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Abstract.

A simple expression is presented that is equivalent to the norm of the Lp
v → Lq

u

embedding of the cone of quasi-concave functions in the case 0 < q < p < ∞. The
result is extended to more general cones and the case q = 1 is used to prove a

reduction principle which shows that questions of boundedness of operators on these

cones may be reduced to the boundedness of related operators on whole spaces. An
equivalent norm for the dual of the Lorentz space

Γp(v) =

{
f :

(∫ ∞

0
(f∗∗)pv

)1/p

<∞
}

is also given. The expression is simple and concrete. An application is made to

describe the weights for which the Hardy Littlewood Maximal Function is bounded

on these Lorentz spaces.

1. Introduction

The behaviour of the collection of non-negative, non-increasing functions in
weighted Lebesgue spaces is well understood. Since [6] and [9] in the early 50’s,
techniques involving properties of monotone functions have been used effectively
to address a wide variety of questions in weighted norm inequalities, interpolation
theory, and function space theory. For a few of the many see [1, 3, 7, 8, 13, 14, 15,
16, 17]. The study of the collection of concave functions has also had its successes.
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See [4, 5, 10, 11] and references there. Concave functions arise naturally in interpo-
lation theory and much of the recent work shows that they are of equal importance
in weighted norm inequalities and function spaces.

Rather than working with the collection of non-increasing, concave functions, it
is common to study the cone of quasi-concave functions. This is the set of non-
negative functions f defined on (0,∞) such that f(x) is non-decreasing and f(x)/x
is non-increasing. Passing between the two collections is routine and the latter is
more convenient for various reasons. The embedding question for this cone is a key
to effectively using properties of concave functions: For which indices p and q and
which weights u and v are the quasi-concave functions in Lp

v also in Lq
u?

Various partial answers to this question are available. The case 0 < p ≤ q < ∞
in particular has been simply characterized and in [10, 11] very tight bounds on the
norm of the embedding have been given. For the case 0 < q = 1 < p < ∞ sufficient
conditions which are similar but not identical to the necessary ones were obtained
in [17].

A complete answer to the embedding question was given in [5] but the conditions
given are complicated and difficult to apply. Our object here is to give simple
necessary and sufficient weight conditions that characterize the embedding of the
cone of quasi-concave functions from Lp

v to Lq
u. We also give explicit upper and

lower bounds on the norm of the embedding. This is accomplished in Theorem 2.6
and the embedding question for more general cones is answered in Theorem 2.7. In
Section 3, the results are applied to give a reduction principle for operators acting
on such cones. This shows the equivalence of the boundedness of an operator on
the cone with the boundedness of two related operators on related spaces.

The dual of the Lorentz space Γp(v) is characterized in Section 4. Theorem 4.1
gives a simple expression that is equivalent to the norm in the associate space,
the Köthe dual. As an application, in Section 5 we give weight conditions to
characterize the boundedness of the Hardy-Littlewood Maximal Function between
Lorentz spaces.

To study quasi-concave functions we need an operator on non-negative func-
tions whose images are quasi-concave functions. Although the generalized Stieltjes
transformation h 7→

∫∞
0

x
x+th(t) dt is used for this purpose by some authors, we

will adopt the equivalent operator

h 7→
∫ ∞

0

min(1, x/t)h(t) dt

which is also popular. The lack of smoothness in the kernel min(1, x/t) will not
bother us. It is important to note that the results we obtain can easily be re-cast
in term of generalized Stieltjes transformations if desired.

The weighted Lebesgue spaces already referred to are defined as follows. If v is a
non-negative, Lebesgue measurable function (a weight) on (0,∞) then the weighted
Lebesgue space Lp

v is the collection of Lebesgue measurable functions f on (0,∞)
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for which

‖f‖p,v ≡

{ (∫∞
0
|f |pv

)1/p
, 0 < p < ∞

ess sup{x:v(x)>0} |f(x)|, p = ∞

is finite. If v ≡ 1 we drop the weight and write Lp and ‖f‖p.
Throughout the paper, products of the form 0 · ∞ are taken to be zero. For

an index p we define p′ by 1/p + 1/p′ = 1. We say that the expressions C and
A are equivalent and write C ≈ A provided there are positive constants k and K
such that kA ≤ C ≤ KA. The constants depend only on the indices p and q. We
keep track of the constants in the statements of theorems but will often avoid such
details in the proofs, preferring to focus on essential features. In particular the
extended Minkowski inequality for 0 < s < ∞,

(1.1) min(1, 21/s−1)(‖f1‖s + ‖f2‖s) ≤ ‖f1 + f2‖s ≤ max(1, 21/s−1)(‖f1‖s + ‖f2‖s)

will be used repeatedly in the form

(1.2) ‖f1 + f2‖s ≈ ‖f1‖s + ‖f2‖s.

