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A brief history of spectrum

Figure: Newton first used the word spectrum in print in 1671 in describing his
experiments in optics



Frauenhoffer lines, 1812

Figure: Sun’s absorption spectrum; notice the black lines



Hydrogen lines

Figure: Hydrogen spectral lines in the visible range



Black body radiation

Figure: Black body spectrum



Balmer’s formula; Planck’s radiation law

I Balmer’s formula for hydrogen lines (1885):

1

λ
= R(

1

m2
− 1

n2
), m = 2, n = 3, 4, 5, 6.

Ritz-Rydberg combination principle; spectral terms and spectral
lines.

I Physicists understood that the spectral energy density function
ρ(ν,T ) will be independent of the shape of the cavity and should
only depend on its volume.

I Planck’s formula (1900):

ρ(ν,T ) =
8πhν3

c3

1

ehν/kT − 1



Weyl’s law: asymptotic distribution of eigenvalues

• In 1910 H. A. Lorentz gave a series of lectures in Göttingen under the
title “old and new problems of physics”. Weyl and Hilbert were in
attendance. In particular he mentioned attempts to drive Planck’s
radiation formula in a mathematically satisfactory way and remarked:

‘It is here that there arises the mathematical problem to prove that the
number of sufficiently high overtones which lie between ν and ν + dν is
independent of the shape of the enclosure and is simply proportional to
its volume. .......There is no doubt that it holds in general even for
multiply connected spaces’.

• Hilbert was not very optimistic to see a solution in his lifetime. His
bright student Hermann Weyl solved this conjecture of Lorentz and
Sommerfeld within a year and announced a proof in 1911! All he needed
was Hilbert’s theory of integral equations and compact operators
developed by Hilbert and his students in 1900-1910.



Figure: Hermann Weyl in Göttingen



Figure: H. A. Lorentz



Dirichlet eigenvalues and Weyl law

• Let Ω ⊂ R2 be a compact connected domain with a piecewise smooth
boundary.

{
∆u = λu

u|∂Ω = 0

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞

〈ui , uj〉 = δij o.n. basis for L2(Ω)



• Weyl Law for planar domains Ω ⊂ R2

N(λ) ∼ Area(Ω)

4π
λ λ→∞

where N(λ) is the eigenvalue counting function.

• In general, for Ω ⊂ Rn

N(λ) ∼ ωnVol(Ω)

(2π)n
λ

n
2 λ→∞



One can hear the scalar curvature

I (M, g) = closed Riemannian manifold. Laplacian on functions

4 = d∗d : C∞(M)→ C∞(M)

is an unbounded positive operator with pure point spectrum

0 ≤ λ1 ≤ λ2 ≤ · · · → ∞

I The spectrum contains a lot of geometric and topological
information on M. In particular the dimension, volume, total scalar
curvature, of M are fully determined by the spectrum of ∆. To see
this we need:



The heat engine

I Let k(t, x , y) = kernel of e−t4. Restrict to the diagonal: as t → 0,
we have (Minakshisundaram-Plejel; Seeley, MacKean-Singer,
Gilkey,...)

k(t, x , x) ∼ 1

(4πt)m/2
(a0(x ,4) + a1(x ,4)t + a2(x ,∆)t2 + · · · )

I ai (x ,4): the Seeley-De Witt-Gilkey coefficients.



I Functions ai (x ,4): expressed by universal polynomials in curvature
tensor R and its covariant derivatives:

a0(x ,4) = 1

a1(x ,4) =
1

6
S(x) scalar curvature

a2(x ,4) =
1

360
(2|R(x)|2 − 2|Ric(x)|2 + 5|S(x)|2)

a3(x ,4) = · · · · · ·



Short time asymptotics of the heat trace

Trace(e−t4) =
∑

e−tλi =

∫
M

k(t, x , x)dvolx

∼ (4πt)
−m

2

∞∑
j=0

aj t
j (t → 0)

So

aj =

∫
M

aj(x ,4)dvolx ,

are manifestly spectral invariants.

a0 =

∫
M

dvolx = Vol(M), =⇒ Weyl’s law

a1 =
1

6

∫
M

S(x)dvolx , total scalar curvature



Abelian-Tauberian Theorem

Assume
∑∞

1 e−λnt is convergent for all t > 0. TFAE:

lim
t→0+

tr
∞∑
1

e−λnt = a,

lim
λ→∞

N(λ)

λr
=

a

Γ(r + 1)



Spectral Triples: (A,H,D)

I A= involutive unital algebra, H = Hilbert space,

π : A → L(H), D : H → H

D has compact resolvent and all commutators [D, π(a)] are
bounded.

