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Abstract

The theory of positive integral operators is applied to convolution op-
erators, giving a method of producing new weighted Fourier inequalities
from known ones. The new inequalities produced depend on six param-
eters; two real indices, two complex-valued measures, and two positive
functions. The method may be iterated using the last inequality gener-
ated as input to the next stage.

The Fourier transform is defined by

f̂(x) =
∫

R
e−ixtf(t) dt

for f ∈ L1, that is, for f satisfying
∫

R |f | < ∞. It and its extensions are the
most studied and most applied operators in all of mathematics. One way that
the Fourier transform can be extended to functions not in L1 is to establish an
inequality of the form (∫

R
|f̂ |qu

)1/q

≤ C

(∫
R
|f |pv

)1/p

(1)

for all f in L1 ∩ Lp(v). The Fourier transform then extends by continuity to
the closure of L1 ∩ Lp(v) in Lp(v). Since L1 contains the simple functions, this
closure is the whole of Lp(v). Here 1 < p < ∞, v ≥ 0, and Lp(v) is the Banach
space of functions for which the norm

‖f‖Lp(v) ≡
(∫

R
|f |pv

)1/p

is finite.
The purpose of this paper is to provide a framework for proving inequalities

of the form (1). The idea is to exploit the close relationship of the Fourier
transform to the operation of convolution and then to apply techniques from
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the theory of positive integral operators. Although the convolution operators
that arise are not necessarily positive, they are trivially majorized by positive
convolution operators and this will suffice for our purpose. The main result of
the paper is that from a given “input” inequality of the form (1) a parametrized
collection of “output” inequalities, again of the form (1), can be deduced.

A single application of the theorem will produce new weighted Fourier in-
equalities from known ones. However, since the output inequalities are of the
same form as the input inequality, it becomes possible to “bootstrap” the pro-
duction of new inequalities by using the output at one stage as the input at the
next. The implications of this sort of iteration are not examined here but will
be a subject for further study.

Throughout the paper we adhere to conventions that are more common in
the study of positive integral operators than in harmonic analysis generally.
When integrals of non-negative functions are involved we will not concern our-
selves with convergence; if the integral happens to take the value +∞ then its
appearance in formulas is to be interpreted according to arithmetic on [0,∞].
In particular, expressions of the form 0(∞), ∞/∞, 0/0, 00 are all taken to be
0, while ∞0 = 1.

The collection of non-negative, Lebesgue measurable functions on R will be
denoted by L+ and a positive operator is a map from L+ to [0,∞]. If T and T ∗

are such operators then T ∗ is said to be a formal adjoint of T provided∫
R
(Tf)g =

∫
R

f(T ∗g)

for all f, g ∈ L+.
The following proposition is a special case (n = 1 and r1 = 1) of Theorem

2.1 in [4]. Note especially that C = 1 when p = q, even if
∫

R hpv = ∞.

Proposition 1 Let T be a positive operator on L+ having a formal adjoint T ∗.
Suppose 1 < q ≤ p < ∞ and u, h ∈ L+ with 0 < h < ∞. Set

v = h1−pT ∗(u(Th)q−1) and C =
(∫

R
hpv

)1/q−1/p

.

Then, (∫
R
(Tf)qu

)1/q

≤ C

(∫
R

fpv

)1/p

for all f ∈ L+.

The next result may be deduced from the last by a duality argument. It is
also a special case of Theorem 3.1 of [3]. Again note that C = 1 when p = q.

Proposition 2 Let T be a positive operator on L+ having a formal adjoint T ∗.
Suppose 1 < q ≤ p < ∞ and v, h ∈ L+ with 0 < h < ∞. Set

u = h(T (v1−p′(T ∗h)p′−1))1−q and C =
(∫

R
hq′u1−q′

)1/q−1/p

.
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Then, (∫
R
(Tf)qu

)1/q

≤ C

(∫
R

fpv

)1/p

for all f ∈ L+.

