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Abstract. The distance from the identity operator I to H∗, the dual of the
Hardy averaging operator, is studied on the cone of nonnegative, nonincreasing
functions in Lebesgue space. The exact value is obtained. Optimal lower bounds
are also given for difference, H∗ − I, of these two operators acting on the same
cone. A positive answer is given to a conjecture made in “The norm of Hardy-type
oscillation operators in the discrete and continuous settings” by A. Ben Said, S.
Boza, and J. Soria. Preprint, 2024. In addition, a direct comparison, with optimal
constants, is given between the operators H − I and H∗ − I acting on the cone.

1. Introduction

The classical Hardy averaging operator H and its dual operator H∗ are given by

Hf(x) =
1

x

∫ x

0

f(t) dt and H∗f(x) =

∫ ∞

x

f(t)
dt

t
.

They are bounded operators on Lp = Lp(0,∞) when 1 < p < ∞, but are not
bounded below. Indeed, neither is bounded below even when restricted to nonneg-
ative functions in Lp. However, on nonnegative functions, the norms ∥Hf∥p and
∥H∗f∥p are equivalent to each other. Kolyada, in [9], completed the investigation
begun in [13] and [4] on the optimal constants for this equivalence. A key idea in
this work connects it with finding optimal upper and lower bounds for the operator
H − I restricted to nonnegative, nonincreasing functions.

Theorem 1.1 ([9]). Let 1 < p < ∞ and let f be a nonnegative, nonincreasing
function. Then

(p− 1)−1/p∥f∥p ≤ ∥(H − I)f∥p ≤ (p− 1)−1∥f∥p, (1)

if 1 < p ≤ 2, and

(p− 1)−1∥f∥p ≤ ∥(H − I)f∥p ≤ (p− 1)−1/p∥f∥p, (2)

if 2 ≤ p < ∞. The constants p−1 and (p−1)1/p in (1) and (2) are the best possible.

The right-hand inequalities in (1) and (2) show that the distance from H to I,
operating on the cone of nonnegative, nonincreasing functions in Lp, is (p − 1)−1

when 1 < p ≤ 2 and is (p− 1)−1/p when 2 ≤ p < ∞.
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The operator H − I arises naturally in other, widely separated contexts, for ex-
ample, the complex Beurling-Ahlfors transform reduces to H − I when restricted to
radial functions, see [1] and [11]. When p = 2, H − I is a Hilbert space isometry
that is unitarily equivalent to the unilateral shift, see [7]. It has been linked to the
Laguerre polynomials in [13]. In the theory of interpolation of operators, it acts
on rearrangements of functions (nonnegative, nonincreasing functions) to give an
equivalent norm in Lorentz spaces, see [2, page 384].

Recent work onH−I and its discrete analogue may be found in [5, 10, 8, 12, 6] but
systematic investigation of its dual operator H∗ − I is only beginning. The authors
of [3] proved that the distance from H∗ to I, operating on the cone of nonnegative,
nonincreasing functions in Lp, is p − 1 when p ≥ 2 and is 2/e when p = 1. They

also conjectured that when 1 < p < 2, the distance is C
1/p
p , where

Cp =

∫ 1

0

∣∣∣(H∗ − I)χ(0,1)(x)
∣∣∣p dx =

∫ 1

0

|1 + ln x|p dx. (3)

That is, they conjectured that for all nonnegative, nonincreasing functions f ,

∥(H∗ − I)f∥p ≤ C1/p
p ∥f∥p

and C
1/p
p is the smallest constant for which this holds.

In the present article, this conjecture is verified and optimal lower bounds for
H∗ − I are established. For easy comparison, results are presented in the form of
Theorem 1.1. Our main result is the following theorem.

