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Abstract. The class of masked factorable matrices is introduced and simple neces-

sary and sufficient conditions are given for matrices in the class to represent bounded
transformations between Lebesgue sequence spaces.

1. Introduction

Define the matrix M = (mn j) by mn j = unvj for fixed non-negative sequences
u = {un} and v = {vj} with neither u nor v identically zero. As a transformation
between Lebesgue spaces the action of M is easy to analyse using only the sharpness
of Hölder’s inequality. The matrix M is a bounded map from lp to lq if and only if
u ∈ lq and v ∈ lp′ where 1/p+ 1/p′ = 1. It is a much more interesting question to
ask about the boundedness of M if some of its entries are replaced by zeros. We call
this “masking” the matrix M . One simple rule for masking M is to replace mn j

by 0 when j > n. This gives the factorable matrices studied in [1]. The situation in
this case is by no means as simple as the unmasked case but it has been completely
resolved.

In this paper we look at more general masking schemes and give easily verified
conditions on the sequences u and v which are necessary and sufficient for these
masked factorable matrices to be bounded as maps from lp to lq. This work is
closely connected with corresponding results for integral operators given in [2,3,4]
but the many simplifications and occasional complications give the discrete case its
own unique character.

Our masking scheme is described by two sequences {an} and {bn} taking values
in Z+

∞ and satisfying an ≤ bn for all n ∈ Z+. Masking in the nth row of M is
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2 GORD SINNAMON

determined by leaving those entries mn j with an ≤ j ≤ bn undisturbed and setting
the others to zero. Thus, from now on we use the redefined entries

(1.1) mn j =
{
unvj an ≤ j ≤ bn
0 otherwise

to define the matrix M .
This scheme gives us a great deal of flexibility since, for example, we may leave

the nth row intact by setting an = 1 and bn = ∞ or we may eliminate it entirely
by setting an = bn = ∞. Factorable matrices may be recovered by setting an = 1
and bn = n for all n and their duals obtained by setting an = n and bn =∞ for all
n. There is a further restriction we must impose on the sequences {an} and {bn}
which is that the sequences admit a normalizing set, see Definition 2.1, but a great
many sequences are permitted including all those for which bn−an is bounded and
all those for which {an} and {bn} are non-decreasing.

Necessary and sufficient conditions for the boundedness of M as a map from
lp to lq are given in the next section and in Section 3 we look at the existence of
normalizing sets and give various examples and special cases.

We use the following notation throughout: For the positive integers we write
Z+ = {1, 2, 3, . . . } and for the ordered set of positive integers with infinity we write
Z+
∞ = Z+ ∪ {∞}. The characteristic function of the set E is denoted χE so that

χE(x) takes the value 1 if x ∈ E and the value 0 otherwise. The expression Y / Z
means that there exists a positive constant N depending only on the indices p and
q and the constant c of Definition 2.1 such that Y ≤ NZ. We write Y ≈ Z as a
short form of Y / Z and Z / Y .

2. Boundedness of Masked Factorable Matrices

Fix sequences {an} and {bn} with values in Z+
∞ which satisfy an ≤ bn for all

n ∈ Z+. For each k ∈ Z+
∞ we define Nk and Jk by

Nk = {n ∈ Z+ : an ≤ k ≤ bn} and Jk = {j ∈ Z+
∞ : Nk ∩Nj 6= ∅}.

Definition 2.1. Suppose that K ⊂ Z+
∞. We say that K normalizes the pair

({an}, {bn}) provided there exists a finite constant c such that

(2.1) 1 ≤ |{k ∈ K : an ≤ k ≤ bn}| ≤ c

for all n ∈ Z+.

Observe that if K normalizes ({an}, {bn}) then the condition (2.1) may be writ-
ten as

(2.2) 1 ≤ |{k ∈ K : n ∈ Nk}| ≤ c

for all n ∈ Z+. That is, there exists at least one and at most c values of k ∈ K for
which n ∈ Nk.
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Lemma 2.2. If K normalizes ({an}, {bn}) then |{k ∈ K : j ∈ Jk}| ≤ 2c for all
j ∈ Z+

∞. Here c is the constant from Definition 2.1.

