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Abstract. The existence of Laplace representations for functions in weighted Hardy

spaces on the right half plane is established. The method uses an extension of an in-
equality involving Nörlund matrices and corresponding convolution operators on the

line. Analogous inequalities are proved for power series representations of functions

in weighted Hardy spaces on the disc.

1. Introduction

The map that associates an analytic function in the disc with its sequence of
power series coefficients may be viewed as an extension of the Fourier transform on
the circle. If the analytic function extends to be continuous on the circle then the
two coincide. The complex Laplace transform

LF (z) =
∫ ∞

0

e−tzF (t) dt, Re z > 0,

associates a (suitable) function defined on (0,∞) with an analytic function in the
right half plane. This may be viewed as an extension of the Fourier transform
on the line because if the analytic function extends to be continuous (and not too
large) on the line Re z = 0, the Laplace transform LF is just the (Poisson extension
of the) Fourier transform of F . It is therefore appropriate to view the power series
representation of an analytic function in the disc and the Laplace representation of
an analytic function in the half plane as analogous constructions. Moreover, both
are intimately related to the Fourier transform.

In this paper we explore the relationship between the weighted Hardy space
norms of analytic functions in the disc and in the half plane and the weighted
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Lebegue space norms of their power series and Laplace representations respectively.
In particular we identify a large class of weighted Hardy spaces in the half plane
whose functions do have Laplace representations.

Let 1 ≤ p < ∞ and suppose that w(z) is a non-negative, locally integrable
function defined on the disc D = {z : |z| < 1}. The weighted Hardy space Hp

w(D)
is the collection of functions, analytic in D, which satisfy

‖f‖Hpw(D) = sup
0<r<1

(∫ π

−π
|f(reiθ)|pw(reiθ)

dθ

2π

)1/p

<∞.

Similarly, if the weight w is defined in the right half plane {z : Re z > 0}, the
weighted Hardy space Hp

w is the collection of functions, analytic in the right half
plane, satisfying

‖f‖Hpw = sup
x>0

(∫ ∞
−∞
|f(x+ iy)|pw(x+ iy) dy

)1/p

<∞.

The classical Hardy spaces Hp(D) and Hp are obtained by taking w ≡ 1.
It is well known that if 1 < p ≤ 2, then every f ∈ Hp(D) can be represented by a

power series
∑∞
n=0 cnz

n with {cn} ∈ lp′ and almost as well known that every f ∈ Hp

can be represented as a Laplace transform LF with F ∈ Lp
′
(0,∞). (Here and

throughout we use a prime ′ to denote harmonic conjugate so that 1/p+ 1/p′ = 1.)
Laplace representations for functions in weighted Hardy spaces were introduced

by Rooney in several papers leading up to [5]. He showed that if 1 < r ≤ min(p, p′),
p ≤ q ≤ r′, and w(z) = |z|(p/r)−1 then every f in Hp

w has a representation f = LF

for some F with
∫∞

0
|F (t)|qt(q/r′)−1 dt <∞. The key to Rooney’s approach was his

proof of weighted Lebesgue norm inequalities for the Fourier transform. Benedetto,
Heinig and Johnson, in [1] and [2], studied Fourier inequalities in weighted Lebesgue
spaces and applied their results to give Laplace representations for functions in very
general weighted Hardy spaces.

The results of the present paper do not rely on weighted Lebesgue space norm
inequalities for the Fourier transform but are derived instead from inequalities for
a convolution operator which corresponds, in sequence spaces, to the action of a
Nörlund matrix. With this new approach we obtain Laplace representations for
functions in weighted Hardy spaces for a class of weights that is not included in
previous results. We include examples of power weights in this new class for which
Laplace representations were not previously known.

Nörlund matrices are discussed in the next section together with a result il-
lustrating their connection with convolution and power series representations. In
Section 3, we extend the results for Nörlund matrices and prove the analogous
convolution inequality on the half line. The final section contains the Laplace and
power series representation theorems and examples.