Theorem 1.2. Let 1 ≤ p < ∞. If f is nonnegative and nonincreasing, then

(p− 1)∥f∥p ≤ ∥(H∗ − I)f∥p ≤ C1/p
p ∥f∥p (4)

if 1 ≤ p ≤ 2 and

C1/p
p ∥f∥p ≤ ∥(H∗ − I)f∥p ≤ (p− 1)∥f∥p (5)

if 2 ≤ p < ∞. The constants p− 1 and C
1/p
p are optimal in both (4) and (5).

The case p = 1 of (4) and the second inequality in (5) are included here for
the convenience of the reader. Both were proved in [3], including optimality of the
constants C1 = 2/e and p− 1. We do not reproduce the proofs here. The remaining
three inequalities, in the case p > 1, are proved in Theorems 2.2 and 2.4 below.

Some consequences of the main results are given in Corollary 2.5, which shows
that the results of Theorem 1.2 remain optimal on a smaller cone, and in Corollary
2.6, which gives optimal constants for inequalities relating H − I and H∗− I on the
original cone of nonnegative, nonincreasing functions.

The final section of the paper is concerned with properties of the constant Cp

considered as a function of p.

Remark 1.3. If f is a nonnegative, measurable function on (0,∞) that takes the
value ∞ on a set of measure zero, then f , Hf , H∗f , (H − I)f and (H∗ − I)f are
well-defined but may take the value ∞ on a set of positive measure. However, if f
is allowed to take the value ∞ on a set of positive measure, (H− I)f and (H∗− I)f
may not be well-defined because ∞−∞ may occur. This is why we must restrict
the domain of the operator (H∗ − I)H∗ encountered in Corollary 2.5.
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2. Main results

We begin by introducing a family of test functions that will be used in Theorem
2.2 and Corollaries 2.5 and 2.6.

Lemma 2.1. Let p > 1, gq(x) = 1
q
x−1/qχ(1,∞)(x) and fq = H∗gq for 1 < q < p.

Then gq, fq, fq − gq ∈ Lp are nonnegative, fq, fq − gq are nonincreasing,

lim
q→p−

∥(H∗ − I)fq∥p
∥fq∥p

= lim
q→p−

∥(H∗2 −H∗)gq∥p
∥H∗g∥p

= p− 1, (6)

and

lim
q→p−

∥(H∗ − I)(fq − gq)∥p
∥(H − I)(fq − gq)∥p

= lim
q→p−

∥(H∗ − I)2gq∥p
∥gq∥p

= (p− 1)2. (7)

Proof. Observe that 0 ≤ gq ∈ Lp and set ε = q(p−1)/p(p− q)1/p so that ε∥gq∥p = 1.
Fix a polynomial U . Let V be the polynomial satisfying V (z)z = U(z+p)−U(p).

An easy calculation shows that (H∗ − qI)gq = χ(0,1) and it follows that

U(H∗)gq − U(pI)gq = V (H∗ − pI)(H∗ − pI)gq = V (H∗ − pI)(χ(0,1) + (q − p)gq).

Since H∗ is bounded on Lp, so is V (H∗ − pI). Let N denote its operator norm. By
the triangle inequality and the calculation ∥χ(0,1)∥p = 1,∣∣∥U(H∗)gq∥p−∥U(p)gq∥

∣∣ ≤ ∥V (H∗−pI)(χ(0,1)+(q−p)gq)∥p ≤ N(1+(p− q)∥gq∥p).
Multiplying through by ε and using ε∥gq∥p = 1 yields∣∣ε∥U(H∗)gq∥p − |U(p)|

∣∣ ≤ εN +N(p− q) → 0

as q → p−. (Clearly, ε → 0 as q → p−.) We conclude that

lim
q→p−

ε∥U(H∗)gq∥ = |U(p)|. (8)

It is easy to see that fq = χ(0,1)+ qgq and fq − gq = χ(0,1)+(q−1)gq are nonnegative
and nonincreasing. The definition of fq and the identity (H − I)(H∗ − I) = I prove
the first equations in both (6) and (7). Choose appropriate polynomials U in (8) to
verify the second equations in (6) and (7). This completes the proof. □

A known result for H − I is the key to proving the first inequality in (4).

