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ABSTRACT. Happy birthday to the Witt ring! The year 2017 marks the 80th anniversary
of Witt’s famous paper containing some key results, including the Witt cancellation
theorem, which form the foundation for the algebraic theory of quadratic forms. We pay
homage to this paper by presenting a transparent, algebraic proof of the Witt cancellation
theorem, which itself is based on a cancellation. We also present an overview of some
recent spectacular work which is still building on Witt’s original creation of the algebraic
theory of quadratic forms.

1. INTRODUCTION

The algebraic theory of quadratic forms will soon celebrate its 80th birthday. Indeed,
it was 1937 when Witt’s pioneering paper [24] — a mere 14 pages — first introduced many
beautiful results that we love so much today. These results form the foundation for the
algebraic theory of quadratic forms. In particular they describe the construction of the Witt
ring itself. Thus the cute little baby, “The algebraic theory of quadratic forms” was healthy
and screaming with joy, making his father Ernst Witt very proud. Grandma Emmy Noether,
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F1GURE 1. Shortly after the birth of the Algebraic Theory of Quadratic Forms.
had she still been alive, would have been so delighted to see this little tyke! ! Almost right
1Emmy Noether’s male Ph.D students, including Ernst Witt, were often referred to as “Noether’s boys.”

The reader is encouraged to consult [6] to read more about her profound influence on the development of

mathematics.
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near the beginning, this precocious baby was telling us the essential fact needed to construct
the Witt ring of quadratic forms over an arbitrary field. This result, originally Satz 4 in [24],
is now formulated as the Witt cancellation theorem, and it is the technical heart of Witt’s
brilliant idea to study the collection of all quadratic forms over a given field as a single
algebraic entity. Prior to Witt’s paper, quadratic forms were studied one at a time. However
Witt showed that a certain collection of quadratic forms under an equivalence relation can
be equipped with the structure of a commutative ring. Indeed, Satz 6 says:

“Die Klassen dhnlicher Formen bilden einen Ring”

which means, “The classes of similar forms, form a ring.” In order to honor Witt’s contribu-
tions, this ring is now called the Witt ring.

The Witt ring remains a central object of study, even 80 years after its birth. Building on
Voevodsky’s Fields medal winning work from 2002, Orlov, Vishik and Voevodsky recently
settled Milnor’s conjecture [14] on quadratic forms, which is a deep statement about the
structure of the Witt ring. This work uses sophisticated tools from algebraic geometry and
homotopy theory to provide a complete set of invariants for quadratic forms, extending the
classical invariants known to Witt [24], including dimension, discriminant and the Clifford
invariant.

In addition to its crucial role in defining the Witt ring, the Witt cancellation theorem
also has other important applications, such as establishing Sylvester’s law of Inertia, which
classifies quadratic forms over the field of real numbers. Clearly the Witt cancellation the-
orem is special and therefore deserves further analysis. The main goal of this paper is to
present a transparent and algebraic proof to complement the classical geometric proof, and
then carefully compare the two approaches.

The paper is organized as follows. In Section 2 we state the Witt cancellation theorem,
guide the reader towards our proof of the cancellation theorem, and then present the proof
itself. A geometric approach to Witt cancellation, based on hyperplane reflections, is pre-
sented in Section 3. In Section 4 we provide a “homotopy” (a gentle deformation) between
the algebraic and geometric approaches. Using Witt cancellation as the key, we review the
construction of the Witt ring of quadratic forms in Section 5. In Section 6 we present an
informal overview of the Milnor conjectures on quadratic forms and some recent related
developments. In Section 7 we reveal an interesting surprise. Section 8, the epilogue, is a
tribute to several great mathematicians connected with our story. The epilogue also contains
a challenge for our readers. All sections, except possibly Section 6, can be read profitably
by any undergraduate student who is familiar with basic linear algebra.