Proof. Fix j ∈ Z+
∞. The symmetry in the definition of Jk shows that

{k ∈ K : j ∈ Jk} = K ∩ Jj

and if k ∈ Jj then an ≤ k ≤ bn for some n ∈ Nj so

inf{an : n ∈ Nj} ≤ k ≤ sup{bn : n ∈ Nj}.

Choose sequences {mi} ⊂ Nj and {ni} ⊂ Nj such that

lim
i→∞

ami = inf{an : n ∈ Nj} and lim
i→∞

bni = sup{bn : n ∈ Nj}.

Since for each i, ami ≤ j ≤ bmi and ani ≤ j ≤ bni we have ani ≤ bmi and so

{k ∈ K : ami ≤ k ≤ bni} ⊂ {k ∈ K : ami ≤ k ≤ bmi} ∪ {k ∈ K : ani ≤ k ≤ bni}.

Now

|K ∩ Jj | ≤ lim
i→∞

|{k ∈ K : ami ≤ k ≤ bni}|

≤ lim
i→∞

|{k ∈ K : mi ∈ Nk}|+ |{k ∈ K : ni ∈ Nk}| ≤ 2c

by (2.2)

We begin with two propositions that follow readily from known results.

Proposition 2.3. Suppose that 1 < p < ∞, 0 < q < ∞, and {un} and {vj} are
non-negative sequences. Fix k ∈ Z+

∞ and let Ck be the least constant, finite or
infinite, such that the inequality

(2.3)
∑
n∈Nk

(
un

bn∑
j=k

vjxj

)q
≤ Cqk

( ∑
j∈Jk

xpj

)q/p

holds for all non-negative sequences {xj}. Then Ck ≈ Ak when 1 < p ≤ q < ∞
and Ck ≈ Bk when 0 < q < p, 1 < p <∞ and 1/r = 1/q − 1/p. Here

Ak = sup
{l:k≤l}

( ∑
an≤k
l≤bn

uqn

)1/q( l∑
j=k

vp
′

j

)1/p′

, and

Brk =
∑
m∈Nk

( ∑
an≤k
bm≤bn

uqn

)r/p( bm∑
j=k

vp
′

j

)r/p′
uqm.
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Proof. First note that if n ∈ Nk and k ≤ j ≤ bn then n ∈ Nj so j ∈ Jk. Therefore,
the value of xj has no effect on the inequality (2.3) unless j ∈ Jk. We may rewrite
the left hand side of (2.3) as∑

n∈Nk

(
un

bn∑
j=k

vjxj

)q
=
∞∑
i=1

∑
n∈Nk
bn=i

(
un

i∑
j=k

vjχJk(j)xj

)q
=
∞∑
i=1

(
Ui

i∑
j=1

Vjxj

)q
where Ui = (

∑
n∈Nk
bn=i

uqn)1/q and Vj = vjχJk(j)χ[k,∞](j).

If the inequality (2.3) holds for some non-negative sequence {xj} then we also
have

(2.4)
∞∑
i=1

(
Ui

i∑
j=1

Vjxj

)q
≤ Cqk

( ∞∑
j=1

xpj

)q/p
since we have just extended the range of summation on the right hand side. Con-
versely, if (2.4) holds for all non-negative sequences {xj} then it holds for those
non-negative sequences for which xj = 0 when j /∈ Jk. Thus (2.3) holds. The best
constant Ck in the inequality (2.4) and hence in (2.3) is known to satisfy

Ck ≈ sup
l≥1

( ∞∑
i=l

Uqi

)1/q( l∑
j=1

V p
′

j

)1/p′

when 1 < p ≤ q <∞ and

Crk ≈
∞∑
l=1

( ∞∑
i=l

Uqi

)r/p( l∑
j=1

V p
′

j

)r/p′
Uql

when 0 < q < p and 1 < p < ∞. For this result refer to [1, Theorem 1] or [5,
Theorem 7.1]. Replacing Ui and Vj by their definitions and simplifying yields the
conclusion.