Theorem 2.2. Let 1 < p ≤ 2 and let f be a nonnegative, nonincreasing function.
Then

(p− 1)∥f∥p ≤ ∥(H∗ − I)f∥p. (9)

The constant p− 1 in (9) is optimal.

Proof. The inequality

∥(H − I)g∥p ≤ (p− 1)−1∥g∥p, g ∈ Lp, (10)

appears as [1, Theorem 4.1]. For other proofs of (10), see [11] and those cited in its
introduction. An elementary proof appears in [10, Corollary 5].

If (H∗−I)f /∈ Lp, inequality (9) holds trivially. If (H∗−I)f ∈ Lp, then inequality
(10), with g = (H∗ − I)f , and the identity (H − I)(H∗ − I) = I show that f ∈ Lp

and
(p− 1)∥f∥p = (p− 1)∥(H − I)(H∗ − I)f∥p ≤ ∥(H∗ − I)f∥p

as required.
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Equation (6) of Lemma 2.1 shows that if p−1 were replaced by a larger constant,
then inequality (9) would fail for some nonnegative, nonincreasing function fq. So
p− 1 is optimal in (9). □

The second inequality in (4) and the first inequality in (5) will be handled together.
The next lemma isolates a technical portion of the proof of Theorem 2.4.

We use the differentiation formula d
dz
|z|q = q|z|q−2z in the proof. It is valid for all

nonzero z and all real q. Note that if q > 1, the right-hand side extends continuously
to z = 0.

Lemma 2.3. Let u > 0 and 0 ≤ t ≤ 1. For r ≥ 0, set

h(r) = er
∫ e−r

0

|1 + ln x|p dx.

If 1 < p ≤ 2, then

h(t1/pu) ≤ (1− t)h(0) + th(u).

If p > 2, then

h(t1/pu) ≥ (1− t)h(0) + th(u).

Proof. To cover both cases, we write “≤∗” to mean “≤” when 1 < p ≤ 2 and to
mean “≥” when p ≥ 2.

We will use h(r) in a different form. Substitute x = e−y to obtain

h(r) = er
∫ ∞

r

|y − 1|pe−y dy.

Now fix u > 0 and let r(t) = t1/pu. We will write r, r′, and r′′ instead of r(t),
r′(t), and r′′(t). Observe that r′′r = (1− p)(r′)2.

Since
d

dy
(|y − 1|pe−y) = p|y − 1|p−2(y − 1)e−y − |y − 1|pe−y

is continuous, we may integrate both sides and simplify to get

per
∫ ∞

r

|y − 1|p−2(y − 1)e−y dy = h(r)− |r − 1|p. (11)

Also, since |y− 1|p−2(y− 1)e−y extends to be continuous at y = 1 and its derivative,

d

dy
(|y − 1|p−2(y − 1)e−y)

= (p− 2)|y − 1|p−4(y − 1)2e−y + |y − 1|p−2e−y − |y − 1|p−2(y − 1)e−y

= (p− 1)|y − 1|p−2e−y − |y − 1|p−2(y − 1)e−y,

is continuous except at y = 1 we may integrate both sides and simplify to get

(p−1)er
∫ ∞

r

|y−1|p−2e−y dy = er
∫ ∞

r

|y−1|p−2(y−1)e−y dy−|r−1|p−2(r−1). (12)

Next, we compute two derivatives of h(r) with respect to t. By (11),

d

dt
h(r) = (h(r)− |r − 1|p)r′ =

(
per

∫ ∞

r

|y − 1|p−2(y − 1)e−y dy
)
r′.
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By (12), and the observation r′′r = (1− p)(r′)2,

d2

dt2
h(r) = p

(
er

∫ ∞

r

|y − 1|p−2(y − 1)e−y dy − |r − 1|p−2(r − 1)
)
(r′)2

+
(
per

∫ ∞

r

|y − 1|p−2(y − 1)e−y dy
)
r′′

=
p

r
(p− 1)er(r′)2

(
r

∫ ∞

r

|y − 1|p−2e−y dy −
∫ ∞

r

|y − 1|p−2(y − 1)e−y dy
)
.