We begin with some preliminaries. Throughout the paper we assume that our base field
F' has characteristic not equal to 2. There are several equivalent definitions of a quadratic
form. The following is probably the most commonly used definition. An n-ary quadratic
form q over F' is a homogeneous polynomial of degree 2 in n variable over F":

n
q= Z aj;rixy for a;; in Fl
3,J=1
It is customary to render the coefficients symmetric by writing
n
i + aj;
q = Z bij:vl-xj, where bij = "n JZ,

= 2
1,j=1
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therefore b;; = bj;. (This is possible because the characteristic of our field is not 2.)

If we view x = (z1,%2,...,Z,) as a column vector, and its transpose x’ as a row vector,
then we can write

q(x) = x'Bx,
where B = (b;;) is an n x n matrix. In other words, we associate ¢ with a symmetric matrix
B which also defines a symmetric bilinear form on V x V| where V = F". Two n-ary
quadratic forms ¢, and g, are equivalent, or isometric if for some non-singular n X n matrix
M we have
qa(X) = qp(Mx).

In this case we write ¢, = ¢qp. Recall that two symmetric matrices A and B are said to be
congruent if there exist and invertible matrix M such that A = M*BM. Equivalence classes
of quadratic forms thus correspond to congruence classes of symmetric matrices 2.

The following useful result is well known and can be found in any standard textbook on
quadratic forms; see for example [8] or [19].

Theorem 1.1. An n-ary quadratic form over a field F of characteristic not equal to 2 is
equivalent to a diagonal form, i.e., a form that is equal to a123 + -+ + a,x2 for some field
elements a1, ..., ay,.

For brevity we shall denote the diagonal quadratic form a12% +- - - +a,z2 by (a1, ..., a,).
In view of this theorem it is enough to study diagonal forms over F. Furthermore, we
assume that our diagonal quadratic forms are non-degenerate, i.e., a; # 0 for i =1,...,n.

The number n is called the dimension of q.

2. WITT CANCELLATION: ALGEBRAIC APPROACH

In this section we will present a transparent and algebraic proof of the Witt cancellation
theorem to complement the classical geometric proof. The following is the simplest form
of the Witt cancellation theorem. Other general statements can be easily derived from this
simple form.

Theorem 2.1. (Witt cancellation) Let ¢, = (a1,as,...,a,) and g, = (by,ba,...,b,) be non-
degenerate n-ary quadratic forms over a field I of characteristic not equal to 2, withn > 1,
and assume that ay = by. If there is an isometry q, = qp, then there is another isometry
<G,2,...,a,n> = <b2,...,bn>.

Before presenting our proof, we will explain the key idea in such a way that the reader may
build the proof before even reading it — a guided self-discovery approach. Witt’s cancellation
theorem essentially says that we may “cancel” a common term, a1, from both sides of a given

2To illustrate the notion of equivalence of quadratic forms, consider the quadratic form g¢,(z1,22) =
5z% — 22122 + 5z§ over the field R of real numbers. What is the conic section that is represented by the
equation ¢p(z1,22) = 17 The given quadratic form is equivalent over R to the form gq(x1,22) = 4:(:% + 690%.
The equivalence is given by the equations

1 1
21 = —=x1 — —=x3, and
V2 V2
1 4 1
zo = —x1+ —=x2.
V2 2
It is clear that the new equation 4I% + 61% = 1 represents an ellipse, and therefore so does the original

equation.



4 SUNIL K. CHEBOLU, DAN MCQUILLAN, AND JAN MINAC

isometry, in order to obtain a new isometry. We want a proof that reflects this cancellation
directly. To this end, recall that by the definition of isometry, there is an invertible linear
transformation

Zi =M%l + -+ MinTn, 1=1,...,n, m; €F, (1)
which takes ¢, to q,. This means that the isometry

a122 + apx - ana? 2 by2? £ bozd 44 b2 (2)

becomes a polynomial identity in the n variables x1, xs, ..., x, after using the n transforma-
tions in Equation (1). Our idea then is to simply take this one step further, by substituting
x1 with a carefully chosen linear combination of the remaining n — 1 variables x5, ..., x, so
that in Equation (2), the first term on the left hand side will cancel with the first term on
the right hand side. This will then give us our desired isometry. So we now ask: what is
this magical substitution? In other words, which linear combination do we use for x,?7 If x
is the answer to this question, then it should satisfy the equation

a1z’ = by (ma + y)Q, where we set m :=mq1; and y:=mioxs+ -+ MipnTy.
However, since a1 = by, it is sufficient that our z satisfy
r=mz+y. (3)

