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Abstract. A scale of weighted Lorentz spaces is intro-
duced. These spaces lie between the classical Λ-spaces and
the more recent Γ-spaces. The norm of these new spaces is
used to give a simple expression for a necessary and suffi-
cient condition that characterizes the weights for which the
Fourier transform is bounded as a map between weighted
Lorentz Γ-spaces.

1 Introduction

The Lorentz spaces Λp(w) were studied by G. G. Lorentz [5] in 1951.
Here 1 ≤ p < ∞ and w is a non-negative, decreasing function on (0,∞).
Advances in the study of the Hardy averaging operator, notably in [1],
lead to the consideration, in [6], of the Lorentz spaces Γp(w) as a substi-
tute for Λp(w) in the case that w is not decreasing. Both of these spaces
are essential for the study of monotone functions and arise naturally in
a wide variety of situations. In particular, they are natural spaces on
which to consider the boundedness of the Fourier transform and other
operators in signal processing because amplitude-based thresholding of
signals can be understood in terms of projections onto appropriately
weighted Lorentz spaces.

Investigations into the boundedness of the Fourier transform between
Lorentz Γ-spaces in [8] gave a weight condition that is not properly
described by either a Λ-norm or a Γ-norm but by something in between
the two. In this paper we introduce a new class of Lorentz spaces that
lie between the Λ- and Γ-spaces. They provide a closer substitute for Λ
when w fails to be decreasing and they can be used to express a weight
condition that characterizes the boundedness of the Fourier transform
between a Lorentz Γ-spaces for a range of indices.
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In the next section we define the Lorentz Λ- and Γ-spaces and intro-
duce our new spaces, the Θ-spaces. The following section contains an
extension of the Fourier inequalities of [8], reformulated in terms of the
Lorentz Θ-norms.

2 The Lorentz Θ-spaces

Let (X, µ) be a σ-finite measure space and let L1
µ and L∞µ be the usual

spaces of integrable and bounded µ-measurable functions, respectively.
For f ∈ L1

µ + L∞µ , the non-increasing rearrangement of f (see [3]) is a
Lebesgue measurable function on (0,∞), and so is

f∗∗(t) =
1
t

∫ t

0
f∗.

We suppose 1 ≤ p < ∞ and w is a non-negative weight on (0,∞);
but exclude the trivial case in which w is almost everywhere zero. Define
the weighted Lebesgue spaces Lp(w) by their norms,

‖h‖Lp(w) =
(∫ ∞

0
|h|pw

)1/p

,

and define

‖f‖Λp(w) = ‖f∗‖Lp(w) and ‖f‖Γp(w) = ‖f∗∗‖Lp(w).

Although it is not true, in general, that (f + g)∗ ≤ f∗ + g∗, it is well
known that if w is non-increasing, then

‖f + g‖Λp(w) ≤ ‖f‖Λp(w) + ‖g‖Λp(w).

It follows that the Lorentz Λ-space,

Λp(w) ≡ {f ∈ L1
µ + L∞µ : ‖f‖Λp(w) < ∞}

is a Banach function space with norm ‖ · ‖Λp(w), provided w is non-
increasing. These expressions are still defined when w is not monotone,
although ‖ · ‖Λp(w) will not be a norm and, under some conditions on w,
Λp(w) may not even be a vector space. (See [4] for details.)
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On the other hand, (f + g)∗∗ ≤ f∗∗ + g∗∗ does hold in general so,
even if w is not monotone, the Lorentz Γ-space,

Γp(w) ≡ {f ∈ L1
µ + L∞µ : ‖f‖Γp(w) < ∞}

is a Banach function space with norm ‖ · ‖Γp(w).
Since f∗ ≤ f∗∗ we have Γp(w) ⊂ Λp(w) for any p and w. It was shown

in [6] that the two spaces are equal, with equivalent norms, whenever
the expression ‖ · ‖Λp(w) is equivalent to a norm. For this reason it is
natural to take Γp(w) as a substitute for Λp(w) in the case that w is not
monotone.

