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1 Quantum Mechanics - The Harmonic Oscillator

1.1 Quantum mechanics

1.1.1 The postulrates of quantum mechanics

� The state of a quantum mechanical system is completely speci�ed by a wavefunction
Ψ (x, t)

� The observables are selfadjoint operators

� The wavefunction of a system solves the time-dependent Schrï¾½dinger equation

HΨ (x, t) = −i~∂Ψ

∂t

where H is the Hamilon operator.

� In any measurement of an observable, the only values that will ever be observed
are the eigenvalues.

1.1.2 The understanding of quantum mechanics

1.1.3 Physical Problem

In physics the problem of quantum mechanics is more or less to solve the eigenvalue
equation for a given Hamilton. Because you work with physical known systems you just
assume that the Hamilton you are working with is indeed a physical observable, because
it has to be!

This does not work in mathematics. So the goal for these notes is to prove that the
Hamilton for the system of the Harmonical Oscillator is indeed an observable

1.1.4 The physics of the Harmonical Oscillator

This example is chosen because it is by far the most intersting of the typical examples,
because of its usefullnes.
A particle moving acording to the Hamilton of the Harmonic Oscillator is vibrating back
and forth in one dimension.
The Hamilton look like this

H = − ~2

2m

d2

dx2
+

1

2
mω2xx

This can be written in terms of two other operators

A+ = − d

dx
+ cx

1



A− =
d

dx
+ cx

such that

H =
~2

2m
(A+A− + c)

where c=mω
~

1.2 Some necessary math

1.2.1 Essentially selfadjoint opperators

De�nation 1 An essentially self-adjoint operator (D(T );T ) is a symmetric operator such
that the closure of T, T is self-adjoint.
Corrolary 1 If (D(T ), T ) is essentially selfadjoint, then there exist an unic extenstion
of T, that is selfadjoint.

1.2.2 Lemma 1

Let H be a separable Hilbert space and (D(T ), T ) a positive, symetric unbounded oper-
ator
Assume there is an orthonormal basis (ej) of H such that ∀j : ej ∈ D(T ) and that they,
ej, are eigenfunctions of T with eigenvalues λj ≥ 0

Then T is essentially selfadjoint.

The proof is the proof of lemma 5.10 in the sugested notes for my presentation topic.

1.2.3 Scharwtzspace for R

The de�nation of the Schwartzspace of R is

S(R) = f ∈ C∞(R)|||f ||α,β <∞∀α, β

where
‖f‖ = subx∈R|xαDβf(x)|

1.2.4 Eigenspace

The eigenspace is de�ned as

Ker (λ− T ) = {v ∈ D(T )|Tv = λv}

1.2.5 Hermitian Polynomials

The Hermitian polynomials are the polynomials on the form

Hn = (−1)ne
x2

2
dn

dxn
e
−x2

2

They obey the following recursion formula

Hn+1(x) = xHn(x)−H ′
n(x)
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1.3 The Harmonic Oscillator

1.4 Theorem 2

Let (D(T ), T ) be the operator H = − ~2

2m
d2

dx2 + 1
2
mω2xx acting on D(T ) = S(R)

Then T is essentialle selfadjoint (and can therefore be extended to a selfadjoint operator)
Its eigenvalues are

λn = ~ω
(

1

2
+ n

)
where n ≥ 0 and the eigenspaces are 1 dimensional.

Speci�cally are the eigenvectors

ψn =
1√
2nn!

mω

~π

1
4
Hn

(√
mω

~

)
e−

mω
~ x2

and span the eigenspace for n

Proof

To prove that T is essentially selfadjoint we have from Lemma 1 that all we need to show
is that 1) that (ψn) is an orthonormal basis of L2(H) and 2) that ψn is an eigenvector.

1.4.1 Proof of (ψn) is an orthonormal basis of L2(H)

To prove this we start by checking that ∀m,n ∈ N : n > m : ψn, ψm is orthornormal.

Let
φn = K ∗ ψn = Hne

− 1
2
y2

= (yHn−1(y)−H ′
n(y))e

− 1
2
y2

= A+φn−1

So φn = anA
n
+φ0 and hence ψn = anA

n
+ψ0 So for all n,m ≥ 0, n > m we have

〈ψn, ψm〉 =
〈
An+ψ0, ψm

〉
=

〈
ψ0, A

n
−ψm

〉
But since A−φn = ( d

dy
+ cy)e−

1
2
y2 = H ′

ye
− 1

2
y2 , and then deg(A−φn) < deg(φn) and hence

deg(A−ψn) < deg(ψn) and then it follows that since n>m then〈
ψ0, A

n
−ψm

〉
= 〈ψ0, 0〉 = 0

The proof that(ψn)n≥0 is a basis for L
2(R) is done by showing that the span((ψn)n≥0)

⊥ =
0in the following two steps.