Note that this last equation reminds us of exciting, good old times from high school where
we learned how to solve linear equations:
r=mr+y — x:Lifm;«él.
1—-m
After this motivational warm-up, it is now time to give a formal proof. The reader will
see that our proof will be quite transparent and will be based on the simple identity:

Y my
-7 4
1—m lfm+y ()

Proof (of the Witt cancellation theorem). Since ¢, = gp, we can write
a4 4 a2 = (%) = (M%) = by2} + -+ b,22, (5)
where M = (mij) is an n X n invertible matrix over I and z; = m;1x1 + -+ - + Minxy, for @
from 1 to n. We first argue that mi; can be assumed without loss of generality to be not
equal to 1. As a matter of fact, if mq; = 1, then we replace mq; with —my;, for all k. This
changes z; to —z;. However, that does not effect Equation (5). So we assume without loss
of generality that mq; # 1.
To prove our theorem we would like to cancel the first terms (a;z% and by27) on either
sides of Equation (5). To do this, in Equation 5 we make the substitution
Y
r=— 6
1 1—my ) ( )
where
Y i= 21 — M11T1 = M12T2 + - + MinTn. (7)
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The ey to the Palarce
of Ruadratic Forms

Note that this is a valid substitution because mi; # 1. Moreover, this substitution ex-

presses r; as a linear combination of xQ, ..., Zp. This substitution, in conjunction with the
assumption a; = by and our identity (4), gives the following equations.
2
axr] =
1 (1 — m11)

- ( 1-— mi1 )

— ¥y . .

= Y+ mi from identity (4)

1—-m

= bi(y+mnz)?

= b1 Z%
Therefore we can cancel these two terms in our original equation (5), which now reduces to
one in 2(n — 1) variables:
A3 + - 4 anx? = bozd 4 -+ by22. (8)

In this new equation, for i > 2, z; is expressed as a linear combination of zo, x3, ..., ,, say
zi = wi(x2,3,...,2,). It remains to show that this linear transformation is invertible. To
see this, let N = (n;;) be the change-of-coordinates matrix which corresponds to our linear
transformation z; = w;(x2,x3,...,2,),% = 2,...,n. Then the transformation between the
(n — 1)-ary forms s, := (a9, ...,a,) and sp := (ba,...,b,) is given by the matrix equation

A=NTBN,
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where A and B are the diagonal matrices representing the forms s, and s, respectively.
Taking determinants on both sides of the last equation, we get

det(A) = det(B)(det(N))?2.

Since s, is non-degenerate, det(A) is non-zero and therefore det(N) is also non-zero. This
shows that NN is invertible. Thus we have shown that the forms s, and s, are isometric. O

Remark 2.2. In the above proof, we see that the Witt cancellation theorem actually follows
from the formal algebraic cancellation of like terms in a polynomial identity, explaining the
title of our paper.

3. WiTT CANCELLATION: GEOMETRIC APPROACH

In this section we present the standard, coordinate-free, geometric approach to quadratic
forms and the Witt cancellation theorem.
A quadratic space is a finite-dimensional F-vector space equipped with a symmetric bi-
linear form
B:VxV —F

The associated quadratic form ¢: V' — F' is obtained by setting ¢(v) = B(v,v). The bilinear
form B can be recovered from ¢ because of the identity

Blx.y) = 5(alx +y) — a(x) ~ a(y))
as one can easily check. Therefore a quadratic space can be denoted by (V, B), or equivalently
by (V. q).

Coordinate free definitions in quadratic form theory are naturally analogous to their
coordinate counterparts. For instance, an isometry between (V, By) and (V, By) is a linear
isomorphism T': V' — V such that Ba(x,y) = B1(T(x),T(y)) for all x and y in V. Vectors
x and y in V are said to be orthogonal if B(x,y) = 0. A quadratic space (V, B) is non-
degenerate if B(v,w) =0 for all w in V implies v = 0. Given two quadratic spaces (V1,q1)
and (Va, ¢2), there is a natural quadratic from on the space Vi @ V, which is defined by

q((x1,%2)) = q1(x1) + g2(x2).
This quadratic space is denoted by (Vi,q1) L (Va,g2).