2. Hardy Inequalities and Concave Functions

In this section we give necessary and sufficient conditions on indices p, q and
weights u, v for the cone of quasi-concave functions in Lp

v to be embedded in Lq
u

when 0 < q < p < ∞. We also give upper and lower bounds for the norm of this
embedding. This result is in Theorem 2.6 while an analogue for more general cones
may be found in Theorem 2.7. See also Theorem 3.1. Corresponding known results
for the case 0 < p ≤ q < ∞ are stated in Proposition 2.8.

We begin by looking at the embedding into Lq
u of a smaller cone in L1

v. Known
weighted Hardy inequalities are used to give a weight characterization in this sit-
uation. From there we expand the cone to include all quasi-concave functions and
then use an invariance property of the cone of quasi-concave functions to pass from
L1

v to Lp
v.

Let L+ denote the collection of non-negative, measurable functions on (0,∞).
We say f ∈ L+ is quasi-concave and write f ∈ Ω0,1 provided f(x) is non-decreasing
and f(x)/x is non-increasing. More generally, if α + β > 0 we write f ∈ Ωα,β

provided xαf(x) is non-decreasing and x−βf(x) is non-increasing.
As mentioned we begin with weighted Hardy inequalities. Define the Hardy and

dual Hardy operators Hα and Hβ by

Hαh(x) = x−α

∫ x

0

tαh(t) dt and Hβh(x) = xβ

∫ ∞

x

t−βh(t) dt.

The sum of the two will arise frequently so for α+β > 0 we introduce the operator

(2.1) Hβ
αh(x) = Hαh(x) + Hβh(x) =

∫ ∞

0

min((t/x)α, (x/t)β)h(t) dt, h ∈ L+.
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Since we always suppose that α + β > 0, the second form for Hβ
α makes it

clear that xαHβ
αh(x) is non-decreasing and x−βHβ

a h(x) is non-increasing whenever
h ∈ L+. That is, Hβ

αL+ ⊆ Ωα,β . It also makes it easy to check that

(2.2)
∫ ∞

0

(Hβ
αh1)h2 =

∫ ∞

0

h1(Hα
β h2), h1, h2 ∈ L+.

Proposition 2.1. Suppose 0 < q < 1 and U, V ∈ L+. If V is non-increasing and
C0 is the least C for which(∫ ∞

0

(∫ x

0

h

)q

U(x) dx

)1/q

≤ C

∫ ∞

0

hV, h ∈ L+,

then

(1− q)(1−q)/qC0 ≤
(∫ ∞

0

V q/(q−1)(H0U)q/(1−q)U

)(1−q)/q

≤ C0/(q(1− q)).

If V is non-decreasing and C∞ is the least C for which(∫ ∞

0

(∫ ∞

x

h

)q

U(x) dx

)1/q

≤ C

∫ ∞

0

hV, h ∈ L+,

then

(1− q)(1−q)/qC∞ ≤
(∫ ∞

0

V q/(q−1)(H0U)q/(1−q)U

)(1−q)/q

≤ C∞/(q(1− q)).

Proof. The estimate for C0 is from [16, Theorem 3.3] and the one for C∞ follows
from the first by inversion (x → 1/x) on the half line.

These weighted Hardy inequalities can be combined to give a weight charac-
terization for the boundedness of the L1

v → Lq
u embedding of a sub-cone of the

quasi-concave functions. This sub-cone is the image L+ under the map H1
0 . Note

that
H1

0h(x) =
∫ ∞

0

min(1, x/t)h(x) dx =
∫ x

0

∫ ∞

y

h(t)
dt

t
dy

is non-decreasing and concave for all h ∈ L+. In particular, H1
0h is quasi-concave.

Theorem 2.2. If 0 < q < 1 and u, v ∈ L+ then

(2.3) sup
f∈H1

0L+

‖f‖q,u

‖f‖1,v
≈
(∫ ∞

0

(H0
1v)q/(q−1)(H0

q u)q/(1−q)v

)(1−q)/q

.
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More precisely, if the above equivalence is C ≈ A then m(q)A ≤ C ≤ M(q)A where

(2.4) m(q) = min(2−1, 21−1/q)q(1− q) and M(q) = max(21/q−1, 2)(1− q)1−1/q.

Proof. We prove only the equivalence and leave the careful tracking of constants
to the interested reader. The supremum in (2.3) above is the least constant C for
which

(2.5)
(∫ ∞

0

(H1
0h)qu

)1/q

≤ C

∫ ∞

0

(H1
0h)v, h ∈ L+.