I An asymptotic expansion holds

Trace (e−tD
2

) ∼
∑

aαtα (t → 0)



The metric dimension and dimension spectrum of
(A,H,D)

I Metric dimension = n (need not be an integer) if

|D|−n ∈ L1,∞(H)

I Let 4 = D2. Spectral zeta function

ζD(s) = Tr (|D|−s) = Tr (∆−s/2), Re(s) >> 0.

The set of poles of ζD(s) is the dimension spectrum of (A,H,D).
For classical spectral triples defined on M, the top pole of ζD(s) is
integer and is exactly equal to dim (M); also the dimension
spectrum is inside R. In general both of these restrictions can fail.



The Dixmier trace

Let

L1,∞(H) := {T ∈ K(H);
N∑
1

µn(T ) = O (logN)}.

The Dixmier trace of an operator T ∈ L1,∞(H) measures the logarithmic
divergence of its ordinary trace. Let

σN(T ) =

∑N
1 µn(T )

logN

limσN(T ) may not exist and must be replaced by a carefully chosen
‘regularized limit’ ω :

Trω(T ) := lim
ω
σN(T )



For operators T for which LimN→∞ σN(T ) exit, the Dixmier trace is
independent of the choice of ω and is equal to LimN→∞ σN(T ).

Weyl’s law implies that for any elliptic s.a. differential operator of order 1
on M, |D|−n ∈ L1,∞(H) and

Trω(|D|−n) = cnVol(M)



Commutative examples of spectral triples

Natural first order elliptic PDE’s on M define spectral triples on
A = C∞(M) :

1. D = d + d∗, H = L2(∧T ∗M), A = C∞(M) acting on H by left
multiplication. Index (D) is the Euler characteristic of M. Signature of
M is the index of a closely related spectral triple.

2. D = Dirac operator on a compact Riemannian Spinc manifold,
H = L2(M,S), L2-spinors on M. A = C∞(M) acts on L2(M,S) by
multiplication. One checks that for any smooth function f , the
commutator [D, f ] extends to a bounded operator on L2(M,S).



Geodesic distance from spectral triples

Now the geodesic distance d on M can be recovered from the following
beautiful distance formula of Connes:

d(p, q) = Sup{|f (p)− f (q)|; ‖ [D, f ] ‖≤ 1}, ∀p, q ∈ M.

Compare with Riemannian formula:

d(p, q) = Inf{
∫ 1

0

√
gµνdxµdxν ; c(0) = p, c(1) = q}, ∀p, q ∈ M



Example: a spectral triple on the Cantor set

Let A = C (Λ) be the commutative algebra of continuous functions on a
Cantor set Λ ⊂ R. Let Jk be the collection of bounded open intervals in
R \ Λ with lengths L = {`k}k≥1

`1 ≥ `2 ≥ `3 ≥ · · · ≥ `k · · · > 0. (1)

Let E = {xk,±} be the set of the endpoints of Jk . Consider the Hilbert
space

H := `2(E ) (2)



There is an action of C(Λ) on H given by

f · ξ(x) = f (x)ξ(x), ∀f ∈ C(Λ), ∀ξ ∈ H, ∀x ∈ E .

A sign operator F is defined by choosing the closed subspace Ĥ ⊂ H
given by

Ĥ = {ξ ∈ H : ξ(xk,−) = ξ(xk,+), ∀k}.

Then F has eigenspaces Ĥ with eigenvalue +1 and Ĥ⊥ with eigenvalue
−1, so that

F |Hk
=

(
0 1
1 0

)
.