The next proposition is proved in a similar fashion. We omit the details.

Proposition 2.4. Suppose that 1 < p < ∞, 0 < q < ∞, and {un} and {vj} are
non-negative sequences. Fix k ∈ Z+

∞ and let C ′k be the least constant, finite or
infinite, such that the inequality∑

n∈Nk

(
un

k∑
j=an

vjxj

)q
≤ C ′kq

( ∑
j∈Jk

xpj

)q/p
holds for all non-negative sequences {xj}. Then C ′k ≈ A′k when 1 < p ≤ q < ∞
and C ′k ≈ B′k when 0 < q < p, 1 < p <∞ and 1/r = 1/q − 1/p. Here

A′k = sup
{l:l≤k}

( ∑
an≤l
k≤bn

uqn

)1/q( k∑
j=l

vp
′

j

)1/p′

, and

B′k
r =

∑
m∈Nk

( ∑
an≤am
k≤bn

uqn

)r/p( k∑
j=am

vp
′

j

)r/p′
uqm.

We are now ready to state and prove the main result.
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Theorem 2.5. Let 1 < p < ∞, 0 < q < ∞, {un} and {vj} be non-negative
sequences, and {an} and {bn} be sequences taking values in Z+

∞ which satisfy an ≤
bn for all n ∈ Z+. Suppose that K normalizes ({an}, {bn}). Define C to be the
least constant, finite or infinite, such that the inequality

(2.5)
∞∑
n=1

(
un

bn∑
j=an

vjxj

)q
≤ Cq

( ∞∑
j=1

xpj

)q/p
holds for all non-negative sequences {xj}. Then C ≈ A when 1 < p ≤ q <∞, and
C ≈ B + B̄ when 0 < q < p, 1 < p <∞ and 1/r = 1/q − 1/p. Here

A = sup
{(k,l):k≤l}

( ∑
an≤k
l≤bn

uqn

)1/q( l∑
j=k

vp
′

j

)1/p′

,

Br =
∑
k∈K

∑
m∈Nk

( ∑
an≤k
bm≤bn

uqn

)r/p( bm∑
j=k

vp
′

j

)r/p′
uqm, and

B̄r =
∑
k∈K

∑
m∈Nk

( ∑
an≤am
k≤bn

uqn

)r/p( k∑
j=am

vp
′

j

)r/p′
uqm.

Proof. Throughout the proof we use the definitions of Ak, Bk, Ck, A′k, B′k, and C ′k
given in Propositions 2.3 and 2.4.
(Sufficiency) Fix a non-negative sequence xj with

∑∞
j=1 x

p
j ≤ 1 and define yk by

ypk =
∑
j∈Jk x

p
j . By Lemma 2.2,

∑
k∈K

ypk =
∑
k∈K

∑
j∈Jk

xpj =
∞∑
j=1

xpj |{k ∈ K : j ∈ Jk}| ≤ 2c.

Let Iq denote the left hand side of (2.5). We decompose I into two parts. According
to (2.2), |{k ∈ K : n ∈ Nk}| ≥ 1 for each n, so we have

I =
( ∞∑
n=1

(
un

bn∑
j=an

vjxj

)q)1/q

≤
( ∞∑
n=1

∑
{k∈K:n∈Nk}

(
un

bn∑
j=k

vjxj + un

k∑
j=an

vjxj

)q)1/q

≤c1

(∑
k∈K

∑
n∈Nk

(
un

bn∑
j=k

vjxj

)q)1/q

+
(∑
k∈K

∑
n∈Nk

(
un

k∑
j=an

vjxj

)q)1/q
 .

Here c1 = max(1, 2(1−q)/q).
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Now we apply Propositions 2.3 and 2.4 to get

(2.6) I ≤ c1

[(∑
k∈K

Cqky
q
k

)1/q

+
(∑
k∈K

C ′k
qyqk

)1/q
]
.