Definition 1 If 1 ≤ p < ∞ and w is a non-negative weight on (0,∞),
set

Θp(w) = {f ∈ L1
µ + L∞µ : ‖f‖Θp(w) < ∞},

where
‖f‖Θp(w) = sup

h∗∗≤f∗∗
‖h∗‖Lp(w).

In the supremum, h ∈ L1+L∞ is a Lebesgue measurable function defined
on (0,∞), not a µ-measurable function defined on X.

The main difficulty in showing that ‖ · ‖Θp(w) is a norm is proving
the triangle inequality. The next lemma provides the key to this. This
result is essentially a special case of K-divisibility from the theory of
interpolation spaces. The direct proof below avoids much of the technical
detail of the general result.

Lemma 2 If h∗∗ ≤ f∗∗1 + f∗∗2 then there exist h1 and h2 defined on
(0,∞) such that h∗∗1 ≤ f∗∗1 , h∗∗2 ≤ f∗∗2 and h∗1 + h∗2 = h∗.

Proof. Let S be the collection of non-negative, non-decreasing, concave
functions on (0,∞). Then F1, F2 and H are all in S, where

F1(t) =
∫ t

0
f∗1 , F2(t) =

∫ t

0
f∗2 , and H(t) =

∫ t

0
h∗.

Moreover, H ≤ F1 + F2. We use Zorn’s lemma to show that there exist
H1,H2 ∈ S such that H1 ≤ F1, H2 ≤ F2 and H1 + H2 = H. Define



4 G. Sinnamon

T = {(A,B) ∈ S × S : A ≤ F1, B ≤ F2, A + B ≥ H} and note that T
is non-empty because (F1, F2) ∈ T . The partial order (A,B) ≤ (A′, B′)
on T is just A ≤ A′ and B ≤ B′. Suppose that {(Aj , Bj) : j ∈ J}
is a non-empty, totally ordered subset of T and define A and B by
A(t) = infj∈J Aj(t) and B(t) = infj∈J Bj(t). It is evident that A and B
are non-negative and non-decreasing and that (A,B) is a lower bound
for the subset. To see that (A,B) ∈ T we check that A and B are
concave and that A + B ≥ H. If x < y < z with y = (1− θ)x + θz then

A(y) = inf
j∈J

Aj(y) ≥ inf
j∈J

[(1− θ)Aj(x) + θAj(z)]

≥ (1− θ) inf
j∈J

Aj(t) + θ inf
j∈J

Aj(z)

= (1− θ)A(x) + θA(z).

Thus A ∈ S and similarly B ∈ S. Also, if j, k ∈ J then because the
collection is totally ordered, either (Aj , Bj) ≤ (Ak, Bk) or the reverse.
Therefore, for each t,

Aj(t) + Bk(t) ≥ min(Aj(t) + Bj(t), Ak(t) + Bk(t)) ≥ H(t)

and taking the infimum over all j and k we have A+B ≥ H so (A,B) ∈
T .

The hypotheses for Zorn’s lemma are satisfied and it follows that T
has a minimal element, call it (H1,H2).

Since (H1,H2) ∈ T we have H1 + H2 ≥ H. If H1 + H2 6= H then
there exists an x ∈ (0,∞) such that H1(x)+H2(x) > H(x). Let ` = `(t)
be a tangent line to the concave function H at x. Then H ≤ ` and
H(x) = `(x). Let I be the interval {y > 0 : `(y) < H1(y) + H2(y)}.
Define K1 ≤ H1 to be the unique function in S that agrees with H1

off I and is a straight line on I. Define K2 similarly and note that
K1 + K2 = min(`,H1 + H2) ≥ H so (K1,K2) ∈ T . Since K1(x) +
K2(x) ≤ `(x) = H(x) < H1(x) + H2(x) this contradicts the minimality
of (H1,H2). We conclude that H1 + H2 = H.

Since functions in S are the integrals of their derivatives, which exist
almost everywhere and are non-increasing, we set h1 = H ′

1 and h2 = H ′
2.