2. Nörlund Matrices and Power Series

Definition 2.1. Suppose that {an}n≥0 is a sequence of non-negative real numbers
with a0 > 0 and set An = a0 + a1 + · · ·+ an. The Nörlund matrix Na is defined by
(Na)n,k = an−k/An for 0 ≤ k ≤ n and (Na)n,k = 0 otherwise.



FROM NÖRLUND MATRICES TO LAPLACE REPRESENTATIONS 3

In 1984, Borwein and Cass showed that Na is a bounded operator on lq whenever
{nan/An} is a bounded sequence. We state this result as an inequality.

Proposition 2.2(Borwein and Cass [3]). Suppose that {an}n≥0 is a sequence
of non-negative real numbers with a0 > 0, define An = a0 + · · ·+ an as above, and
suppose that {nan/An} is bounded. Then, for q ∈ (1,∞), there exists a constant C
such that ( ∞∑

n=0

∣∣∣∣∣
n∑
k=0

an−kxk

∣∣∣∣∣
q

A−qn

)1/q

≤ C

( ∞∑
k=0

|xk|q
)1/q

for all sequences {xk}k≥0.

We recognize the inner sum above as the coefficient of zn in the product of the two
power series

∑∞
n=0 anz

n and
∑∞
n=0 xnz

n. Viewed in this way the inequality becomes
a weighted convolution inequality with {A−qn } as the weight sequence. To pass from
the convolution inequality to our first theorem on power series representation we
need two lemmas.

Lemma 2.3. (a) If f is meromorphic in the unit disc D and

sup
0<r<1

∫ π

−π
|f(reiθ)|q dθ

2π
<∞

for some q ≥ 1 then f is analytic in D.
(b) If f is meromorphic in the half plane {z : Re z > 0} and

sup
x>0

∫ ∞
−∞
|f(x+ iy)|q dy <∞

for some q ≥ 1 then f is analytic in {z : Re z > 0}.

Proof. It suffices to prove part (a) in the case q = 1 since that imposes the weakest
condition on f . First observe that the finiteness of the supremum in (a) as r → 0
shows that f is bounded near zero so f has no pole at 0. If we suppose that f
has a pole at a non-zero point a ∈ D then an easy estimate shows that the above
integral, with r = |a|, does not converge. We conclude that f has no pole in D and
hence is analytic there. Although in part (b) the case q = 1 is no longer a weaker
condition on f , that observation is still true locally and a similar argument shows
that the finiteness of the supremum in (b) precludes the possibility of f having a
pole in {z : Re z > 0}.

The next lemma shows that the hypothesis that {nan/An} be bounded is enough
to ensure that the an are the power series coefficients of a function which is analytic
in the disc. We thank David Borwein for the elegant proof.

Lemma 2.4. Let an and An be as in Proposition 2.2. Then the power series∑∞
n=0 anz

n converges in the unit disc.

Proof. Choose a positive integer M such that nan ≤ MAn. If we write this as
n(An − An−1) ≤ MAn, it can be rearranged to become An/An−1 ≤ n/(n −M).
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Now
An
AM

=
n∏

k=M+1

Ak
Ak−1

≤
n∏

k=M+1

k

k −M
≤ (1/M !)nM

and we get an ≤ (M/n)An ≤ (1/(M −1)!)AMnM−1 so lim supn→∞ |an|1/n ≤ 1 and
the radius of convergence of the power series is at least 1 as required.

We restrict ourselves to the case q = 2 in the next theorem to illustrate the
method. A more general result may be found in Section 4.

Theorem 2.5. Let an and An be as in Proposition 2.2 and let u(z) =
∑∞
n=0 anz

n.
Then there exists a constant C such that( ∞∑

n=0

|bn|2A−2
n

)1/2

≤ C‖g‖H2
|u|−2

for all analytic functions g(z) =
∑∞
n=0 bnz

n in the unit disc.

Proof. First we note that, by Lemma 2.4, u is analytic in the unit disc D. Fix
g(z) =

∑∞
n=0 bnz

n, analytic in D. If ‖g‖H2
|u|−2

is infinite then there is nothing to

prove so suppose it is finite. By Lemma 2.3(a), f = g/u is analytic in D. Writing
f(z) =

∑∞
n=0 xnz

n we can express the coefficients of g as

bn =
n∑
k=0

an−kxk.