If 1 < p ≤ q < ∞ then Ck ≈ Ak and C ′k ≈ A′k and it is easy to see that Ak ≤ A
and A′k ≤ A for each k so, using the fact that q/p ≥ 1, we have

I / A

(∑
k∈K

yqk

)1/q

≤ A
(∑
k∈K

ypk

)1/p

≤ A(2c)1/p.

It follows that C / A.
If 0 < q < p and 1 < p < ∞ then we have Ck ≈ Bk and C ′k ≈ B′k and we use

Hölder’s inequality with indicies r/q and p/q in (2.6) to obtain

I /

((∑
k∈K

Brk

)1/r

+
(∑
k∈K

B′k
r

)1/r)(∑
k∈K

ypk

)1/p

≤ (B + B̄)(2c)1/p.

In this case it follows that C / B + B̄.
(Necessity) In the case 1 < p ≤ q <∞ we suppose that (2.5) holds with some finite
constant C. Our object is to show that A / C. Fix k and suppose that {xj} is a
non-negative sequence with xj = 0 for j /∈ Jk. It is easy to see that (2.5) implies
that (2.3) holds with Ck replaced by C. Since Ck is the least constant in (2.3) we
have Ck ≤ C. By Proposition 2.3, Ak ≈ Ck ≤ C. Since A = supk∈K Ak we have
A / C as desired.

In the case 0 < q < p, 1 < p < ∞ we again suppose that the inequality (2.5)
holds for some finite constant C and we make it our object to show that B / C
and B̄ / C. Let {Xk} be a non-negative sequence such that

∑
k∈K X

p
k < ∞ and

Xk < C
r/p
k . (If Ck = 0 we take Xk = 0 as well.)

For each k choose a non-negative sequence {xk j} such that
∑
j∈Jk xk j ≤ 1,

xk j = 0 for j /∈ Jk, and

∑
n∈Nk

(
un

bn∑
j=k

vjxk j

)q
≥ Xqp/r

k

Then we may use the definition of Nk to get

∑
k∈K

Xp
k =

∑
k∈K

X
qp/r
k Xq

k ≤
∑
k∈K

∑
n∈Nk

(
un

bn∑
j=k

vjxk j

)q
Xq
k

=
∞∑
n=1

bn∑
k=an
k∈K

(
un

bn∑
j=k

vjxk jXk

)q
≤
∞∑
n=1

bn∑
k=an
k∈K

(
un

bn∑
j=an

vjxk jXk

)q
.



MASKED FACTORABLE MATRICES 7

Now the hypothesis on K shows that the last sum over k is a sum of at most c
terms. Hence the last expression is no greater than

c
∞∑
n=1

( bn∑
k=an
k∈K

un

bn∑
j=an

vjxk jXk

)q
≤ c

∞∑
n=1

(
un

bn∑
j=an

vj
∑
k∈K

xk jXk

)q
.

We are now in a position to apply the hypothesis that C < ∞ by applying the
inquality (2.5) with xj replaced by

∑
k∈K xk jXk. We obtain

(2.7)
∑
k∈K

Xp
k ≤ cC

q

( ∞∑
j=1

(∑
k∈K

xk jXk

)p)q/p
.

Because xk j = 0 for j /∈ Jk we may apply Hölder’s inequality and Lemma 2.2 to
see that the right hand side of (2.7) is no greater than

cCq
( ∞∑
j=1

(∑
k∈K

xpk jX
p
k

)
|{k ∈ K : j ∈ Jk}|p/p

′
)q/p

≤ c(2c)q/p
′
Cq
(∑
k∈K

( ∑
j∈Jk

xpk j

)
Xp
k

)q/p
≤ c(2c)q/p

′
Cq
(∑
k∈K

Xp
k

)q/p
where the last inequality follows from the choice of {xk j}.

Using this estimate for the right hand side of (2.7), taking qth roots, and dividing
by the pth root of

∑
k∈K X

p
k we conclude that(∑
k∈K

Xp
k

)1/r

≤ c1/q(2c)1/p′C.

Since this last inequality holds whenever 0 ≤ Xk < C
r/p
k and

∑
k∈K X

p
k < ∞ we

have (∑
k∈K

Crk

)1/r

/ C.