Observe that if p > q, then the formulas for the constants C given in these
two propositions may take useful alternative forms. In the first,∫

R
hpv =

∫
R

hT ∗(u(Th)q−1) =
∫

R
(Th)u(Th)q−1 =

∫
R
(Th)qu

so C =
(∫

R(Th)qu
)1/q−1/p. In the second,∫

R
hq′u1−q′ =

∫
R

hT (v1−p′(T ∗h)p′−1) =
∫

R
(T ∗h)v1−p′(T ∗h)p′−1

so C =
(∫

R(T ∗h)p′v1−p′
)1/q−1/p

.

Let a and b be finite, complex-valued Borel measures on R and let |a| and
|b| denote their absolute values. Then∫

R
d|a| < ∞ and

∫
R

d|b| < ∞.

It is routine to check that

â(x) =
∫

R
e−ixt da(t) and b̌(x) =

∫
R

eixt db(t)

are well-defined functions in L∞. It is also routine to verify that

f ∗ a(x) =
∫

R
f(x− t) da(t) and f ∗ b(x) =

∫
R

f(x− t) db(t)

are well-defined functions in L1 when f ∈ L1 and in L∞ when f ∈ L∞. A little
more work is required to verify that for f ∈ L1,

(f ∗ a)̂ = f̂ â and (f b̌)̂ = f̂ ∗ b. (2)

To establish (2) observe that the bounded function b̌ has a Fourier transform
in the distributional sense and that Theorem 7.7 of [2] shows that ˆ̌b = 2πb.
(Note that the notation b̌ has a different meaning in Rudin’s book than it does
here.) With this in hand, if we view a and b as tempered distributions, then
Theorem 7.19 of [2] shows that both statements in (2) hold for all f in the
space of rapidly decreasing functions. However, the space of rapidly decreasing
functions is a dense subset of L1 and it is easy to verify that f 7→ (f ∗a)̂, f 7→ f̂ â,
f 7→ (f b̌)̂ and f 7→ f̂ ∗ b are all continuous maps from L1 to L∞. Thus, the
identities in (2) extend to be valid for all f ∈ L1.
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Define the positive convolution operators Ka and Kb by

Kaf = f ∗ |a| and Kbf = f ∗ |b|,

for all f ∈ L+. If f ∈ L1∪L∞ then f ∗a and f ∗b are well-defined, |f ∗a| ≤ Ka|f |,
and |f ∗ b| ≤ Kb|f |. It is an essential feature of the argument to come that the
convolution operators are majorized by positive convolution operators.

The two propositions above provide weighted Lebesgue norm inequalities
for the positive operators Ka and Kb that can be used to give inequalities for
convolution by a and b. To apply them we need to show that Ka and Kb have
formal adjoints. In the following calculation we write ã for the complex-valued
measure defined by ã(x) = a(−x).

If f, g ∈ L+ then interchanging the order of integration and making the
substitution y = x− t yields∫

R
Kaf(x)g(x) dx =

∫
R

∫
R

f(x− t) d|a|(t) g(x) dx

=
∫

R

∫
R

f(x− t)g(x) dx d|a|(t)

=
∫

R

∫
R

f(y)g(y + t) dy d|a|(t)

=
∫

R
f(y)

∫
R

g(y + t) d|a|(t) dy

=
∫

R
f(y)

∫
R

g(y − t) d|ã|(t) dy

=
∫

R
f(y)Kãg(x) dx

This shows that K∗
a = Kã. Obviously, K∗

b = Kb̃ as well.
Before introducing any technical details we give a sketch of the argument

behind Theorem 1 below. We suppose that the Fourier inequality (1) is known
to be valid for some fixed p0, q0, u0, and v0. For each appropriate function g,
define f = (g ∗ a)/b̌ and verify that ĝ = (f̂ ∗ b)/â.

For p1 ≥ p0, q1 ≤ q0 and arbitrary positive functions ha and hb we apply
the above two propositions to give formulas for u1 and v1 so that

Lp1(v1)−→Lp0(v0)−→Lq0(u0)−→Lq1(u1)
g 7−→ f 7−→ f̂ 7−→ ĝ

The arrow in the middle corresponds to the known “input” Fourier inequality
and the other two arrows correspond to convolution inequalities for the operators

g 7→ (g ∗ a)/b̌ and f̂ 7→ (f̂ ∗ b)/â.