Now we have, by Proposition 2.2 with q = 2, ∞∑
n=0

∣∣∣∣∣
n∑
k=0

an−kxk

∣∣∣∣∣
2

A−2
n

1/2

≤ C

( ∞∑
k=0

|xk|2
)1/2

which is, using the Parseval relation,( ∞∑
n=0

|bn|2A−2
n

)1/2

≤ C‖f‖H2 = C‖g‖H2
|u|−2

.

3. Weighted Convolution Inequalities

Our object in this section is to formulate analogues of Proposition 2.2, in the
first of which the sequence {an} is replaced by a function on the half line. We
consider two indices instead of one, allow a to take complex values, and eliminate
the condition that {nan/An} be bounded. The expense of these changes is a more
complicated definition of An but this is offset, in Section 4, by the benefit of being
able to prove quite general extensions of Theorem 2.5.

We begin by proving a variant of Schur’s lemma.
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Lemma 3.1. Suppose that X and T are measure spaces, 1 < p′ ≤ q < ∞ and
k(x, t) is a non-negative, measurable function on X×T . Define γ by γ/q+γ/p = 1.
If there exists a positive, measurable function u on T and a constant C such that

(3.1)
∫
X

k(x, t)γ
(∫

T

k(x, s)γu(s) ds
)q/p

dx ≤ Cqu(t)q/p

for almost every t ∈ T then the operator

Kf(x) =
∫
T

k(x, t)f(t) dt

is bounded from Lp
′
(T ) to Lq(X). Moreover, the norm of the operator K does not

exceed C.

Proof. Let f ∈ Lp′(T ). Since u is positive we can multiply and divide by u1/p and
apply Hölder’s inequality with indices p′ and p to get(∫

X

∣∣∣∣∫
T

k(x, t)f(t) dt
∣∣∣∣q dx)1/q

≤
(∫

X

(∫
T

k(x, t)γ/q+γ/p|f(t)|u(t)−1/pu(t)1/p dt

)q
dx

)1/q

≤

(∫
X

(∫
T

k(x, t)p
′γ/q|f(t)|p

′
u(t)−p

′/p dt

)q/p′ (∫
T

k(x, s)γu(s) ds
)q/p

dx

)1/q

.

We continue the estimate by bringing the second inner integral inside the first and
using Minkowski’s integral inequality with index q/p′. This yields(∫

X

∣∣∣∣∫
T

k(x, t)f(t) dt
∣∣∣∣q dx)1/q

≤

∫
X

(∫
T

k(x, t)p
′γ/q|f(t)|p

′
u(t)−p

′/p

(∫
T

k(x, s)γu(s) ds
)p′/p

dt

)q/p′
dx

1/q

=

∫
T

∫
X

[
k(x, t)p

′γ/q|f(t)|p
′
u(t)−p

′/p

(∫
T

k(x, s)γu(s) ds
)p′/p]q/p′

dx

p′/q

dt


1/p′

≤

∫
T

|f(t)|p
′
u(t)−p

′/p

(∫
X

k(x, t)γ
(∫

T

k(x, s)γu(s) ds
)q/p

dx

)p′/q
dt

1/p′

≤C
(∫

T

|f(t)|p
′
dt

)1/p′

where the last inequality is just the hypothesis (3.1). This completes the proof.
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Theorem 3.2. Suppose that 1 < p′ ≤ q < ∞, a is a locally integrable, complex-
valued function on [0,∞) and

(3.2) A(x) = max

((∫ x

0

|a(t)|γ dt
)1/γ

, sup
0<t≤x

t1/γ |a(t)|

)

where 1/γ = 1/p+1/q. Then there exists a constant C, independent of a, such that(∫ ∞
0

∣∣∣∣∫ x

0

a(x− t)F (t) dt
∣∣∣∣q A(x)−q dx

)1/q

≤ C
(∫ ∞

0

|F (t)|p
′
dt

)1/p′

for all functions F ∈ Lp′(0,∞).