Now Br =
∑
k∈K B

r
k and Bk ≈ Ck so B / C as required. A similar argument

shows that B̄ / C. This completes the proof.

The inequality (2.5) expresses the boundedness of the matrix M so Theorem 2.5
has the following corollary.

Corollary 2.6. Let 1 < p < ∞, 0 < q < ∞, {un} and {vj} be non-negative
sequences, and {an} and {bn} be sequences taking values in Z+

∞ which satisfy an ≤
bn for all n ∈ Z+. Suppose that K normalizes ({an}, {bn}). The matrix M = (mn j)
defined by (1.1) is a bounded map from lp to lq if and only if either p ≤ q and A <∞
or q < p and B + B̄ <∞.

We conclude this section by giving necessary and sufficient conditions without
proof for various endpoint cases. The proofs are quite simple and do not require
the hypothesis that ({an}, {bn}) has a normalizing set.
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Corollary 2.7. Let {un} and {vj} be non-negative sequences and {an} and {bn}
be sequences taking values in Z+

∞ which satisfy an ≤ bn for all n ∈ Z+. Let
M = (mn j) be defined by (1.1). Then M : l∞ → lq for 0 < q ≤ ∞ if and only if

{
un

bn∑
j=an

vj

}
n

∈ lq,

M : lp → l∞ for 0 < p <∞ if and only if{
up
′

n

bn∑
j=an

vp
′

j

}
n

∈ l∞,

M : l1 → lq for 1 ≤ q ≤ ∞ if and only if{
vqj
∑
n∈Nj

uqn

}
j

∈ l∞,

and M : l1 → l∞ if and only if{
unvjχNj (n)

}
n j
∈ l∞.

3. Normalizing Sets and Examples

The requirement that ({an}, {bn}) admit a normalizing set K is satisfied for a
great many pairs of sequences. Moreover, it is often a simple matter to discover
such a set K for a given pair of sequences. We begin this section with several
examples of normalizing sets and a fairly general existence result. An application
of Theorem 2.5 to embeddings of weighted sequential amalgams is also given.

The proofs of the first two examples are left to the reader.

Example 3.1. Suppose a and b are positive integers with a < b. Then {bi : i =
1, 2, . . . } is a normalizing set for ({an}, {an + b}) and {b(b/a)ic : i = 0, 1, 2, . . . }
is a normalizing set for ({an}, {bn}). Here bxc represents the greatest integer less
than or equal to x.

Example 3.2. If {an} and {bn} are sequences with values in Z+ and there exists
a Z > 0 such that 0 ≤ bn − an ≤ Z for all n then K = Z+ is a normalizing set for
({an}, {bn}).

Proposition 3.3. If {an} and {bn} are non-decreasing sequences with values in
Z+
∞ which satisfy an ≤ bn for all n then there exists a set K ⊂ Z+

∞ which normalizes
({an}, {bn}).

The last proposition is a special case of the next one. We introduce a partial
order on intervals [l, r] with 1 ≤ l ≤ r ≤ ∞ by writing [l, r] ≺ [L,R] provided l ≤ L
and r ≤ R. Theorem 5.2 of [2] easily implies the following.
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Proposition 3.4. If {an} and {bn} are sequences with values in Z+
∞ which satisfy

an ≤ bn for all n and the set {[an, bn] : n ∈ Z+} is totally ordered with respect to
≺ then there exists a set K ⊂ Z+

∞ which normalizes ({an}, {bn}).

We now turn to an application of Theorem 2.5. Fix a sequence t = {tm} sat-
isfying 1 = t1 < t2 < . . . and sequences u and v of positive terms. If q, s ≥ 1
the weighted sequential amalgam space lqu(lsv)t is the collection of those sequences
y = {yj} for which the norm

‖y‖lqu(lsv)t =
( ∞∑
n=1

un

( tn+1−1∑
j=tn

vj |yj |s
)q/s)1/q

is finite. Theorem 2.5 can be used to determine which weighted lp spaces can be
embedded in lqu(lsv)t when s < p. Recall that the norm on the weighted space lpw is
‖y‖lpw = (

∑∞
j=1 wj |yj |p)1/p for any sequence w of non-negative terms.