Since ∫ ∞

0

(H1
0h)v =

∫ ∞

0

h(H0
1v)

the inequality (2.5) may be rewritten as(∫ ∞

0

(∫ x

0

h(t) dt + x

∫ ∞

x

h(t)
dt

t

)q

u(x) dx

)1/q

≤ C

∫ ∞

0

h(t)H0
1v(t) dt.

By (1.2),

(2.6) C ≈ C0 + C∞

where C0 and C∞ are the least constants for which

(2.7)

(∫ ∞

0

(∫ t

0

h(t) dt

)q

u(x) dx

)1/q

≤ C0

∫ ∞

0

h(t)H0
1v(t) dt, h ∈ L+,

and

(2.8)
(∫ ∞

0

(
x

∫ ∞

x

h(t)
dt

t

)q

u(x) dx

)1/q

≤ C∞

∫ ∞

0

h(t)H0
1v(t) dt, h ∈ L+,

hold, respectively. Since H0
1v is non-increasing, the first part of Proposition 2.1,

with V = H0
1v and U = u, applied to (2.7) shows that

C0 ≈
(∫ ∞

0

(H0
1v)q/(q−1)(H0u)q/(1−q)u

)(1−q)/q

.

To estimate C∞ we replace h(t)/t by h(t) in (2.8) and apply the second part of
Proposition 2.1, with V (t) = tH0

1v(t) and U(x) = xqu(x). Note that tH0
1v(t) is

non-decreasing. We get

C∞ ≈
(∫ ∞

0

(H0
1v)q/(q−1)(Hqu)q/(1−q)u

)(1−q)/q

.
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Adding the last two estimates and appealing to (2.6) yields

C ≈
(∫ ∞

0

(H0
1v)q/(q−1)(H0

q u)q/(1−q)u

)(1−q)/q

which completes the proof.

The connection between the cone of quasi-concave functions and the sub-cone
H1

0L+ is well understood. The next lemma sets out the features of this relationship
that we require here.

Lemma 2.3. Let f be a quasi-concave function and let f̃ be the least concave
majorant of f . Then 1

2 f̃ ≤ f ≤ f̃ and f̃ is the pointwise limit of an increasing
sequence of functions in H1

0L+.

Proof. The definition of quasi-concave in [2, Definition 2.5.6] is slightly stronger
than the one we give here, requiring that f also satisfy f(x) = 0 if and only
if x = 0. However, it is easy to see that only the zero function is lost by this
restriction. Thus, [2, Proposition 2.5.10] applies and we see that a quasi-concave
function f satisfies 1

2 f̃ ≤ f ≤ f̃ .
Since f̃ is non-negative and concave, we see that a = limx→0 f(x) and b =

limx→∞ f(x)/x exist and are non-negative. We may therefore write f̃(x) = a +
bx + g(x) where g is a non-negative, concave function satisfying limx→0 g(x) =
limx→∞ g(x)/x = 0. If we take hn(t) = anχ(0,1/n)(t) then H1

0hn(x) is a non-
decreasing sequence which converges pointwise to the constant function a as n →∞.
If we take hn(t) = btχ(n,n+1)(t) then H1

0hn(x) is a non-decreasing sequence which
converges pointwise to the function bx as n →∞. To complete the proof it remains
to show that g is also the pointwise limit of a non-decreasing sequence of functions
in H1

0L+.
The concave function g(x) has a derivative for almost every x, g′(x) is non-

increasing and since limx→0 g(x) = limx→∞ g(x)/x = 0 we have g(x) =
∫ x

0
g′(t) dt

and limx→∞ g′(x) = 0. Set

hn(t) = (g′(t)− g′((n + 1)t/n))/ log((n + 1)/n)

and check that ∫ ∞

y

hn(t)
dt

t
=
∫ (n+1)y/n

y

g′(t)
dt

t

/∫ (n+1)y/n

y

dt

t
.

These averages of g′ form a non-decreasing sequence indexed by n which converges
to g′(y) for almost every y. It follows that the functions

H1
0hn(x) =

∫ x

0

∫ ∞

y

hn(t)
dt

t
dy
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form a non-decreasing sequence in H1
0L+ which, by the Monotone Convergence

Theorem, converges to ∫ x

0

g′(y) dy = g(x).

This completes the proof.

With this, Theorem 2.2 extends to the quasi-concave functions.

Corollary 2.4. Suppose 0 < q < 1 and u, v ∈ L+.

sup
f∈Ω0,1

‖f‖q,u

‖f‖1,v
≈
(∫ ∞

0

(H0
1v)q/(q−1)(H0

q u)q/(1−q)u

)(1−q)/q

.

More precisely, if the above equivalence is C ≈ A then m(q)A ≤ C ≤ 2M(q)A
where m and M are given by (2.4).