Proof. Without loss of generality we may assume that a is non-negative. By Lemma
3.1 with k(x, t) = a(x−t)/A(x) and u(t) = t−1/q, it is enough to prove the estimates∫ x

0

(
a(x− s)
A(x)

)γ
s−1/q ds ≤ c1x−1/q and

∫ ∞
t

(
a(x− t)
A(x)

)γ
x−1/p dx ≤ c2t−1/p

for some constants c1 and c2 depending only on p and q.
Following the proof in [3], we look at the first estimate in two parts, splitting the

range of integration at s = x/2. If 0 < s < x/2 then 0 < x− s < x so the definition
of A yields A(x) ≥ (x− s)1/γa(x− s) and we have∫ x/2

0

(
a(x− s)
A(x)

)γ
s−1/q ds ≤

∫ x/2

0

(x− s)−1s−1/q ds ≤ q′(x/2)−1/q.

If x/2 < s < x then∫ x

x/2

(
a(x− s)
A(x)

)γ
s−1/q ds ≤ (x/2)−1/qA(x)−γ

∫ x

x/2

a(x− s)γ ds ≤ (x/2)−1/q.

To establish the second estimate we split the integral at x = 2t. Since A(x) ≥
(x− t)1/γa(x− t) we have∫ ∞

2t

(
a(x− t)
A(x)

)γ
x−1/p dx ≤

∫ ∞
2t

(x− t)−1(x− t)−1/p dx = pt−1/p.

The other part follows from the fact that A is nondecreasing.∫ 2t

t

(
a(x− t)
A(x)

)γ
x−1/p dx ≤ t−1/pA(t)−γ

∫ 2t

t

a(x− t)γ dx ≤ t−1/p.

This completes the proof.

Note that for some functions a, we may have A ≡ ∞, in which case the theorem
holds trivially.
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Corollary 3.3. Suppose that 1 < p′ ≤ q < ∞, 1/γ = 1/p + 1/q, {an}n≥0 is a
sequence of complex numbers, and

(3.3) An = max

( n∑
k=0

|ak|γ
)1/γ

, max
0≤k≤n

k1/γ |ak|

 .

Then there exists a constant C, independent of the sequence {an}, such that( ∞∑
n=0

∣∣∣∣∣
n∑
k=0

an−kxk

∣∣∣∣∣
q

A−qn

)1/q

≤ C

( ∞∑
k=0

|xk|p
′

)1/p′

for all complex sequences {xk}k≥0.

This discrete version is proved in just the same way as Theorem 3.2. It does
generalize Proposition 2.2 since if p′ = q, {an} is a non-negative sequence, and
{nan/ (

∑n
k=0 ak)} is bounded, then max0≤k≤n kak is bounded above by a constant

multiple of
∑n
k=0 ak and we see that the new definition of An is comparable to the

original one. However, because of the new definition of An it is not, in general, a
theorem about Nörlund matrices.

4. Laplace representations in weighted Hp

Theorem 2.5 began with a sequence {an} and defined u(z) =
∑∞
n=0 anz

n to get
the Hardy space H2

|u|−2(D). Using this as a model we will start with a function a

and define u to be the Laplace transform

(4.1) u(z) =
∫ ∞

0

e−zta(t) dt.

This entails placing a condition on the function a, namely that the integral in (4.1)
converges absolutely to an analytic function on {z : Re z > 0}. This is a relatively
mild condition on a, weaker than a ∈ L1(0,∞) + L∞(0,∞) but stronger than the
local integrability assumed in Theorem 3.2.

Theorem 4.1. Suppose that 1 < p ≤ p′ ≤ q < ∞ and a is a locally integrable,
complex-valued function such that the integral in (4.1) converges absolutely to an
analytic function u on {z : Re z > 0}. Then to every g ∈ Hp

|u|−p there corresponds
a function G ∈ LqA−q (0,∞) such that g = LG and

(∫ ∞
0

|G|qA−q
)1/q

≤ C‖g‖Hp
|u|−p

.

Here A is defined by (3.2) and C is a constant independent of a and g.