Although the following result can be proved directly, it is instructive to see how
the weight conditions of Theorem 2.5 simplify in this important special case.

Theorem 3.5. Suppose 1 ≤ s < p, 1 < q < ∞ and t, u, v, and w are as above.
Then lpw is embedded in lqu(lsv)t when p ≤ q if and only if

(3.1) sup
n≥1

us/qn

( tn+1−1∑
j=tn

v
p/(p−s)
j w

s/(s−p)
j

)(p−s)/p

<∞.

Also, lpw is embedded in lqu(lsv)t when q < p if and only if

(3.2)
∞∑
n=1

ur/qn

( tn+1−1∑
j=tn

v
p/(p−s)
j w

s/(s−p)
j

)r(p−s)/(ps)
<∞.

Here 1/r = 1/q − 1/p.

Proof. The embedding lpw ↪→ lqu(lsv)t holds if and only if there exists a constant C
such that

(3.3)
( ∞∑
n=1

un

( tn+1−1∑
j=tn

vj |yj |s
)q/s)1/q

≤ C
( ∞∑
j=1

wj |yj |p
)1/p

holds for all sequences y. Setting xj = w
s/p
j |yj |s and raising both sides of (3.1) to

the power s shows that (3.3) is equivalent to

(3.4)
( ∞∑
n=1

(
us/qn

tn+1−1∑
j=tn

vjw
−s/p
j xj

)q/s)s/q
≤ Cs

( ∞∑
j=1

x
p/s
j

)s/p
holding for all non-negative sequences x. We apply Theorem 2.5 with an = tn, bn =
tn+1 − 1, and p, q, un, and vj replaced by p/s, q/s, us/qn , and vjw

−s/p
j respectively.
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It is easy to check that K = {tm : m = 1, 2, . . . } normalizes ({tn}, {tn+1−1}). Our
conclusion is that (3.4) is equivalent when p ≤ q (or rather when p/s ≤ q/s) to the
finiteness of

sup
{(k,l):k≤l}

( ∑
tn≤k

l≤tn+1−1

un

)s/q( l∑
j=k

[vjw
−s/p
j ](p/s)

′
)1/(p/s)′

.

This expression simplifies because the intervals [tn, tn+1 − 1] do not overlap as n
varies. Thus, for fixed k and l with k ≤ l there is at most one value of n for which
tn ≤ k ≤ tn+1 − 1. Moreover, if there is such an n then the second factor is largest
when k = tn and l = tn+1−1. We can, therefore, replace the supremum over k and
l with a supremum over n to get

sup
n≥1

us/qn

( tn+1−1∑
j=tn

[vjw
−s/p
j ](p/s)

′
)1/(p/s)′

<∞.

This becomes (3.1) once we check that (p/s)′ = p/(p− s).
In the case q < p the conclusion of Theorem 2.5 is that (3.4) holds if and only if

both

(3.5)
∑
k∈K

∑
m∈Nk

( ∑
tn≤k
m≤n

un

)r/p( tm+1−1∑
j=k

v
p/(p−s)
j w

s/(s−p)
j

)r(p−s)/(ps)
um

and

(3.6)
∑
k∈K

∑
m∈Nk

( ∑
n≤m

k≤tn+1−1

un

)r/p( k∑
j=tm

v
p/(p−s)
j w

s/(s−p)
j

)r(p−s)/(ps)
um

are finite. (Note that if 1/r = 1/q − 1/p then s/r = s/q − s/p so the r of Theorem
2.5 is appropriately replaced by r/s here.) Once again, these simplify because the
intervals [tn, tn+1 − 1] are disjoint. Because k ∈ K, k must be of the form ti for
some i and the condition m ∈ Nk is tm ≤ ti ≤ tm+1 − 1 which forces m = i. The
double sum becomes a single sum and (3.5) simplifies to (3.2). If we simplify (3.6)
in the same way the resulting expression is clearly dominated by (3.2).
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