The Dirac operator D = |D|F is defined as:

D|Hk

(
ξ(xk,+)
ξ(xk,−)

)
= `−1

k ·
(
ξ(xk,−)
ξ(xk,+)

)
.

The data (A,H,D) form a spectral triple. The zeta function satisfies

Tr(|D|−s) = 2ζL(s),

where ζL(s) is the geometric zeta function of L = {`k}k≥1, defined as

ζL(s) :=
∑
k

`sk .



For the classical middle-third Cantor set, we have `k = 3−k with
multiplicities mk = 2k−1, so that

Tr(|D|−s) = 2ζL(s) =
∑
k≥1

2k3−sk =
2 · 3−s

1− 2 · 3−s
.

Thus the dimension spectrum of the spectral triple of a Cantor set has
complex points! In fact, the set of poles of (26) is{

log 2

log 3
+

2πin

log 3

}
n∈Z

.

Thus the dimension spectrum lies on a vertical line and it intersects the
real axis in the point D = log 2

log 3 which is the Hausdoff dimension of the
ternary Cantor set.



Noncommutative Torus

I Fix θ ∈ R. Aθ = C∗-algebra generated by unitaries U and V
satisfying

VU = e2πiθUV .

I Dense subalgebra of ‘smooth functions’:

A∞θ ⊂ Aθ,

a ∈ A∞θ iff

a =
∑

amnUmV n

where (amn) ∈ S(Z2) is rapidly decreasing:

sup
m,n

(1 + m2 + n2)k |amn| <∞

for all k ∈ N.



I Differential operators on Aθ

δ1, δ2 : A∞θ → A∞θ ,

Infinitesimal generators of the action

αs(UmV n) = e is.(m,n)UmV n s ∈ R2.

Analogues of 1
i
∂
∂x ,

1
i
∂
∂y on 2-torus.

I Canonical trace t : Aθ → C on smooth elements:

t(
∑

m,n∈Z

am,nU
mV n) = a0,0.



Complex structures on Aθ

I Let H0 = L2(Aθ)= GNS completion of Aθ w.r.t. t.

I Fix τ = τ1 + iτ2, τ2 = =(τ) > 0, and define

∂ := δ1 + τδ2, ∂∗ := δ1 + τ̄ δ2.

I Hilbert space of (1, 0)-forms:

H(1,0) := completion of finite sums
∑

a∂b, a, b ∈ A∞θ , w.r.t.

〈a∂b, a′∂b′〉 := t((a′∂b′)∗a∂b).

I Flat Dolbeault Laplacian: ∂∗∂ = δ2
1 + 2τ1δ1δ2 + |τ |2δ2

2 .



Conformal perturbation of metric

I Fix h = h∗ ∈ A∞θ . Replace the volume form t by ϕ : Aθ → C,

ϕ(a) := t(ae−h), a ∈ Aθ.

I We have
ϕ(ab) = ϕ(b∆(a)), ∀a, b ∈ Aθ.

where
∆(x) = e−hxeh.

I Warning: 4 and ∆ are very different operators!



Connes-Tretkoff spectral triple

I Hilbert space Hϕ := GNS completion of Aθ w.r.t. 〈, 〉ϕ,

〈a, b〉ϕ := ϕ(b∗a), a, b ∈ Aθ

I View ∂ϕ = ∂ = δ1 + τδ2 : Hϕ → H(1,0). and let

∂∗ϕ : H(1,0) → Hϕ

H = Hϕ ⊕H(1,0),

D =

(
0 ∂∗ϕ
∂ϕ 0

)
: H → H.



Full perturbed Laplacian:

4 := D2 =

(
∂∗ϕ∂ϕ 0

0 ∂ϕ∂
∗
ϕ

)
: H → H.

Lemma: ∂∗ϕ∂ϕ : Hϕ → Hϕ, and ∂ϕ∂
∗
ϕ : H(1,0) → H(1,0) are anti-unitarily

equivalent to
k∂∗∂k : H0 → H0,

∂∗k2∂ : H(1,0) → H(1,0),

where k = eh/2.