Note that if A ≡ ∞ the representing function G still exists but the norm in-
equality is trivial.
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Proof. Suppose that g ∈ Hp
|u|−p and define f = g/u. By Lemma 2.3(b), f is analytic

and hence f ∈ Hp. Since 1 < p ≤ p′ we may use the special case p = r = q′ of [5,
Theorem 4.2] (originally due to Doetsch [4]) to see that f is the Laplace transform
LF of some function F ∈ Lp′(0,∞) and that

(4.2)
(∫ ∞

0

|F |p
′
)1/p′

≤M‖f‖Hp

for some constant M independent of f .
For each z with Re z > 0, since∫ ∞

0

∣∣e−ztF (t)
∣∣ dt ≤ (∫ ∞

0

e−p(Re z)t dt

)1/p(∫ ∞
0

|F (t)|p
′
dt

)1/p′

<∞,

and since ∫ ∞
0

∣∣e−zxa(x)
∣∣ dx

is finite by hypothesis, we see that e−ztF (t)e−z(x−t)a(x − t)χ(0,x)(t) is integrable
on (0,∞)× (0,∞). By Fubini’s theorem,

G(x) =
∫ x

0

a(x− t)F (t) dt

is defined for almost every x > 0 and e−zxG(x) is integrable on (0,∞). Moreover,
interchanging the order of the iterated integrals yields,∫ ∞

0

e−zxG(x) dx =
∫ ∞

0

e−ztF (t)
∫ ∞
t

e−z(x−t)a(x− t) dx dt = f(z)u(z) = g(z)

and we conclude that g = LG.
By Theorem 3.2 we have, using (4.2),(∫ ∞

0

|G|qA−q
)1/q

≤ C
(∫ ∞

0

|F |p
′
)1/p′

≤ CM‖f‖Hp = CM‖g‖Hp
|u|−p

so G ∈ LqA−q (0,∞) as required.

Example 4.2. Suppose that 1 < p ≤ p′ ≤ q < ∞. Take a(t) ≡ 1 and check that
(3.2) and (4.1) yield A(x) = x1/q+1/p and u(z) = 1/z respectively. Theorem 4.1
shows that every function g ∈ Hp

|z|p has a Laplace representation g = LG where
the function G satisfies the inequality

(4.3) ‖G‖Lq
t−1−q/p (0,∞) ≤ C‖g‖Hp|z|p .

These power weights are not included in Rooney’s results or in those of Benedetto,
Heinig and Johnson. This is explained by the reliance of those papers on Lebesgue
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space inequalities: The Lebesgue space Fourier inequality that corresponds to (4.3)
does not hold. This negative result follows from [1, Theorem 2] because the weight
pair (t−1/q−1/p, t) does not satisfy the Fp,q condition defined there.

Example 4.3. Suppose that 1 < p ≤ p′ ≤ q < ∞. Fix real numbers α and r
with 0 < r < q′. Set a(t) = eiαtt1/r−1/p−1. Straightforward calculations yield
A(x) ≈ t−1+1/r+1/q and u(z) ≈ (z − iα)1/p−1/r. Theorem 4.1 shows that every
function g ∈ Hp

|z−iα|p/r−1 has a Laplace representation g = LG for some function
G ∈ Lq

tq−q/r−1(0,∞).

The analogue of Theorem 4.1 in the disc is not needed to prove the existence
of power series representations, which exist for all functions analytic in D, but the
result is still of interest because the coefficient sequence is shown to be in a weighted
lq space.

Theorem 4.2. Suppose that 1 < p ≤ p′ ≤ q < ∞ and {an}n≥0 is a sequence of
complex numbers satisfying lim supn→∞ |an|1/n ≤ 1, and set u(z) =

∑∞
n=0 anz

n. If
g(z) =

∑∞
n=0 bnz

n is analytic in the unit disc then

( ∞∑
n=0

|bn|qA−qn

)1/q

≤ C‖g‖Hp
|u|−p

(D).

Here An is defined by (3.3) and C is a constant independent of {an} and g.

The proof is a simple combination of the techniques used in Theorem 2.5 and
Theorem 4.1 and is therefore omitted.
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