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A remark on the values of the Riemann zeta function
Jan Minag

Abstract. We are connecting the values of the Riemann zeta function ({s) at all nonpesitive
integers a with the partial sums S, (M) = M\HH n® as %a— S,(z) dz = ((—a). We shall prove
this relationship in two ways: one of them uses Bernouili numbers, and the other uses the formula

in “Landau’s Handbuch”, which relates to the values of the ¢ function.
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The Riemann zeta function {{s),s = o + it, is the analytical continuation of the

function f(s) = 302, NH.?

has a simple pole. (See e.g. [Tit] or [I-R], Chapter 16.)

o > 1, to the whole plane except where s = 1 where ((s)

In particular, one may consider {(—a) for each a € N. The remarkable fact is that
all of the values of ((—1) = —1/12, ((-2) = 0, {(-3) = 1/120, ((-4) = 0.
¢(-5) = ~1/252, etc., are rational numbers.

The question becomes: Is there any connection between the values of {(—c) and the
partial sums S, (M) := M1 pey

It is weli-known that S, (M) are expressible as polynomials in A, of the degree a + 1
with rational coefficients. For example S; (M) = F:MH_L It seems that the following

interesting fact hasn’t been recorded yet.

Fact.

1
C(—a) = \.,wa?v&a. foreach aeN.
0
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The formula above holds true also for ¢ = 0. Indeed, then it is well-known that
() =-1/2 = [} (z — 1)da.

In the proof of the Fact above, we have used the following well-known facts about
Bernoulli numbers and polynomials. (See [I-R], Chapter 15, including Exercises 12 -
17 on Page 248.)

Let By be the k™ Bernoulli number for each k = 0,1,2, ... and By{z) = 1,
B, (r}) = ¥ty Aﬂvmwaq:tw the m*" Bernoulli polynomial for each m € N.

Then By = -1/2,0 = By =By = - B,(1) = (-1)™B,, = (—=1)™B,,, (0},

% m{r) = mB,,_,(x) for eachm € N. Finally S, (M) = mntgﬁvﬂpmgtiﬂ and
wg mﬁu

((—~a) = (-1)* T = Iﬂm.% for each a € N. (See [I-R], Chapter 16.)

The proof of the fact. Leta € N. Then

1
\.m.: ANV dr = \ maj_»HAHv — mﬂiTMAHv&H
0

) a+1
0

Bapa n Bay2(1) — B,42(0)
a+1 (@+1)(a+2)
21

= (-1 =((-a).

—_
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Indeed if ais even then B, 5(1) — B, 5(0) = B,412(1) = B, 5 =0andif ais odd.
then both B, »(1) and B, 5(0) are 0. W

There are, of course, many other ways in which to see this formula. One way is to use
the beautiful formula

ce(s+g—1)
qg+1}!

(s=1)cs) -1 —1= -3 &= :N Cs+a-1 ()
g=1

([Lan], page 274).

Using this formula, and the fact that ((s) has the unique simple pole s = 1,
lim,_,;(s—1)¢(s) = 1, one can prove our statement without using Bernoulli numbers.

Indeed for each a = 1,2, ... we obtain from (1)

Tcgtfggi xl

On the other hand we have fora = 0,1, ...and M = 2,3, ...

(M — 1) =14 (20F1 — 1) 4 (3041 _gatly 4 .
+ (M — 12! — (a1 — 2)at]y

A -1
=1 + M A:QxTH _ Aﬂw _ Hvﬁn—vuv

n=2

M-1
=1+ WQQ.T 1)n® — AQM Hv pa—1 b (1))
- MU AMH wv AIC»MDI».QSJ‘

k=0

Here we use the identity

oHHIELﬁ:.TAQ.M_viAnMHv|...+AICQ+H.

Plugging in z instead of A, and taking the integral from 0 to 1, we obtain.
1
(D~ e+t - :
—t = -0 1S, _p(x)de. 3
a+t2 Ww k1)U \ ak(¥)de (3)
= 0

Using (2), (3) and the fact that f, So(z)dz = ¢(0) we conclude: {(—a) = f) S, (x)dx
foralla € NU {0}.
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It would be interesting to develop some similar formulas for some other values of the
Riemann zeta function. Tt would also be exciting to extend this formula for other zeta
functions.
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