Weyl's Asymptotic Law

Shahab Azarfar

Let Ω be a bounded open subset of \mathbb{R}^m satisfying the segment property, i.e., its topological boundary $\partial\Omega$ has a finite open covering $\{O_i\}$ and corresponding nonzero vectors $\{y_i\}$ such that

$$\{ x + ty_i \mid 0 < t < 1 \} \subset \Omega \,, \qquad \forall x \in \overline{\Omega} \cap O_i \,.$$

We refer to a subset of \mathbb{R}^m with these properties as a *domain*. Denote by $C^{\infty}(\overline{\Omega})$ the set of smooth functions on Ω all of whose partial derivatives can be extended continuously to $\overline{\Omega}$. Consider the subspace

$$D_D = \{ f \in C^{\infty}(\overline{\Omega}) \mid f|_{\partial\Omega} = 0 \}$$

of the Hilbert space $L^2(\Omega)$. Let

$$\Delta = -\operatorname{div} \circ \operatorname{grad} \tag{1}$$

be the Laplace operator on $C^{\infty}(\Omega)$. If $\partial\Omega$ is smooth, then, by Green's theorem, the restriction of Δ to D_D is symmetric and non-negative, i.e.,

$$\langle \Delta f, g \rangle = \langle \operatorname{grad} f, \operatorname{grad} g \rangle_{L^2} := \int_{\Omega} (\operatorname{grad} f, \operatorname{grad} g) \, d^m x = \langle f, \Delta g \rangle \,, \quad (2)$$

where $\langle ., . \rangle$ and (., .) denote the inner product on $L^2(\Omega)$ and the Euclidean metric on \mathbb{R}^m , respectively. We denote $\langle \operatorname{grad} f, \operatorname{grad} g \rangle_{L^2}$ by Q(f, g).

Consider the Sobolev space

$$H^1(\Omega) := W^{1,2}(\Omega) = \left\{ f \in L^2(\Omega) \, | \, \operatorname{Grad} f \in L^2(\Omega) \right\},$$

where Grad f denote the distributional gradient of f. We define the subspace $H_0^1(\Omega)$ of $H^1(\Omega)$ to be the closure of the subspace $C_c^{\infty}(\Omega) \subset H^1(\Omega)$ under the norm $||.||_{H^1}$, where $||f||_{H^1}^2 = ||f||_{L^2}^2 + ||\operatorname{Grad} f||_{L^2}^2$. The Dirichlet Laplacian for Ω , denoted by Δ_D^{Ω} , is defined to be the self-adjoint non-negative Friedrichs

extension of $\Delta|_{D_D}$. The domain of Δ_D^{Ω} is the subspace $H_0^1(\Omega)$ of $L^2(\Omega)$. We have

$$\langle \Delta_D^{\Omega} f, f \rangle = \overline{Q}(f, f), \qquad \forall f \in H_0^1(\Omega),$$
(3)

where \overline{Q} denote the closure of Q.

Consider the subspace $D_N = \{f \in C^{\infty}(\overline{\Omega}) \mid (vf)|_{\partial\Omega} = 0\}$ of $L^2(\Omega)$, where v denote the outward unit normal vector field on $\partial\Omega$. If $\partial\Omega$ is smooth, then, by Green's theorem, the restriction of Δ to D_N is symmetric and non-negative. The Neumann Laplacian for Ω , denoted by Δ_N^{Ω} , is defined to be the self-adjoint non-negative Friedrichs extension of $\Delta|_{D_N}$. The domain of Δ_N^{Ω} is the subspace $H^1(\Omega)$ of $L^2(\Omega)$. For each $f \in H^1(\Omega)$ we have $\langle \Delta_N^{\Omega} f, f \rangle = \overline{Q}(f, f)$.

The self-adjoint non-negative operators Δ_D^{Ω} and Δ_N^{Ω} have compact resolvent [3]. Thus, their (point) spectrum consist of a discrete increasing sequence of non-negative real numbers with no limit point in \mathbb{R} , and each eigenvalue has finite multiplicity. In addition, the set of corresponding eigenfunctions is an orthonormal basis for $L^2(\Omega)$.