Scalar curvature for Aθ

I The scalar curvature of the curved nc torus (T2
θ, τ, k) is the unique

element R ∈ A∞θ satisfying

Trace (a4−s)|s=0
+ Trace (aP) = t (aR), ∀a ∈ A∞θ ,

where P is the projection onto the kernel of 4.



Local expression for the scalar curvature

I Cauchy integral formula:

e−t4 =
1

2πi

∫
C

e−tλ(4− λ)−1 dλ.

I Bλ ≈ (4− λ)−1 :

σ(Bλ) ∼ b0(ξ, λ) + b1(ξ, λ) + b2(ξ, λ) + · · · ,

each bj(ξ, λ) is a symbol of order −2− j , and

σ(Bλ(4− λ)) ∼ 1.

(Note: λ is considered of order 2.)



Proposition: The scalar curvature of the spectral triple attached to
(Aθ, τ, k) is equal to

1

2πi

∫
R2

∫
C

e−λb2(ξ, λ) dλ dξ,

where b2 is defined as above.



Final formula for the scalar curvature (Connes-Moscovici,
Fathizadeh-K, Oct. 2011)

Theorem: The scalar curvature of (Aθ, τ, k), up to an overall factor of
−π
τ2

, is equal to

R1(log ∆)
(
40(log k)

)
+

R2(log ∆(1), log ∆(2))
(
δ1(log k)2+|τ |2δ2(log k)2+τ1

{
δ1(log k), δ2(log k)

})
+

iW (log ∆(1), log ∆(2))
(
τ2

[
δ1(log k), δ2(log k)

])



where

R1(x) = −
1
2 −

sinh(x/2)
x

sinh2(x/4)
,

R2(s, t) = (1 + cosh((s + t)/2))×

−t(s + t) cosh s + s(s + t) cosh t − (s − t)(s + t + sinh s + sinh t − sinh(s + t))

st(s + t) sinh(s/2) sinh(t/2) sinh2((s + t)/2)
,

W (s, t) = − (−s − t + t cosh s + s cosh t + sinh s + sinh t − sinh(s + t))

st sinh(s/2) sinh(t/2) sinh((s + t)/2)
.



The limiting case

In the commutative case, θ = 0, the above modular curvature reduces to
a constant multiple of the formula of Gauss:

1

τ2
δ2

1(log k) +
|τ |2

τ2
δ2

2(log k) + 2
τ1

τ2
δ1δ2(log k).



First application: the Gauss-Bonnet theorem for Aθ

I How to relate geometry (short term asymptotics) to topology (long
term asymptotics)? MacKean-Singer formula:

m∑
p=0

(−1)pTr (e−t∆p ) =
m∑

p=0

(−1)pβp = χ(M) ∀t > 0

I Spectral formulation of the Gauss-Bonnet theorem:

ζ(0) + 1 =
1

12π

∫
Σ

R vol(g) =
1

6
χ(Σ)



Theorem (Connes-Tretkoff; Fathizadeh-K.): Let θ ∈ R, τ ∈ C \ R,
k ∈ A∞θ be a positive invertible element. Then

Trace(4−s)|s=0
+ 2 = t (R) = 0,

where 4 is the Laplacian and R is the scalar curvature of the spectral
triple attached to (Aθ, τ, k).



Weyl law for noncommutative two tori (Fathizadeh and
M.K.)

N(λ) ∼ π

=(τ)
ϕ(1)λ as λ→∞.

Equivalently:

λj ∼
=(τ)

πϕ(1)
j as j →∞.

• This suggests:

Vol(T2
θ) :=

4π2

=(τ)
ϕ(1) =

4π2

=(τ)
ϕ0(k−2).



Summary

I According to quantum mechanics any observation will end up with
finding a point in the spectrum of a selfadjoint operator. Moreover,
as a consequence of Heisenberg’s uncertainty principle, the algebra
of observables is definitely a noncommutative algebra.

I One can do geometry and topology on certain classes of
noncommutative algebras that come equipped with spectral triples.
Metric aspects of noncommutative geometry are informed by
spectral geometry. Spectral invariants are the only means by which
we can formulate metric ideas of noncommutative geometry.