The geometric form of the Witt cancellation theorem in its simplest form can now be
stated as follows.

Theorem 3.1. Let (V,q) be an n-dimensional non-degenerate quadratic form with n > 1,
and let {e1,...,e,} and {f1,...,,} be two orthogonal bases for (V,q). If g(e1) = q(f1), then
q restricted to Span{ea,...,e,} is isometric to q restricted to Span{fs, ..., f,}.

Given a quadratic space (V, ¢) and a vector u in V such that ¢(u) # 0, the map

2B
Tu(z) =2 — ﬂu
q(u)
can be easily shown to be an isometry of (V,q); see [8, Page 13]. In fact, this map is the
reflection in the plane perpendicular to u. A key ingredient in the proof of Theorem 3.1 is

the following hyperplane reflection lemma.
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FI1GURE 2. Hyperplane reflection.

Lemma 3.2. Let (V,q) be a quadratic space and let x and 'y be two vectors in V such that
q(x) = q(y) #0. Then there exists an isometry p: (V,q) = (V, q) which sends x to'y.

Proof. Note that

qx+y)+qx—y)=Bx+y,x+y)+Bx-y,x—-y)=2qx)+2q¢(~y) = 49(x) # 0.

This means g(x+y) and g(x—y) both cannot be zero simultaneously. Suppose that ¢(x—y) #
0. Then 7x_y is an isometry that maps x to y. To see this, first note that

q(x—y)=B(x,x)+ B(y,y) — 2B(x,y) = 2B(x,x) — 2B(x,y) = 2B(x,x — y).

Therefore,
2B(x,x —y)
Txey(X)=x——————(x—-y)=x—(x—y)=Yy.
) () X -y = x— (x-)
If g(x+y) # 0, then since ¢(x+y) = ¢(x—(—y)), the above argument shows that 71y (x) =
Tx—(—y)X = =Y, and therefore —(7x1yx) = y. This completes the proof our lemma. O

Proof of Theorem 3.1 We are given that g(e;) = ¢(f;). This common value cannot be
zero because ¢ is non-degenerate. Therefore, as observed in the proof of the above lemma
q(er + f1) and g(e; — f1) both cannot be zero simultaneously. Replacing f; with —f; if
necessary, we may assume that g(e; — f;) # 0. Then we claim that the isometry

Tel—fl
does the job. That is, it gives an isometry between ei := Span{es,...,e,} and
ff- := Span{fy,...,f,}. Indeed, from the above lemma, the map 7o, _¢, takes e; to fj.

Since 7o, _¢, is an isometry of (V, B), it maps ei to fi-. Thus 7o, ¢, restricts to a map
ei — fi-. Since the restriction of an isometry is an isometry, we are done. O
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4. A “HOMOTOPY” BETWEEN THE ALGEBRAIC AND GEOMETRIC APPROACHES

As mentioned in the introduction, our algebraic approach complements the classical geo-
metric approach. The goal of this section is to exhibit a “homotopy” between these two
approaches. More precisely, we will show that our substitution in Equation (6)

Tr1 = 7y

1-— mia
naturally corresponds to the hyperplane reflection mentioned in the previous section.

Let us quickly recapitulate the framework:

e (V,q) is an n-dimensional non-degenerate quadratic form.

o {e1,eq,...,e,} and {f;,f5,... f,} are two orthogonal bases for (V,q).

o We let g(e;) = a; and ¢(f;) = b; for all 4.

e a1 = by, ie, q(er) = q(fr).

e For all i, w; = w;(x2,x3,...,2,) is obtained from z; = z;(z1,...,z,) after replacing
r1 with our substitution, which is a linear combination of zs, ..., z,.

We now have two coordinate representations
qa:<a17a23"'7an> and ql):<b17b2a~'~7bn>

of the form (V, ¢) with respect to the bases {e;} and {f;} respectively. The isometry between
¢o and gy is given by an invertible matrix M = (m;;). The change of basis matrix is then
M. So we have for j =1,...,n,

ej = mljfl =+ mgjfg 4+ 4+ mnjfn.