Now let

g(s) = s

∫ ∞

s

|y − 1|p−2e−y dy −
∫ ∞

s

|y − 1|p−2(y − 1)e−y dy.

Taking r = 0 in (11) shows

g(0) = −
∫ ∞

0

|y − 1|p−1(y − 1)e−y dy = 1
p
(1− h(0)).

But Hölder’s inequality and a bit of calculus shows that

h(0)1/p =
(∫ 1

0

|1 + ln x|p dx
)1/p

≤∗
(∫ 1

0

|1 + ln x|2 dx
)1/2

= 1,

so 0 ≤∗ g(0). In particular, if p = 2, then g(0) = 0.
Clearly,

lim
s→∞

∫ ∞

s

|y − 1|p−2(y − 1)e−y dy = 0.

Also, by l’Hospital’s rule

lim
s→∞

∫∞
s

|y − 1|p−2e−y dy

s−1
= lim

s→∞

−|s− 1|p−2e−s

−s−2
= 0.

Thus, g(s) → 0 as s → ∞.
If s ̸= 1,

g′(s) =

∫ ∞

s

|y− 1|p−2e−y dy− |s− 1|p−2e−s and g′′(s) = (p− 2)(1− s)|s− 1|p−4e−s.

If p = 2, g′(s) = 0 and g(s) = g(0) = 0. If 1 < p < 2, g is concave on (0, 1) and
convex on (1,∞). It follows that g decreases to zero on (1,∞), that g(1) > 0, that
g has no local minimum in (0, 1) and that g ≥ 0 on (0, 1). If p > 2, g is convex
on (0, 1) and concave on (1,∞). It follows that g increases to zero on (1,∞), that
g(1) < 0, that g has no local maximum on (0, 1) and that g ≤ 0 on (0, 1). We have

shown that 0 ≤∗ g(s) for 0 < s < ∞ and, taking s = r, that 0 ≤∗ d2

dt2
h(r).

We conclude that h(r) is a convex function of t on [0, 1] when 1 < p ≤ 2 and h(r)
is a concave function of t on [0, 1] when p ≥ 2. When t = 0, r = 0 and when t = 1,
r = u. Thus, for any t ∈ [0, 1] we have h(t1/pu) = h(r) ≤∗ (1 − t)h(0) + th(u) as
required. □

Theorem 2.4. Let f be a nonnegative, nonincreasing function. If 1 < p ≤ 2, then

∥(H∗ − I)f∥pp ≤ Cp∥f∥pp.
If p ≥ 2, then

∥(H∗ − I)f∥pp ≥ Cp∥f∥pp.
In both cases, Cp is the optimal constant for which the inequality holds.
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Proof. To cover both cases, we write “≤∗” to mean “≤” when 1 < p ≤ 2 and to
mean “≥” when p ≥ 2. Taking f = χ(0,1) reduces both inequalities above to equality,
which will show that the constant Cp is optimal once we prove that both inequalities
hold. As in Lemma 2.3, let

h(r) = er
∫ e−r

0

|1 + ln x|p dx.

Observe that h(0) = Cp.
As mentioned earlier, the operator H∗ − I is bounded above and below on Lp.

Thus, it suffices to prove the theorem for simple functions f of the following form:
Let a0 = 0 < a1 < · · · < aN < ∞, b1 > · · · > bN > 0 = bN+1 and set dn = ln an for
n = 0, . . . , N , so d0 = −∞ < d1 < · · · < dN . Define

f =
N∑

n=1

bnχ(an−1,an].