Henceforth, we denote by ϕ_k^{Ω} (respectively, ψ_k^{Ω}) the normalized eigenfunction of Δ_D^{Ω} (respectively, Δ_N^{Ω}) with eigenvalue λ_k^{Ω} (respectively, μ_k^{Ω}), where k ranges over positive integers, i.e., $k = 1, 2, \cdots$. We arrange the eigenvalues in an increasing sequence

$$0 \le \lambda_1^{\Omega} \le \lambda_2^{\Omega} \le \cdots$$
$$0 \le \mu_1^{\Omega} \le \mu_2^{\Omega} \le \cdots$$

with each eigenvalue repeated according to its multiplicity. For each $\nu \in \mathbb{R}_{>0}$, let $N(\Delta_D^{\Omega}, \nu)$ be the number of eigenvalues $\lambda_k^{\Omega} \leq \nu$ counted with multiplicity. Indeed, $N(\Delta_D^{\Omega}, \nu)$ is the sum of the dimensions of the eigenspaces of Δ_D^{Ω} corresponding to the eigenvalues $\lambda_k^{\Omega} \leq \nu$. The quantity $N(\Delta_N^{\Omega}, \nu)$ is defined similarly. In the following, we want to investigate the asymptotic behaviour of $N(\Delta_D^{\Omega}, \nu)$ as $\nu \to \infty$.

As the first step, we need to study the asymptotic behaviour of $N(\Delta_D^{\Omega}, \nu)$ and $N(\Delta_N^{\Omega}, \nu)$ in the special case where, Ω is the open *m*-dimensional rectangle $\Omega = (0, l_1) \times (0, l_2) \times \cdots \times (0, l_m) \subset \mathbb{R}^m$. In this case, the eigenvalues of Δ_D^{Ω} and Δ_N^{Ω} are explicitly given by (see [3], [1]):

$$\lambda^{\Omega} = \sum_{i=1}^{m} k_i^2 \left(\frac{\pi}{l_i}\right)^2 \tag{4}$$

and

$$\mu^{\Omega} = \sum_{i=1}^{m} (k_i - 1)^2 \left(\frac{\pi}{l_i}\right)^2,$$
(5)

respectively, where each k_i ranges over the positive integers.

Proposition 1 Let Ω be the open *m*-dimensional rectangle as above. We have

$$\lim_{\nu \to \infty} \frac{N(\Delta_D^{\Omega}, \nu)}{\nu^{m/2}} = \lim_{\nu \to \infty} \frac{N(\Delta_N^{\Omega}, \nu)}{\nu^{m/2}} = \frac{\omega_m \operatorname{Vol}(\Omega)}{(2\pi)^m},$$
(6)

where ω_m is the volume of the unit ball in \mathbb{R}^m , and $Vol(\Omega)$ denotes the volume of Ω .

Proof Let Γ be the lattice in \mathbb{R}^m generated by the vectors $\{e_1/l_1, \dots, e_m/l_m\}$, where $\{e_i\}$ are the standard basis of \mathbb{R}^m . Let $\mathbb{B}^m(r) \subset \mathbb{R}^m$ be the closed ball with radius r and centered at the origin. Considering (4), the quantity $N(\Delta_D^{\Omega}, \nu)$ equals the number of the points of Γ in an "octant" of $\mathbb{B}^m(\sqrt{\nu}/\pi)$.

Denote by $\mathcal{N}(r)$ the number of the points of Γ in $\mathbb{B}^m(r)$. Let Σ be the fundamental domain for the action of Γ on \mathbb{R}^m . Denote by $\mathcal{P}(r)$ the number of copies of Σ contained in $\mathbb{B}^m(r)$. Let $d = \sqrt{\sum_{i=1}^m 1/l_i^2}$ be the diameter of Σ . We have

$$\mathcal{P}(r) \le \mathcal{N}(r) \le \mathcal{P}(r+d)$$
. (7)