For the rest of this section, we fix an integer k& > 2. Before going further we explain our
strategy for getting the “homotopy.” We take a vector e; and hit it with our hyperplane
reflection 7e,—f,. Then we express 7e, g (€) as a linear combination of fo, fs, ..., f,. By
comparing the coefficient cy; of f; in 7e, ¢, (€x) and the coefficient dy; of xy in w; for i > 2,
and we will see the equivalence of the two approaches.

To execute this strategy, consider the vector u := e;—f; = (mq1—1)f;+morfo+- - +mp1 £,
Since a; = by, we have

gu) = (ma1 —1)°by +m3.ba+ -+ +mliby

= melbl — 2m11b1 + b1 = b1 — 2m11b1 + b1 = 2b1(1 — mll).

i=1
(Here we are using the identity Y ;" , m# b; = by which comes from unwinding the equation
B(ei,e1) = a1 = b1.) By replacing f; with —f; if necessary, we may assume that mq; # 1.
Therefore, g(u) # 0. Then the formula for our hyperplane reflection is given by

2B(z,u) B(z,u)
Tw(z)=2— —————u=z— —"—"—u
( ) 2b1(1 — mll) bl(l — m11)
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Setting z = ey, we obtain the following equations:

B(ey,e; —f1)
u = _— - f
Tu(€k) e N E—— (e1 1)
B(ek,fl)
= —_— —f
©k bl(l —mll)(el 1)
migb
= (mygfy + -+ mufy) + $((m11 —Dfy + morfo + - - + myfy)
b1(1 — m11)
MmiEm miEm
= (marfo + -+ mupf,) + MfQ 4+ an
1—mn 1—mq
The coefficient of f; for ¢ > 2 in the last expression is:
o e 4 TR
1—mq

Now let us change gears and look at our algebraic approach. Recall that we substitute

Y (_ migx2 + -+ mlnxn>

1 —
1—m11

1-— mi1
in the equations
zi =mj1xy + -+ mypx, fori=1,2,...n.

Using our substitution for x1, for ¢ > 2, we get an expression for w;:

Mmi12T2 + -+ Minly
W; = M1

> + mioxo + -+ My Ty,
1—mq

The coefficient of x; in this expression is given by

mik
dii == m41 + Mk
1-— mi1

which agrees with the formula for cg;.

In summarizing our calculations, let us show how one can see almost instantly that our
substitution in Section 2 corresponds to the hyperplane reflection above. Suppose z is in the
span of {eq,...,e,}. Then plugging z in the formula for 7,(z), we find that

Tu(Z) =7+ 1’(61 — fl)7

Yy

where x is our substitution x = j—

(related to our substitution)

. But when one reflects on the corresponding map

D: el — ff,
one sees that
O(z) =z + xe; —tfy,
where ¢ is a uniquely determined element of F' such that the projection of ®(z) on the line
through f; is 0. Since our image of reflection 7,(z) already has this property, we see that
x =t and 74 (z) = ®(2).
In conclusion, we have seen that our substitution

Y

Ty —
17m11

amounts to reflecting vectors in the plane orthogonal to the vector u, i.e., sending z to 7,(z).
Thus, we have established a “homotopy” between the algebraic and geometric approaches.
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5. WHAT IS THE WITT RING OF QUADRATIC FORMS?

In this section we will define the Witt ring of quadratic forms. As we will see, the Witt
cancellation theorem will be the key for constructing the Witt ring. Some terminology is in
order. We refer the reader to the excellent books by Lam [8, 9] for a thorough treatment.
Other good references on this subject include [4, 5, 15, 19, 22].

Let (V,B) be a quadratic space and let ¢ be the corresponding quadratic form. For
simplicity we often drop B and ¢ and denote a quadratic space by V. Recall that a quadratic
space (V, B) is said to be non-degenerate if the induced map

B(v,-):V > F

is the zero map only when v = 0. It is not hard to show that any quadratic space (V, B)
splits as

V= ‘/non—deg 1 Vnull
where V,on—deg is non-degenerate, and Vj,.; is the subspace of V' consisting of all vectors
in V which are orthogonal to all vectors of V. In particular, the restriction of the bilinear
form B on V,,,;; is identically 0. Therefore there is no harm in restricting to non-degenerate
quadratic spaces.