1. ∀p ∈ R : φ ∈ span {ψn | ∀n ≥ 0 ∈ N, } , φ = eixpψ0, x ∈ R

2. {φp | p ∈ R}⊥ = {0}
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To prove 1 notice that ∀nψn is on the form Pn(x)e
−x2

2 where Pn(x) ia a polynomial of
order. So span(ψn) = {Q(x)ψ0} where Q(x) is a polynomial. So in order to show

∀p ∈ Rφp ∈ span {ψn}

we need to show that there exists a polynomial Q(x) such that φp converges towards
Q(x)ψ0 but that is the same as showing that eixp converges towards Q(x). Choose

Q(x) =
∑

k
ixpk

k!
, this is the Taylor expansion of eixp, and hence eixp converges towards it.

So ∀p ∈ R : φ ∈ span {ψn | ∀n ≥ 0 ∈ N, }

To prove 2 assume that ∈ R f ⊥ φp then∫
R
fφp = fψ0e

ixp = 0

The last part we recognize as the fouriertransformation of f and ψ0 so we have that
F (·ψ0) = 0, but since the fourier transformation is an isometry the f · ψ0 = 0 and since
∀x ψ0 > 0 then f = 0. Hence it follows that {φp | p ∈ R}⊥ = {0}.

And since
{ψp | p ∈ R} ⊆ span {ψn}

then
span {ψn}⊥ ⊆ {ψp | p ∈ R}⊥ = {0}

so span {ψn}⊥ = {0} and hence (ψn)n≥0 is a basis for L2(R).

1.4.2 ψn an eigenvector of T for all n

We prove that ∀n ≥ 0 ∈ N ψn is an eigenvector by induction.

i=0

Tψ0 =
~2

2m

(
−d2

dx2
+

(mω)2

~2
x2

)
ψ0

=
~ · ω

2
ψ0

i=n+1

Assume that ψn is an eigenvector then

Tψn+1 = aH (A+ψn)

= a
~2

2m
(A+A− + c)A+ψn

= a
~2

2m
(A+A−A+ + cA+)ψn
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= a
~2

2m
(A+(A−A+ + c)ψn

= a
~2

2m
(A+(H + 2c)ψn

= (λn + 2c)ψn+1 = ~ω
(
n+

1

2

)
ψn+1

And hence it is prooven that ∀n ∈ N ψn is an eigenvector.

Hence it is proven that T is an essentially self adjoint operator. To �nish the proof
of the theorem we know only need to show that the eigenspaces are 1-dimensional. This
follows from the de�nation of the eigenspaces. Assume namely that ψn, ψm ∈ Ker(λ−T ).
Then λm = λn but then ~ω

(
1
2

+m
)

= ~ω
(

1
2

+ n
)
⇔ m = n hence there is only 1 eigen-

vector in every eigenspace, and hence the eigenspaces are 1 dimensional.

1.5 Plot of the �rst couples of eigenfunctions for the Harmonic

Oscillator

Figure 1: Plot of the �rst 8 unnormalized eigenfunctions. Each of the eigenfunctions
oscilate around the.. eigenvalue. The blue line marks the potential

In �gure 1 is showed a plot of the �rst 8 eigenvectors for the Harmonic Oscillator.
This plots ilustrats perfectly some of the biggest di�erence between a classical system
and a quantum mechanical system.

In the clasiscal system, a particle moving according to a harmonic oscillator, can only
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move in the area inside of the parable.
This is not the case in the quantum mechanical system. There the particle is aloud to be
on either side of the paraple, even though it is much more likely that it is found to be in
the clasical area.

If you measure the energy of the paricle in a clasical system, the value you get, could in
theory, be any positiv number. Again, this is not the case in the quantum mechanical
system, there the energy is quantisized, such that you will have a discret set of possible
energy values. This is not

1.6 References

For the proof: http://www.math.ethz.ch/ kowalski/spectral-theory.pdf)

For the plot: http://en.wikipedia.org/wiki/Quantumharmonicoscillator
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