Thus, using

$$\omega_m (r-d)^m \le \mathcal{P}(r) \operatorname{Vol}(\Sigma) \le \omega_m r^m \,, \tag{8}$$

we get

$$\frac{\omega_m (r-d)^m}{\operatorname{Vol}(\Sigma)} \le \mathcal{N}(r) \le \frac{\omega_m (r+d)^m}{\operatorname{Vol}(\Sigma)},\tag{9}$$

which implies

$$\lim_{r \to \infty} \frac{\mathcal{N}(r)}{r^m} = \frac{\omega_m}{\operatorname{Vol}(\Sigma)} = \omega_m \operatorname{Vol}(\Omega) \,. \tag{10}$$

So we have $N(\Delta_D^{\Omega}, \nu) = \mathcal{N}(\sqrt{\nu}/\pi)/2^m + \epsilon$, where the "error" term ϵ corresponds to the points of the (m-1)-dimensional lattices resulted from intersection of Γ with each coordinate hyperplane in \mathbb{R}^m . Since ϵ is of order $\nu^{(m-1)/2}$, using (10), we get (6) for $N(\Delta_D^{\Omega}, \nu)$. A similar argument yields to (6) for $N(\Delta_N^{\Omega}, \nu)$.

The next step is to show the *domain monotonicity* of the eigenvalues of Δ_D and Δ_N , and also, find a relation between the corresponding eigenvalues of Δ_D^{Ω} and Δ_N^{Ω} on the same domain Ω .

We recall the max-min principle for the eigenvalues of self-adjoint positive operators. Consider a domain Ω in \mathbb{R}^m . Let $E(f) := \overline{Q}(f, f)/||f||_{L^2}^2$ be the Rayleigh quotient. Denote by $\langle g_1, \dots, g_n \rangle$ the span of the the functions $g_i \in L^2(\Omega), i = 1, \dots, n$. According to the max-min principle, we have

$$\lambda_k^{\Omega} \le E(f) \,, \qquad \forall f \in \langle \phi_1^{\Omega}, \cdots, \phi_{k-1}^{\Omega} \rangle^{\perp} \cap H_0^1(\Omega) \,, \tag{11}$$

$$\mu_k^{\Omega} \le E(f), \quad \forall f \in \langle \psi_1^{\Omega}, \cdots, \psi_{k-1}^{\Omega} \rangle^{\perp} \cap H^1(\Omega).$$
(12)

Lemma 2 Consider the domains $\tilde{\Omega}$ and Ω , where $\tilde{\Omega} \subset \Omega \subset \mathbb{R}^m$. We have

$$\lambda_k^{\Omega} \le \lambda_k^{\tilde{\Omega}} \tag{13}$$

for each $k = 1, 2, \cdots$.

Proof Note that each $f \in L^2(\tilde{\Omega})$ can be viewed as as an element of $L^2(\Omega)$ by setting it equal to zero in $\Omega \setminus \tilde{\Omega}$. Consider the linear map

$$T: \langle \phi_1^{\tilde{\Omega}}, \cdots, \phi_k^{\tilde{\Omega}} \rangle \to \langle \phi_1^{\Omega}, \cdots, \phi_{k-1}^{\Omega} \rangle^*$$
$$\phi_i^{\tilde{\Omega}} \mapsto \langle ., \phi_i^{\tilde{\Omega}} \rangle, \qquad i = 1, \cdots, k$$

Since $\operatorname{Ker}(T) \neq \emptyset$, there exist a function $f_0 = \sum_{i=1}^k a_i \phi_i^{\tilde{\Omega}}$, $a_i \in \mathbb{R}$ such that $f_0 \in \langle \phi_1^{\Omega}, \cdots, \phi_{k-1}^{\Omega} \rangle^{\perp} \cap H_0^1(\Omega)$. Considering (11), we have

$$\lambda_{k}^{\Omega} \leq E(f_{0}) = \frac{\langle \Delta_{D}^{\tilde{\Omega}} f_{0}, f_{0} \rangle}{||f_{0}||_{L^{2}}^{2}} = \frac{\sum_{i=1}^{k} \lambda_{i}^{\tilde{\Omega}} a_{i}^{2}}{\sum_{i=1}^{k} a_{i}^{2}} \leq \lambda_{k}^{\tilde{\Omega}}.$$
 (14)

Lemma 3 Let Ω be a domain in \mathbb{R}^m . We have

$$\mu_k^{\Omega} \le \lambda_k^{\Omega} \tag{15}$$

for each $k = 1, 2, \cdots$.