We say that a non-degenerate quadratic space (V, B) is isotropic if there is a non-zero
vector v such that ¢(v) = 0. It can be shown [24] that every isotropic form contains a
hyperbolic plane as a summand, where, by definition, a hyperbolic plane is a two dimensional
form that is equivalent to (1,—1). Note that (1,—1) is short for % — z3. This form q is
isotropic as ¢(1,1) = 0. Thus we see that a non-degenerate quadratic form V' is isotropic if
and only if V' has a hyperbolic plane as a summand.

Now let us consider a non-degenerate quadratic space (V, B). If V is isotropic, then by
the above mentioned fact we can write V as

V =H 1LV,
where H; is a hyperbolic plane. If V; is also isotropic, we can further decompose it as
V =H L(Hy LVy),

where Hs is a hyperbolic plane. We proceed in this manner as far as possible, to get a
decomposition:

V=Hy1lHy 1l ... L H, 1V,
where H; are hyperbolic planes and V, is anisotropic, i.e., a form that is not isotropic.
Now here is where Witt cancellation comes into play. The integer k (the number of hy-
perbolic planes in the above decomposition) is seen to be uniquely determined, using the
Witt cancellation theorem. Furthermore, the isometry class of the anisotropic part V, is
uniquely determined, which also follows from the Witt cancellation theorem. In summary,
every non-degenerate quadratic space (V, B) admits a unique decomposition called the Witt
decomposition

V=H1YV,,

where H is a sum of hyperbolic planes and V, is anisotropic. Two quadratic spaces V and W
are said to be similar if their anisotropic parts are equivalent. Again, the Witt cancellation
theorem ensures that this notion of similarity is well-defined.
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With these definitions and concepts, we are now ready to define the Witt ring of quadratic
forms W (F) over the field F, which is a central object in the algebraic theory of quadratic
forms. The elements of W (F') are the similarity classes of quadratic forms. Since these
classes are uniquely represented up to equivalence by anisotropic quadratic forms, we can
think of W (F') as the set of equivalence classes of anisotropic quadratic forms. Given two
such elements (V, By) and (W, By), the ring operations of addition and multiplication are
defined by

V+W = (VLW),, and
VW = (VeW),.
Our tensor space V @ W 3 is equipped with a bilinear form B defined by
B(vi ® wy,v2 ® wa) = By (v, v2) By (w1, w3).

These operations give W (F') the structure of a commutative ring. The zero quadratic space
is vacuously anisotropic and is the additive identity for W (F'), and the one dimensional form
(1) is the multiplicative identity for W (F'). Further details and proofs can be found in [8,
Chaper 2, Section 1].

Even though these ideas were all present in Witt’s paper [24] from 1937, the algebraic
theory of quadratic forms had many years of slow growth before receiving an incredible
adolescent spark from the work of Pfister [16, 17] in the 1960’s. It has never looked back! In
particular, Pfister’s work generated intense interest in powers of the so-called fundamental
ideal, I(F), defined in the next section.

6. MILNOR AND BLOCH-KATO CONJECTURES

Milnor, in his celebrated paper [11] indicated a close and deep connection between three
central arithmetic objects: an associated graded ring of the Witt ring W (F') of quadratic
forms, the Galois cohomology ring H*(F,Fs) of the absolute Galois group, and the reduced
Milnor K-theory ring K, (F)/2. In this section we will touch on these topics very briefly
to show the reader the connection between the Witt ring and these topics. The interested
reader is encouraged to see [13, 11] for more details. The connection between the Witt ring
and Galois theory is investigated in [12].

6.1. Associated graded Witt ring. Let I(F), or simply I, denote the ideal of W (F)

consisting of elements which are represented by even dimensional anisotropic quadratic forms.