The inequality relating ĝ and g that results from this composition is just (1)
with new indices p1 and q1 and new weights u1 and v1. This is our “output”
inequality.
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Theorem 1 Suppose C0 is a positive constant, p0 and q0 are indices in (1,∞),
and u0 and v0 are non-negative weight functions such that the Fourier inequality(∫

R
|f̂ |q0u0

)1/q0

≤ C0

(∫
R
|f |p0v0

)1/p0

(3)

holds for all f ∈ L1. Let a and b be finite complex-valued Borel measures and
ha and hb be positive functions on R. For p1 and q1 satisfying 1 < p0 ≤ p1 < ∞
and 1 < q1 ≤ q0 < ∞ set

wa = |b̌|−p0v0 and v1 = h1−p1
a K∗

a(wa(Kaha)p0−1),

wb = hb(Kb(u
1−q′0
0 (K∗

b hb)q′0−1))1−q1 and u1 = |â|q1wb.

Also set

Ca =
(∫

R
hp1

a v1

)1/p0−1/p1

and Cb =
(∫

R
h

q′1
b w

1−q′1
b

)1/q1−1/q0

.

If b̌ is bounded away from zero, then the Fourier inequality(∫
R
|ĝ|q1u1

)1/q1

≤ C1

(∫
R
|g|p1v1

)1/p1

(4)

holds for all g ∈ L1. Here C1 = CbC0Ca.

Proof. Let g ∈ L1 and set f = (g ∗ a)/b̌. Since b̌ is bounded away from zero,
1/b̌ ∈ L∞ so f ∈ L1. Taking the Fourier transform of both sides of the equation
g ∗ a = f b̌ and using (2) yields ĝâ = f̂ ∗ b.

Proposition 2 shows that(∫
R
(Kb|f̂ |)q1wb

)1/q1

≤ Cb

(∫
R
|f̂ |q0u0

)1/q0

and the trivial estimate |ĝâ| = |f̂ ∗ b| ≤ Kb|f̂ | gives(∫
R
|ĝ|q1u1

)1/q1

≤ Cb

(∫
R
|f̂ |q0u0

)1/q0

. (5)

Proposition 1 shows that(∫
R
(Ka|g|)p0wa

)1/p0

≤ Ca

(∫
R
|g|p1v1

)1/p1

and the trivial estimate |f b̌| = |g ∗ a| ≤ Ka|g| gives(∫
R
|f |p0v0

)1/p0

≤ Ca

(∫
R
|g|p1v1

)1/p1

. (6)

The three inequalities (5), (3), and (6) combine to yield (4) as required. This
completes the proof.

When all indices are taken equal to 2 the theorem simplifies substantially.

5



Corollary 1 Suppose C is a positive constant and u0 and v0 are non-negative
weight functions such that the Fourier inequality∫

R
|f̂ |2u0 ≤ C

∫
R
|f |2v0 (7)

holds for all f ∈ L1. Let a and b be finite complex-valued Borel measures and
ha and hb be positive functions on R. Set

v1 =
1
ha

K∗
a

(
v0(Kaha)
|b̌|2

)
and u1 =

|â|2hb

Kb

(
K∗

b hb

u0

) .

If b̌ is bounded away from zero, then the Fourier inequality∫
R
|ĝ|2u1 ≤ C

∫
R
|g|2v1 (8)

holds for all g ∈ L1.

A further simplification yields an attractive concrete collection of weighted
Fourier inequalities that may be compared with results from [1].

Corollary 2 If a is a finite positive Borel measure and h is a positive function
on R then ∫

R
|ĝ|2|â|2 ≤ 2π

∫
R
|g|2 ã ∗ (a ∗ h)

h
(9)

for all g ∈ L1. Here ã is defined by ã(x) = a(−x).

Proof. In Corollary 1, take u0 = v0 ≡ 1 and observe that (7) holds with C = 2π.
Take hb ≡ 1, ha = h and take b to be the Dirac measure at zero. Then b̌ ≡ 1
and both Kb and K∗

b reduce to identity operators. Since a is assumed to be
positive, Ka and K∗

a are just convolution by a and ã, respectively.
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