Now h∗1 = h1 and h∗2 = h2 almost everywhere and hence h∗1+h∗2 = h∗, the
derivative of H, almost everywhere. It follows from the right continuity
of the rearrangement that h∗1 + h∗2 = h∗ everywhere.
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Theorem 3 If 1 ≤ p < ∞ and w is non-negative then Θp(w) is a
rearrangement-invariant normed function space whose norm satisfies

(1) ‖f‖Λp(w) ≤ ‖f‖Θp(w) ≤ ‖f‖Γp(w)

for all f ∈ L1
µ + L∞µ .

Proof. It is clear that ‖ · ‖Θp(w) is non-negative and is zero when f van-
ishes almost everywhere. Rearrangement-invariance and homogeneity
for positive constants are also easily checked. The first inequality of (1)
follows by taking h = f∗ in the definition of Θp(w), and the second,by
observing that if h∗∗ ≤ f∗∗ then h∗ ≤ h∗∗ ≤ f∗∗.

If ‖f‖Θp(w) = 0 and 0 < s < t it is easy to check that (s/t)χ∗∗(0,t) ≤
χ∗∗(0,s) and χ∗(0,s) = χ(0,s) ≤ f∗/f∗(s). It follows that (sf∗(s)/t)χ∗∗(0,t) ≤
f∗∗ and hence (sf∗(s)/t)‖χ(0,t)‖Lp(w) = 0. By assumption, w is not
almost everywhere zero so for sufficiently large t, ‖χ(0,t)‖Lp(w) > 0. We
conclude that f∗(s) = 0. Since s was arbitrary we see that f is µ-almost
everywhere zero.

It remains to verify the triangle inequality. Fix f1, f2 ∈ Θp(w) and
suppose that h∗∗ ≤ (f1 + f2)∗∗ for some h ∈ L1 + L∞. Then h∗∗ ≤
f∗∗1 + f∗∗2 so we may take the h1 and h2 guaranteed by Lemma 2 and
observe that, since h∗ = h∗1 + h∗2,

‖h∗‖Lp(w) ≤ ‖h∗1‖Lp(w) + ‖h∗2‖Lp(w) ≤ ‖f1‖Θp(w) + ‖f2‖Θp(w).

Taking the supremum over all such h proves that

‖f1 + f2‖Θp(w) ≤ ‖f1‖Θp(w) + ‖f2‖Θp(w)

and completes the proof.
The completeness of Θp(w) is not needed for what follows and we

have not established it here. The interested reader may wish to extend
the argument of Lemma 2 from two functions, f1 and f2, to a sequence,
f1, f2, . . . . With the extension in place, the proof of completeness follows
along standard lines, showing that Θp(w) is a Banach function space.
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3 Fourier Inequalities

The behaviour of the Fourier transform as a map between unweighted
Lp spaces on Rn is well understood and substantial progress has been
made in the case of weighted Lp in which the weight possesses some
(radial) monotonicity property. For general weights, however, it remains
a difficult question to find a simple weight condition that determines
whether or not the Fourier transform is bounded as a map from one
weighted Lp space to another.

In the scale of Lorentz spaces the situation is somewhat better. See
[2] for Fourier inequalities between weighted Λ-spaces. In [8], necessary
conditions and sufficient conditions are given for the boundedness of the
Fourier transform from Γp(u) → Γq(w) when p < q. Moreover, when
0 < p ≤ q = 2 the conditions coincide and reduce to a readily verifiable
integral condition. In this section we show that the necessary conditions
and sufficient conditions of [8] coincide for 0 < p ≤ 2 ≤ q < ∞. The
resulting condition does not simplify in the way that it did in the case
q = 2, however. To express this new condition simply we use the Lorentz
Θ-space norms just introduced.

We begin with a lemma stated in a somewhat more general setting
than strictly necessary.

Lemma 4 Let 0 < p ≤ 1 ≤ q < ∞. Suppose (Y, µ), (X, ν), and (T, λ)
are σ-finite measure spaces, k(x, t) is a non-negative ν × λ-measurable
function, and a(y, x) is a non-negative µ×ν-measurable function. Define
K and A by,

Kh(x) =
∫

T
k(x, t)h(t) dλ(t) and Ag(y) =

∫
X

a(y, x)g(x) dν(x).