For convenience, set

An =

∫ an

an−1

∣∣∣∣ ∫ ∞

x

f(t)
dt

t
− f(x)

∣∣∣∣p dx, n = 1, 2, . . . , N.

Since (H∗ − I)f is supported on (0, aN ],

∥(H∗ − I)f∥pp =
N∑

n=1

An.

If an−1 < x ≤ an, then∫ ∞

x

f(t)
dt

t
− f(x) =

∫ an

x

bn
dt

t
+

∫ an+1

an

bn+1
dt

t
+ · · ·+

∫ aN

aN−1

bN
dt

t
− bn

= bn(dn − lnx) + bn+1(dn+1 − dn) + · · ·+ bN(dN − dN−1)− bn

= bn(Sn − 1− lnx),

where Sn is chosen so that

bnSn = bndn +
N∑

k=n+1

bk(dk − dk−1).

Observe that bn(Sn−dn) = bn+1(Sn+1−dn) for n = 1, . . . , N−1 and bN(SN−dN) = 0.
Let ln z = lnx− Sn to get

An

bpn
=

∫ an

an−1

|Sn − 1− lnx|p dx = eSn

∫ edn−Sn

edn−1−Sn

|1 + ln z|p dz

= anh(Sn − dn)− an−1h(Sn − dn−1)

= anh((bn+1/bn)(Sn+1 − dn))− an−1h(Sn − dn−1).

Taking t = (bn+1/bn)
p and u = Sn+1 − dn in Lemma 2.3, we have

anh((bn+1/bn)(Sn+1 − dn)) ≤∗an(1− (bn+1/bn)
p)Cp + an(bn+1/bn)

ph(Sn+1 − dn).

Multiplying through by bpn, we get

An ≤∗an(b
p
n − bpn+1)Cp + [bpn+1anh(Sn+1 − dn)− bpnan−1h(Sn − dn−1)].
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When we sum over n, the bracketed terms telescope to zero, so

N∑
n=1

An ≤∗Cp

N∑
n=1

an(b
p
n − bpn+1) = Cp

N∑
n=1

bpn(an − an−1) = Cp

∫ ∞

0

f(t)p dt = Cp∥f∥pp.

This completes the proof. □

Let g be a nonnegative, measurable function on (0,∞). Then

H∗2g(x) = H∗(H∗g)(x) =

∫ ∞

x

ln(s/x)g(s)
ds

s
.

The following result shows that if 1 < p < ∞, then for all such g ≥ 0 for which
(H∗2 −H∗)g is defined, the Lp-norms of (H∗2 −H∗)g and H∗g are equivalent.

Corollary 2.5. Let 1 < p < ∞ and let g be a nonnegative, measurable function
such that H∗g(x) < ∞ for all x > 0. Then,

(p− 1)∥H∗g∥p ≤ ∥(H∗2 −H∗)g∥p ≤ C1/p
p ∥H∗g∥p (13)

if 1 < p ≤ 2, and

C1/p
p ∥H∗g∥p ≤ ∥(H∗2 −H∗)g∥p ≤ (p− 1)∥H∗g∥p (14)

if 2 ≤ p < ∞. The constants p− 1 and C
1/p
p are optimal in both (13) and (14).

Proof. Set f = H∗g and observe that f is nonnegative and nonincreasing. Since
(H∗2 −H∗)g = (H∗ − I)f , Theorem 1.2 shows that inequalities (13) and (14) both
hold.

Equation (6) of Lemma 2.1 shows that if p − 1 were replaced by larger constant
in inequality (13) or by a smaller constant in inequality (14), then that inequality
would fail for some nonnegative function gq for which H∗gq(x) < ∞ for all x > 0.
This shows p− 1 is optimal in both (13) and (14).