Proof Since $H_0^1(\Omega) \subset H^1(\Omega)$, there exist a function $f_0 = \sum_{i=1}^k a_i \phi_i^{\Omega}$, $a_i \in \mathbb{R}$ such that $f_0 \in \langle \psi_1^{\Omega}, \cdots, \psi_{k-1}^{\Omega} \rangle^{\perp} \cap H^1(\Omega)$. Considering (12), we have

$$\mu_k^{\Omega} \le E(f_0) = \frac{\langle \Delta_D^{\Omega} f_0, f_0 \rangle}{||f_0||_{L^2}^2} = \frac{\sum_{i=1}^k \lambda_i^{\Omega} a_i^2}{\sum_{i=1}^k a_i^2} \le \lambda_k^{\Omega} .$$
(16)

Consider the disjoint domains Ω_1, Ω_2 in the domain $\Omega \subset \mathbb{R}^m$ such that $\Omega = int(\Omega_1 \cup \Omega_2)$, and $\Omega \setminus \Omega_1 \cup \Omega_2$ has Lebesgue measure zero. (Intuitively, one gets $\Omega_1 \cup \Omega_2$ by eliminating a "surface" $(\Omega \setminus \Omega_1 \cup \Omega_2) \subset int\Omega$ from Ω). Note that, since $H^1(\Omega_1 \cup \Omega_2) = H^1(\Omega_1) \oplus H^1(\Omega_2)$, we have

$$\Delta_D^{\Omega_1 \cup \Omega_2} = \Delta_D^{\Omega_1} \oplus \Delta_D^{\Omega_2}$$
$$\Delta_N^{\Omega_1 \cup \Omega_2} = \Delta_N^{\Omega_1} \oplus \Delta_N^{\Omega_2}.$$
 (17)

Lemma 4 Let $\Omega_1, \Omega_2 \subset \Omega$ be as above. We have

$$\mu_k^{\Omega_1 \cup \Omega_2} \le \mu_k^{\Omega} \,, \tag{18}$$

$$\lambda_k^{\Omega} \le \lambda_k^{\Omega_1 \cup \Omega_2} \tag{19}$$

for each $k = 1, 2, \cdots$.

Proof If $f \in H^1(\Omega)$, its restriction to $\Omega_1 \cup \Omega_2$ is in $H^1(\Omega_1) \oplus H^1(\Omega_2)$. So there exist a function $f_0 = \sum_{i=1}^k a_i \psi_i^{\Omega}$, $a_i \in \mathbb{R}$ such that $f_0 \in \langle \psi_1^{\Omega_1 \cup \Omega_2}, \cdots, \psi_{k-1}^{\Omega_1 \cup \Omega_2} \rangle^{\perp} \cap H^1(\Omega_1 \cup \Omega_2)$. In addition, since $\Omega \setminus \Omega_1 \cup \Omega_2$ has

Lebesgue measure zero, we have

$$\int_{\Omega_1 \cup \Omega_2} \left| \operatorname{Grad} f_0 \right|^2 d^m x = \int_{\Omega} \left| \operatorname{Grad} f_0 \right|^2 d^m x \,. \tag{20}$$

Thus, considering (12), we get

$$\mu_k^{\Omega_1 \cup \Omega_2} ||f_0||_{L^2}^2 \leq \int_{\Omega_1 \cup \Omega_2} |\operatorname{Grad} f_0|^2 d^m x = \int_{\Omega} |\operatorname{Grad} f_0|^2 d^m x$$
$$= \langle \Delta_N^{\Omega} f_0, f_0 \rangle$$
$$= \sum_{i=1}^k \mu_i^{\Omega} a_i^2 \leq \mu_k^{\Omega} ||f_0||_{L^2}^2.$$
(21)

The inequality (19) is a special case of (13).