If kt is defined by kt(x) = k(x, t), then

sup
h≥0

‖AKh‖Lq
µ

‖Kh‖Lp
ν

≤ ess sup
t∈T

‖Akt‖Lq
µ

‖kt‖Lp
ν

.

Proof. Let

C = ess sup
t∈T

‖Akt‖Lq
µ

‖kt‖Lp
ν
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so that(∫
Y

(∫
X

a(y, x)k(x, t) dν(x)
)q

dµ(u)
)1/q

≤ C

(∫
X

k(x, t)p dν(x)
)1/p

for λ-almost every t ∈ T .
Two applications of Minkowski’s integral inequality finish the proof.

‖AKh‖Lq
µ

=
(∫

Y

(∫
T

∫
X

a(y, x)k(x, t) dν(x)h(t) dλ(t)
)q

dµ(y)
)1/q

≤
∫

T

(∫
Y

(∫
X

a(y, x)k(x, t) dν(x)
)q

dµ(y)
)1/q

h(t) dλ(t)

≤ C

∫
T

(∫
X

k(x, t)p dν(x)
)1/p

h(t) dλ(t)

≤ C

(∫
X

(∫
T

k(x, t)h(t) dλ(t)
)p

dν(x)
)1/p

= C‖Kh‖Lp
ν
.

Diving by ‖Kh‖Lp
ν

and taking the supremum over all non-negative h
yields the desired result.

Although the lemma applies quite generally, we will need it only in
the case that the operator K is given by

Kh(z) =
∫ ∞

0
ωz(t)h(t) dt.

Here and throughout, the function ωz is defined by

ωz(t) = min(z−2, t−2).

Notice that for each z, ωz(t) is non-increasing, and t2ωz(t) is non-
decreasing. A non-negative function on (0,∞) that satisfies these two
monotonicity conditions is said to be in Ω2,0. The next lemma shows
that every function in Ω2,0 can be approximated from below by images
of non-negative functions under the operator K.

Lemma 5 If f ∈ Ω2,0 then there exists a non-negative function f̃ such
that 1

2 f̃ ≤ f ≤ f̃ and f̃ is the pointwise limit of an increasing sequence
of functions of the form Kh for h ≥ 0.
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Proof. Define g by g(z) = zf(z1/2) and observe that g is quasiconcave.
That is, g(z) is non-decreasing and g(z)/z is non-increasing. According
to Lemma 2.3 of [7], g̃, the least concave majorant of g, satisfies 1

2 g̃ ≤
g ≤ g̃ and is the pointwise limit of an increasing sequence of functions
of the form ∫ ∞

0
min(1, z/t)h̄(t) dt

for some non-negative functions h̄. Define f̃ by f̃(z) = z−2g̃(z2) to
obtain 1

2 f̃ ≤ f ≤ f̃ . Also, this f̃ is the pointwise limit of an increasing
sequence of functions of the form

z−2

∫ ∞

0
min(1, z2/t)h̄(t) dt = Kh(z),

where h(t) = 2th̄(t2). This completes the proof.
Combining these two lemmas with results from [8] yields a weight

condition that is sufficient to ensure that every operator of type (1,∞)
and (2, 2) is bounded between certain Lorentz spaces. A sublinear op-
erator T is said to be of type (p, q) provided T is a bounded map from
Lp

µ to Lq
µ. From now on we take the measure µ to be Lebesgue measure

on Rn for some n ≥ 1 and write Lp
µ as Lp(Rn).

In the next three theorems, the weights v and w will be related
by v(t) = tp−2w(1/t). Consequently, (3), below, may be viewed as a
condition on the weights u and w, rather than on u and v. It should be
understood in this sense in the statements and proofs of Theorems 6, 7,
and 8.