As an additive subgroup of W(F') this is generated by forms (1,a), and therefore I" is

additively generated by the so-called n-fold Pfister forms (1,a1)(1,a2)...(1,a,) in the Witt

ring; see [9, Page 36]. By convention I° = W (F). The associated graded Witt ring is then
WF) I I

@In+1 = 7 Y p9p9..
n>0

30ur reader can think about tensor products as a target of some kind of “universal bilinear form” which
one can define precisely. Each element in V ® W is a sum v; ® w1 + - -+ + vy ® wi where k is in N, and
v; ® w; is in the image of this bilinear form. Also, the dimension of the tensor product is a product of the
dimensions of V and W. For a nice introduction to tensor products see [2, Chapter 10, Section 4].
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The three classical invariants of quadratic forms, namely dimension eg, discriminant e;, and
Clifford invariant ey, are defined as homomorphisms on the first three summands respectively

as follows:
F
€o: @ — Fa, ep([g]) = dim ¢ (mod?2).
I F* n(n—1) .
e e e1([q]) = [(—=1)" = detq], where n =dimgq.
1'2

ezt 73 — B(F), B(F) stands for the Brauer group of F.

The definition of the Brauer group is beyond the scope of this article; see [8, Chapter 5,
Section 3]. Quadratic forms would be completely classified by these classical invariants if
I3 = 0; see [3, Page 374]. However, that is not true in general. So one has to look for higher
invariants. Milnor was able to do this by extending these classical invariants into an infinite
family of invariants, taking values in the Galois cohomology ring of F'. This brings us to the
next object of interest.

6.2. Galois cohomology. Let Fs., denote the separable closure of a field F' with charac-
teristic not equal to 2. One of the main goals of algebraic number theory and arithmetic
geometry is to understand the structure of the absolute Galois group G = Gal(Fsep/F).
To understand this group better one associates a cohomology theory to this group called
Galois cohomology, which is a graded object:

H*(F,Fy) = H'(F,Fy) ® H' (F,Fy) @ - - -

The first two groups are easy to define. HC(F,Fy) = Fy, and H'(F,Fy) is the group of
continuous homomorphism from G to Fy. See [21, 13] for the general definition. H*(F,Fs)
is also equipped with the structure of commutative ring.

For certain fields F', Milnor proved [11] the existence of a well-defined map

e: @7120 In/1n+1 — @nZOHn(F,FQ),

and he showed that it is an isomorphism. In [11] he asked if the same is true in general.
For an arbitrary F', even showing that e is a well-defined map is very hard. This problem,
of showing that e is a well-defined map and that it is an isomorphism for all F', is known as
the Milnor conjecture on quadratic forms. This problem has fascinated mathematicians and
was eventually settled affirmatively in [14].

6.3. Reduced Milnor K-theory. The ring structure on both the domain and the target
of the map e is mysterious. To explain this ring structure Milnor constructed a third object,
now called reduced Milnor K-theory K, (F')/2, whose ring structure is far more transparent.
Let F* be the multiplicative group of non-zero elements in F. The tensor algebra T(F*) is
a graded algebra defined by

T(F*) =L Fr PEF o) PEFE oo F)P--
The reduced Milnor K-theory K.(F')/2 is the tensor algebra T'(F*) modulo the two-sided
ideal (a®bla+b=1, a,b€ F*) reduced modulo 2. That is,
T(F™)

F
(a®@bla+b=1, a,be F*) @t

K.(F)/2:=
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FIGURE 3. Left to Right : Andrei Suslin, Alexander Merkurjev, John Mil-
nor, Vladimir Voevodsky, and Tsit-Yuen Lam, celebrating the 80th birthday
party of the algebraic theory of quadratic forms.

Milnor defined two families of maps v and 7 shown in the triangle below %. Showing that
all maps in this triangle are isomorphisms was a major problem in the field and it went
under the name of The Milnor conjectures. The map 1 was shown to be an isomorphism by
Voevodsky, for which he won the Fields medal in 2002. As mentioned earlier, e was shown to
be an isomorphism in [14], building upon the work of Voevodsky. These theorems are among
the most powerful results in the algebraic theory of quadratic forms. For further details and
proofs of these theorems see [10], [14] and [23].