Definition A standard 2^{-n} cube in \mathbb{R}^m is a cube of the form

$$\left[\frac{b_1}{2^n},\frac{b_1+1}{2^n}\right)\times\cdots\times\left[\frac{b_m}{2^n},\frac{b_m+1}{2^n}\right)$$

with b_1, \dots, b_m integers. Given a Lebesgue measurable set $\Omega \subset \mathbb{R}^m$, denote by Ω_n^- (respectively, Ω_n^+) those standard 2^{-n} cubes contained in Ω (respectively, those standard 2^{-n} cubes that intersect Ω). Let $W_n^{\pm}(\Omega) = \operatorname{Vol}(\Omega_n^{\pm})$. The set Ω is called a *contented (Jordan measurable)* set if we have

$$\lim_{n \to \infty} W_n^-(\Omega) = \lim_{n \to \infty} W_n^+(\Omega) = \operatorname{Vol}(\Omega) \,. \tag{22}$$

Theorem 5 Let Ω be a contented domain in \mathbb{R}^m . We have

$$\lim_{\nu \to \infty} \frac{N(\Delta_D^{\Omega}, \nu)}{\nu^{m/2}} = \frac{\omega_m \operatorname{Vol}(\Omega)}{(2\pi)^m} \,.$$
(23)

Proof Let $\{C_{n,j}^{\pm}\}$ be the interiors of the cubes in the definition of Ω_n^{\pm} so that $\bar{\Omega}_n^{\pm} = \bigcup_j \bar{C}_{n,j}^{\pm}$. By (13) and (19) we have

$$\lambda_k^{\Omega} \le \lambda_k^{\Omega_n^-} \le \lambda_k^{\cup_j C_{n,j}^-} \,, \tag{24}$$

which implies

$$N(\Delta_D^{\Omega},\nu) \ge N(\Delta_D^{\Omega_n^-},\nu) \ge N(\oplus_j \Delta_D^{C_{n,j}^-},\nu) = \sum_j N(\Delta_D^{C_{n,j}^-},\nu).$$
(25)

Thus, by (6), we have

$$\liminf_{\nu \to \infty} \frac{N(\Delta_D^{\Omega}, \nu)}{\nu^{m/2}} \ge \sum_j \lim_{\nu \to \infty} \frac{N(\Delta_D^{C_{n,j}}, \nu)}{\nu^{m/2}} = \sum_j \frac{\omega_m \operatorname{Vol}\left(C_{n,j}^-\right)}{(2\pi)^m} = \frac{\omega_m W_n^-(\Omega)}{(2\pi)^m}.$$
 (26)

On the other hand, by (15) and (18), we have

$$\lambda_k^{\Omega} \ge \lambda_k^{\Omega_n^+} \ge \mu_k^{\Omega_n^+} \ge \mu_k^{\cup_j C_{n,j}^+}, \qquad (27)$$

which implies

$$N(\Delta_D^{\Omega}, \nu) \le \sum_j N(\Delta_N^{C_{n,j}^+}, \nu) \,. \tag{28}$$

Therefore, by (6), we have

$$\limsup_{\nu \to \infty} \frac{N(\Delta_D^{\Omega}, \nu)}{\nu^{m/2}} \le \sum_j \lim_{\nu \to \infty} \frac{N(\Delta_N^{C_{n,j}^+}, \nu)}{\nu^{m/2}} = \frac{\omega_m W_n^+(\Omega)}{(2\pi)^m} \,. \tag{29}$$

Since Ω is contented, if we let $n \to \infty$, then, using (26) and (29), we get (23).

References

- [1] Chavel, I., Eigenvalues in Riemannian Geometry, Academic Press, 1984.
- [2] Davies, E., Spectral Theory and Differential Operators, Cambridge University Press, 1995.
- [3] Reed, M., and Simon, B., Methods of Mathematical Physics IV (Analysis of Operators), Academic Press, 1978.