Let Ω be the open m-dimensional rectangle as above. We
have

lim
ν→∞

N(∆Ω
D, ν)

νm/2
= lim

ν→∞

N(∆Ω
N , ν)

νm/2
=
ωmVol (Ω)

(2π)m
, (6)

where ωm is the volume of the unit ball in Rm, and Vol (Ω) denotes the volume
of Ω.

Proof Let Γ be the lattice in Rm generated by the vectors {e1/l1, · · · , em/lm},
where {ei} are the standard basis of Rm. Let Bm(r) ⊂ Rm be the closed
ball with radius r and centered at the origin. Considering (4), the quantity
N(∆Ω

D, ν) equals the number of the points of Γ in an “octant” of Bm(
√
ν/π).

Denote by N (r) the number of the points of Γ in Bm(r). Let Σ be the
fundamental domain for the action of Γ on Rm. Denote by P(r) the number
of copies of Σ contained in Bm(r). Let d =

√∑m
i=1 1/l2i be the diameter of

Σ. We have
P(r) ≤ N (r) ≤ P(r + d) . (7)

Thus, using
ωm(r − d)m ≤ P(r)Vol(Σ) ≤ ωmr

m , (8)

we get
ωm(r − d)m

Vol(Σ)
≤ N (r) ≤ ωm(r + d)m

Vol(Σ)
, (9)

which implies

lim
r→∞

N (r)

rm
=

ωm
Vol(Σ)

= ωmVol(Ω) . (10)

So we have N(∆Ω
D, ν) = N (

√
ν/π)/2m + ε, where the “error” term ε cor-

responds to the points of the (m− 1)-dimensional lattices resulted from in-
tersection of Γ with each coordinate hyperplane in Rm. Since ε is of order
ν(m−1)/2, using (10), we get (6) for N(∆Ω

D, ν). A similar argument yields to
(6) for N(∆Ω

N , ν).
�

The next step is to show the domain monotonicity of the eigenvalues of
∆D and ∆N , and also, find a relation between the corresponding eigenvalues
of ∆Ω

D and ∆Ω
N on the same domain Ω.
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We recall the max-min principle for the eigenvalues of self-adjoint positive
operators. Consider a domain Ω in Rm. Let E(f) := Q(f, f)/||f ||2L2 be the
Rayleigh quotient. Denote by 〈g1, · · · , gn〉 the span of the the functions
gi ∈ L2(Ω), i = 1, · · · , n. According to the max-min principle, we have

λΩ
k ≤ E(f) , ∀f ∈ 〈φΩ

1 , · · · , φΩ
k−1〉

⊥ ∩H1
0 (Ω) , (11)

µΩ
k ≤ E(f) , ∀f ∈ 〈ψΩ

1 , · · · , ψΩ
k−1〉

⊥ ∩H1(Ω) . (12)

Lemma 2 Consider the domains Ω̃ and Ω, where Ω̃ ⊂ Ω ⊂ Rm. We have

λΩ
k ≤ λΩ̃

k (13)

for each k = 1, 2, · · ·.

Proof Note that each f ∈ L2(Ω̃) can be viewed as as an element of L2(Ω)
by setting it equal to zero in Ω\Ω̃. Consider the linear map

T : 〈φΩ̃
1 , · · · , φΩ̃

k 〉 → 〈φΩ
1 , · · · , φΩ

k−1〉
∗

φΩ̃
i 7→ 〈 . , φΩ̃

i 〉, i = 1, · · · , k

Since Ker(T ) 6= ∅, there exist a function f0 =
∑k

i=1 aiφ
Ω̃
i , ai ∈ R such that

f0 ∈ 〈φΩ
1 , · · · , φΩ

k−1〉
⊥ ∩H1

0 (Ω). Considering (11), we have

λΩ
k ≤ E(f0) =

〈∆Ω̃
Df0 , f0〉
||f0||2L2

=

∑k
i=1 λ

Ω̃
i a

2
i∑k

i=1 a
2
i

≤ λΩ̃
k . (14)

�

Lemma 3 Let Ω be a domain in Rm. We have

µΩ
k ≤ λΩ

k (15)

for each k = 1, 2, · · ·.