It remains to show that the constant C
1/p
p is optimal in both (13) and (14). Let

kε(s) = (s/ε)χ(1−ε,1)(s). Then H∗kε(t) = min(1, (1− t)/ε)χ(0,1)(t). A simple sketch
shows that as ε goes to zero, the piecewise linear functions H∗kε increase pointwise
to χ(0,1). The monotone convergence theorem implies that H∗kε converges to χ(0,1)

in Lp. But H∗ and H∗ − I are continuous maps on Lp, so we have

∥H∗kε∥p → ∥χ(0,1)∥p = 1 and ∥(H∗2 −H∗)kε∥p → ∥(H∗ − I)χ(0,1)∥p = C1/p
p .

It follows that C
1/p
p is the smallest constant for which (13) holds and the largest

constant for which (14) holds. This completes the proof. □

Combining Theorems 1.2 with 1.1 gives the best constants in inequalities that
relate H∗ − I and H − I for decreasing functions.

Corollary 2.6. Let 1 < p < ∞ and let f be a nonnegative, nonincreasing function.
Then

(p− 1)2∥(H − I)f∥p ≤ ∥(H∗ − I)f∥p ≤ C1/p
p (p− 1)1/p∥(H − I)f∥p, (15)

if 1 < p ≤ 2, and

C1/p
p (p− 1)1/p∥(H − I)f∥p ≤ ∥(H∗ − I)f∥p ≤ (p− 1)2∥(H − I)f∥p, (16)

if 2 ≤ p < ∞. The constants C
1/p
p (p− 1)1/p and (p− 1)2 are the best possible in both

(15) and (16).
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Proof. First suppose 1 ≤ p ≤ 2. Using (4) of Theorem 1.2 and (1) of Theorem 1.1
we get

(p− 1)2∥(H − I)f∥p ≤ (p− 1)∥f∥p ≤ ∥(H∗ − I)f∥p
and

∥(H∗ − I)f∥p ≤ C1/p
p ∥f∥p ≤ C1/p

p (p− 1)1/p∥(H − I)f∥p
to give (15). Next we suppose 2 ≤ p < ∞. Using (5) of Theorem 1.2 and (2) of
Theorem 1.1 we get

C1/p
p (p− 1)1/p∥(H − I)f∥p ≤ C1/p

p ∥f∥p ≤ ∥(H∗ − I)f∥p
and

∥(H∗ − I)f∥p ≤ (p− 1)∥f∥p ≤ (p− 1)2∥(H − I)f∥p
to give (16).

To see that the constant C
1/p
p (p − 1)1/p is optimal, take f = χ(0,1). We get

∥(H∗ − I)f∥p = C
1/p
p from (3). Also,

(H − I)f(x) =
1

x

∫ x

0

χ(0,1)(t) dt− χ(0,1)(x) =
1

x
χ(1,∞)(x)

so

∥(H − I)f∥p =
(∫ ∞

x

x−p dx
)1/p

= (p− 1)−1/p.

It follows that no smaller constant is possible in the second inequality of (15) and
no larger constant is possible in the first inequality of (16).

For optimality of the constant (p − 1)2, we apply Lemma 2.1, taking f to be
fq − gq. Equation (7) shows that no larger constant will satisfy the first inequality
in (15) and no smaller constant will satisfy the second inequality in (16). □

3. Behavior of the optimal constants

Recall that

Cp =

∫ 1

0

|1 + ln x|p dx.

Both Cp and C
1/p
p appear above as best constants. Here they are considered as

functions of p. We list some easily obtained properties of Cp and C
1/p
p .

(a) The integral defining Cp converges for 0 < p < ∞.
(b) A bit of calculus shows that C1 = 2/e and C2 = 1.

(c) C
1/p
p is a strictly increasing function of p for 0 < p < ∞: If 0 < p < q < ∞,

then Hölder’s inequality with indices q/p and q/(q − p) implies

C1/p
p =

(∫ 1

0

|1 + ln x|p dx
)1/p

≤
(∫ 1

0

|1 + ln x|q dx
)1/q(∫ 1

0

dx
)(q−p)/(pq)

= C1/q
q .