The Milnor triangle is the triangle connecting quadratic forms, Galois cohomology and
the reduced Milnor K-theory:

Bp>ol™ /I Gn>oH"(F,Fs)

For odd primes p, a similar isomorphism was conjectured by Bloch and Kato, between the
reduced Milnor K-theory K., (F')/p and the Galois cohomology ring H*(F,F,) when the field
F' contains a primitive p-th root of unity. This Bloch-Kato conjecture was proved in 2010
by Rost and Voevodsky, with a contribution from Weibel. The interested reader can consult
[25, 18, 23]. The background required for these deep, very recent papers is quite extensive,
so the ambitious reader will no doubt have lots of fun delving into many extra references,
including those found in the references of the papers we cite.

7. DICKSON-SCHARLAU’S SURPRISE

After essentially completing our article we kept searching for historical references on qua-
dratic forms. We were astounded to find a conference proceeding article [20] by W. Scharlau
entitled, “On the history of the algebraic theory of quadratic forms.” Scharlau explains that

4The map n was defined using a lemma of Bass and Tate [11, Lemma 6.1].
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the algebraic theory of quadratic forms could have been born 30 years earlier! Namely, in
1907 L. Dickson published a paper [1] in which he proved a number of results on quadratic
forms including the cancellation theorem which Witt proved independently 30 years later in
1937. In fact, Scharlau writes: “... It seems that Dickson’s paper went completely unnoticed;
I could not find a single reference to it in the literature. However, one must admit that this
paper — like most of Dickson’s work — is not very pleasant to read... Nevertheless, I believe
that, as far as Witt’s theorem and related questions are concerned, some credit should be
giwen to Dickson.” Therefore, one might say that the algebraic theory of quadratic forms
was conceived in 1907, but wasn’t born until 1937.

8. EPILOGUE: THE 80TH BIRTHDAY PARTY IN THE ELYSIAN FIELD

If only Emmy Noether, her graduate student Ernst Witt and Leonard Dickson were here
to help us celebrate this birthday. We cannot know exactly what they would say, but we may
still imagine the party that is going on in the Elysian field of mathematical giants. Emmy
Noether is running around full of energy, leading a lively and challenging mathematical
discussion. One could hardly believe that she was born nearly 135 years ago! There are
other mathematicians including David Hilbert, who are taking interest in the discussions at
the party.

Noether: This Bloch-Kato conjecture is finally solved, and its proof is just beautiful. We
have come so far since the early days of cyclic algebras and cross-products. Ah! Dickson,
what a shame that your brilliant paper on quadratic forms from 1907 did not get the attention
it deserved. Just imagine how much further we would have come had people studied it from
the very beginning. Please rewrite it, with more emphasis on the concepts to illuminate the
calculations.

Dickson: Rewrite a brilliant paper? Wow—you are just as strict as I had heard and by the
way—it has been over a century since I wrote that paper! 1 hardly remember it now. I do
finally have some free time on my hands to recall those ideas. In any case, it may well be a
blessing that it was not popular at the beginning. Who knows if Witt would have developed
his elegant geometrical approach if everyone knew about my original paper?
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Witt: Oh, I know—and yes, I would have.

Noether: My earnest boy, you certainly do know how to provide a short answer. And I
have missed your wit. But seriously, we should spend the next several meetings working
on this Bloch-Kato conjecture. Although the proof just provided by Rost and Voevodsky is
truly amazing, we can always strive towards a more elementary proof in the hopes of making
it less mysterious. Perhaps we should write a book?

Dickson: Indeed this is a worthwhile and tough challenge. I will study these proofs and
search for the underlying algebraic structures.

Witt: I too would love to work on this. It does indeed seem a bit mysterious that the
statements of the Milnor conjecture and the Bloch-Kato conjecture can be formulated using
quadratic forms, group cohomology and field theory, yet their current proofs require so much
more material. We must think about what this means for Galois theory.

David Hilbert has been quietly listening to this conversation, pacing back and forth. He has
something to say:

Hilbert: Wir miissen wissen. Wir werden wissen. °
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