Theorem 6 Let 0 < p ≤ 2 ≤ q < ∞ and u, v and w be non-negative
functions on (0,∞) such that v(t) = tp−2w(1/t). If T is a sublinear
operator of type (1,∞) and (2, 2) then there exists a C > 0 such that

(2) ‖Tf‖Λq(u) ≤ C‖f‖Γp(w)

for all f ∈ L1(Rn) ∩ L2(Rn) whenever

(3) sup
z>0

‖ωz‖Θq/2(u)

‖ωz‖Lp/2(v)

< ∞.
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Proof. Theorem 3.1 of [8] shows that (2) holds whenever

sup
A∈A

sup
f∈Ω2,0

‖Af‖Lq/2(u)

‖f‖Lp/2(v)

< ∞.

The set of operators A is defined in [8]. The only property we need is
that each A ∈ A is an integral operator with non-negative kernel. For
each A ∈ A we may apply Lemma 5 and then Lemma 4 (with p and q
replaced by p/2 and q/2) to get

sup
f∈Ω2,0

‖Af‖Lq/2(u)

‖f‖Lp/2(v)

≈ sup
h≥0

‖AKh‖Lq/2(u)

‖Kh‖Lp/2(v)

= sup
z>0

‖Aωz‖Lq/2(u)

‖ωz‖Lp/2(v)

.

Taking the supremum over all A ∈ A and using Corollary 2.4 of [8] gives
us

sup
A∈A

sup
f∈Ω2,0

‖Af‖Lq/2(u)

‖f‖Lp/2(v)

= sup
z>0

sup
h∗∗≤ω∗∗

z

‖h∗‖Lq/2(u)

‖ωz‖Lp/2(v)

= sup
z>0

‖ωz‖Θq/2(u)

‖ωz‖Lp/2(v)

This completes the proof.
In the case of the Fourier transform on Rn, denoted F , the necessary

condition given in [8] agrees with the sufficient condition just established.

Theorem 7 Let 0 < p ≤ 2 ≤ q < ∞ and u, v and w be non-negative
functions on (0,∞) such that v(t) = tp−2w(1/t). If there exists a con-
stant C such that

(4) ‖Ff‖Λq(u) ≤ C‖f‖Γp(w)

for all f ∈ L1(Rn) ∩ L2(Rn), then (3) holds.

Proof. Corollary 4.8 of [8] shows that if (4) holds, then

sup
z>0

sup
A∈A

‖Aωz‖Lq/2(u)

‖ωz‖Lp/2(v)

is finite. But the definition of the Lorentz Θ-norm and Corollary 2.4 of
[8] show that this supremum is just

sup
z>0

sup
h∗∗≤ω∗∗

z

‖h∗‖Lq/2(u)

‖ωz‖Lp/2(v)

= sup
z>0

‖h∗‖Θq/2(u)

‖ωz‖Lp/2(v)

.

This completes the proof.
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Theorem 8 Let 0 < p ≤ 2 ≤ q < ∞ and u, v and w be non-negative
functions on (0,∞) such that v(t) = tp−2w(1/t). Let T denote the
collection of all sublinear operators of type (1,∞) and (2, 2). Each of
the following is equivalent to (3).

(5) F : Γp(w) → Λq(u) is bounded.

(6) T : Γp(w) → Λq(u) is bounded for all T ∈ T .

(7) F : Γp(w) → Γq(u) is bounded.

(8) T : Γp(w) → Γq(u) is bounded for all T ∈ T .

(9) F : Γp(w) → Θq(u) is bounded.

(10) T : Γp(w) → Θq(u) is bounded for all T ∈ T .

Proof. Since the Fourier transform is of type (1,∞) and (2, 2), (6)
implies (5) and (8) implies (7). Theorem 7 shows that (5) implies (3)
and Theorem 6 shows that (3) implies (6).

Inequality (1) shows that (7) implies (9) implies (5) and (8) implies
(10) implies (6). To complete the proof we show that (6) implies (8).
The sublinear operator f 7→ f∗∗ is of type (∞,∞) and (2, 2) (by Hardy’s
inequality) so for any T ∈ T the composition f 7→ (Tf)∗∗ is also in
T . Applying (6) to this operator yields (8) for the operator T . This
completes the proof.
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