Since |1 + ln x| is not constant, the inequality is strict.
(d) Well-known Hölder’s inequality arguments, much like the one above, show that

ln(Cp) and ln(Cp
1/p) are convex functions of p on (0,∞).

(e) Cp is a strictly increasing function of p for 2 ≤ p < ∞: If 2 ≤ p < q, then

C
1/q
q > C

1/2
2 = 1 so Cq > 1 and we have Cq < C

q/p
q . This shows

Cp < Cp/q
q ≤ (Cq/p

q )p/q = Cq.
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(f) Cp is not an increasing function of p for 0 < p ≤ 1: If 0 < p ≤ 1, the inequality

|1 + ln x|p ≤ (|1 + ln x|+ 1)p ≤ |1 + ln x|+ 1,

together with the dominated convergence theorem, shows that limp→0+ Cp = 1.
But C1 = 2/e < 1.

(g) C
1/p
p does not tend to zero as p → 0: By l’Hospital’s rule and a dominated

convergence argument similar to the one in the previous item,

lim
p→0+

ln(Cp)

p
= lim

p→0+

∫ 1

0
|1 + ln x|p ln(|1 + ln x|) dx∫ 1

0
|1 + ln x|p dx

=

∫ 1

0

ln(|1 + ln x|) dx.

Thus,

lim
p→0+

C1/p
p = exp

(∫ 1

0

ln(|1 + ln x|) dx
)
.

(h) Cp is a strictly increasing function of p for 1 ≤ p ≤ 2. This is included in the
next proposition.

Proposition 3.1. For p ≥ 1, Cp is a strictly increasing function of p.

Proof. Let p > 0. For each positive base b ̸= 1, the exponential function p 7→ bp is
strictly convex. It follows that if 0 < p0 < p1, 0 < θ < 1, and p = (1 − θ)p0 + θp1,
then bp < (1−θ)bp0+θbp1 . Taking b = |1+lnx| and integrating with respect to x, we
get Cp < (1− θ)Cp0 + θCp1 . That is, Cp is a strictly convex function for 0 < p < ∞.
(Because logarithmic convexity implies convexity, this follows from item (d), above,
but we prefer the direct argument.) In particular, d

dp
Cp is strictly increasing for

0 < p < ∞. Therefore, to show that Cp is strictly increasing for 1 ≤ p < ∞, it
suffices to show that d

dp
Cp ≥ 0 when p = 1.

For this, we split the integral defining Cp into two parts, letting y = −1− lnx in
the first and letting y = 1 + lnx in the second. So

Cp =

∫ 1/e

0

(−1− lnx)p dx+

∫ 1

1/e

(1 + ln x)p dx =

∫ ∞

0

ype−y dy +

∫ 1

0

ypey dy.

Recognizing the first term as a gamma function and expressing the second as a
power series, we get

Cp = Γ(p+ 1) +
∞∑
k=0

1

k!

∫ 1

0

yk+p dy = Γ(p+ 1) +
∞∑
k=0

1

k!

1

k + p+ 1
.

Differentiating the uniformly convergent sum term by term yields

d

dp
Cp = Γ′(p+ 1)−

∞∑
k=0

1

k!

1

(k + p+ 1)2
.

Taking p = 1 in the first term we use the formula Γ′(2) = 1−γ. Here γ is the Euler-
Mascheroni constant, which is known to have approximate value 0.5772156649 . . . .
Thus Γ′(2) > 1− 0.578 = 0.421.

Taking p = 1 in the second term, we have
∞∑
k=0

1

k!

1

(k + 2)2
<

1

4
+

1

9
+

∞∑
k=2

1

(k + 2)!
=

1

4
+

1

9
+ e−

(
1 + 1 +

1

2
+

1

6

)
.

A calculation shows this is less than 0.42 and we obtain d
dp
Cp > 0.421 − 0.42 > 0

when p = 1. This completes the proof. □
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