Proof Since H1
0 (Ω) ⊂ H1(Ω), there exist a function f0 =

∑k
i=1 aiφ

Ω
i , ai ∈ R

such that f0 ∈ 〈ψΩ
1 , · · · , ψΩ

k−1〉
⊥ ∩H1(Ω). Considering (12), we have

µΩ
k ≤ E(f0) =

〈∆Ω
Df0 , f0〉
||f0||2L2

=

∑k
i=1 λ

Ω
i a

2
i∑k

i=1 a
2
i

≤ λΩ
k . (16)

�
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Consider the disjoint domains Ω1,Ω2 in the domain Ω ⊂ Rm such that
Ω = int(Ω1 ∪ Ω2), and Ω\Ω1 ∪ Ω2 has Lebesgue measure zero. (Intuitively,
one gets Ω1 ∪ Ω2 by eliminating a “surface” (Ω\Ω1 ∪ Ω2) ⊂ intΩ from Ω).
Note that, since H1(Ω1 ∪ Ω2) = H1(Ω1)⊕H1(Ω2), we have

∆Ω1∪Ω2
D = ∆Ω1

D ⊕∆Ω2
D

∆Ω1∪Ω2
N = ∆Ω1

N ⊕∆Ω2
N . (17)

Lemma 4 Let Ω1,Ω2 ⊂ Ω be as above. We have

µΩ1∪Ω2
k ≤ µΩ

k , (18)

λΩ
k ≤ λΩ1∪Ω2

k (19)

for each k = 1, 2, · · ·.

Proof If f ∈ H1(Ω), its restriction to Ω1 ∪ Ω2 is in H1(Ω1)⊕H1(Ω2). So
there exist a function f0 =

∑k
i=1 aiψ

Ω
i , ai ∈ R such that

f0 ∈ 〈ψΩ1∪Ω2
1 , · · · , ψΩ1∪Ω2

k−1 〉⊥ ∩H1(Ω1 ∪ Ω2). In addition, since Ω\Ω1 ∪ Ω2 has
Lebesgue measure zero, we have∫

Ω1∪Ω2

|Gradf0|2dmx =

∫
Ω

|Gradf0|2dmx . (20)

Thus, considering (12), we get

µΩ1∪Ω2
k ||f0||2L2 ≤

∫
Ω1∪Ω2

|Gradf0|2dmx =

∫
Ω

|Gradf0|2dmx

= 〈∆Ω
Nf0 , f0〉

=
k∑
i=1

µΩ
i a

2
i ≤ µΩ

k ||f0||2L2 . (21)

The inequality (19) is a special case of (13).
�

Definition A standard 2−n cube in Rm is a cube of the form[
b1

2n
,
b1 + 1

2n

)
× · · · ×

[
bm
2n
,
bm + 1

2n

)
with b1, · · · , bm integers. Given a Lebesgue measurable set Ω ⊂ Rm, denote
by Ω−n (respectively, Ω+

n ) those standard 2−n cubes contained in Ω (respec-
tively, those standard 2−n cubes that intersect Ω). Let W±

n (Ω) = Vol(Ω±n ).
The set Ω is called a contented (Jordan measurable) set if we have

lim
n→∞

W−
n (Ω) = lim

n→∞
W+
n (Ω) = Vol(Ω) . (22)
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Theorem 5 Let Ω be a contented domain in Rm. We have

lim
ν→∞

N(∆Ω
D, ν)

νm/2
=
ωmVol (Ω)

(2π)m
. (23)

Proof Let {C±n,j} be the interiors of the cubes in the definition of Ω±n so that
Ω̄±n =

⋃
j C̄
±
n,j. By (13) and (19) we have

λΩ
k ≤ λΩ−

n
k ≤ λ

∪jC−
n,j

k , (24)

which implies

N(∆Ω
D, ν) ≥ N(∆Ω−

n
D , ν) ≥ N(⊕j∆

C−
n,j

D , ν) =
∑
j

N(∆
C−

n,j

D , ν) . (25)

Thus, by (6), we have

lim inf
ν→∞

N(∆Ω
D, ν)

νm/2
≥
∑
j

lim
ν→∞

N(∆
C−

n,j

D , ν)

νm/2
=
∑
j

ωmVol (C−n,j)

(2π)m

=
ωmW

−
n (Ω)

(2π)m
. (26)

On the other hand, by (15) and (18), we have

λΩ
k ≥ λΩ+

n
k ≥ µΩ+

n
k ≥ µ

∪jC+
n,j

k , (27)

which implies

N(∆Ω
D, ν) ≤

∑
j

N(∆
C+

n,j

N , ν) . (28)

Therefore, by (6), we have

lim sup
ν→∞

N(∆Ω
D, ν)

νm/2
≤
∑
j

lim
ν→∞

N(∆
C+

n,j

N , ν)

νm/2
=
ωmW

+
n (Ω)

(2π)m
. (29)

Since Ω is contented, if we let n→∞, then, using (26) and (29), we get (23).
�
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