Proof. The lower bound requires only the observation that H1
0L+ ⊆ Ω0,1. For

the upper bound we apply Lemma 2.3 to choose a non-decreasing sequence fn of
functions in H1

0L+ which converges pointwise to the least concave majorant f̃ of
f . By Theorem 2.2 and the Monotone Convergence Theorem,

‖f‖q,u ≤ ‖f̃‖q,u = lim
n→∞

‖fn‖q,u ≈ lim
n→∞

‖fn‖1,v = ‖f̃‖1,v ≤ 2‖f‖1,v.

The main advantage of working with Ω0,1 rather than H1
0L+ is this simple ob-

servation: Suppose p > 0.

(2.9) If f(x)p = g(xp) then f ∈ Ω0,1 if and only if g ∈ Ω0,1.

This gives us the means of introducing Lp-norms into the denominator.

Lemma 2.5. Suppose p, q ∈ (0,∞) and u, v ∈ L+. Then

sup
f∈Ω0,1

‖f‖q,u

‖f‖p,v
=

(
sup

g∈Ω0,1

‖g‖q/p,U

‖g‖1,V

)1/p

where V and U are defined by

(2.10) V (xp) dxp = v(x) dx and U(xp) dxp = u(x) dx.

Proof. The substitution in (2.9) yields the equivalence. We note that U and V have
been defined so that a change of variable yields ‖f‖p

q,u = ‖g‖q/p,U and ‖f‖p
p,v =

‖g‖1,V .

Now we are ready to give our estimate of the norm of the Lp
v → Lq

u embedding
of the cone of quasi-concave functions.
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Theorem 2.6. Suppose that 0 < q < p < ∞, 1/r = 1/q − 1/p, and u, v ∈ L+.
Then

(2.11) sup
f∈Ω0,1

‖f‖q,u

‖f‖p,v
≈
(∫ ∞

0

(H0
pv)−r/p(H0

q u)r/pu

)1/r

.

More precisely, if the equivalence is C ≈ A then m(q/p)1/pA ≤ C ≤ (2M(q/p))1/pA
where m and M are defined by (2.4).

Proof. Lemma 2.5 reduces the proof to an application of Corollary 2.4 with q re-
placed by q/p and u and v replaced by the weights U and V from (2.10). That
is,

sup
f∈Ω0,1

‖f‖q,u

‖f‖p,v
=

(
sup

g∈Ω0,1

‖g‖q/p,U

‖g‖1,V

)1/p

≈
(∫ ∞

0

H0
1V (t)−r/pH0

q/pU(t)r/pU(t) dt

)1/r

.

Note that (q/p)/(1 − q/p) = r/p. We simplify this by making the substitution
t → tp and using (2.10) to obtain

(2.12)
(∫ ∞

0

H0
1V (tp)−r/pH0

q/pU(tp)−r/pu(t) dt

)1/r

.

Now we make the substitution x → xp in the integral forms of H0
1V and H0

q/pU

and use (2.10) again to get

H0
1V (tp) =

∫ ∞

0

min(x/tp, 1)V (x) dx

=
∫ ∞

0

min((x/t)p, 1)v(x) dx = H0
pv(t)

and

H0
q/pU(tp) =

∫ ∞

0

min((x/tp)q/p, 1)U(x) dx

=
∫ ∞

0

min((x/t)q, 1)u(x) dx = H0
q u(t).

Replacing these in (2.12) completes the proof of equivalence and we omit the track-
ing of constants.

Theorem 2.6 is readily extended to a result for more general cones than the quasi-
concave functions. Recall that Ωα,β is the collection of non-negative functions f
such that xαf(x) is non-decreasing and x−βf(x) is non-increasing.
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Theorem 2.7. Suppose that 0 < q < p < ∞, 1/r = 1/q − 1/p, and u, v ∈ L+. If
α + β > 0 and Hβ

αL+ ⊆ F ⊆ Ωα,β then

(2.13) sup
f∈F

‖f‖q,u

‖f‖p,v
≈
(∫ ∞

0

(Hpα
pβ v)−r/p(Hqα

qβ u)r/pu

)1/r

.

More precisely, if the above equivalence is C ≈ A then (1/2)m(q/p)1/pA ≤ C ≤
(2M(q/p))1/pA where m and M are defined by (2.4).

Proof. Set ρ = 1/(α + β) and for each f ∈ F define gf by

gf (x) = xαρf(xρ).

Set F0,1 = {gf : f ∈ F} and note that for each f ∈ F , gf (x) is non-decreasing and
gf (x)/x is non-decreasing. Thus F0,1 ⊆ Ω0,1. Also, if f = Hβ

αh for some h ∈ L+

then the change of variable t → tρ yields

gf (x) =
∫ ∞

0

min(1, x/t)[tαρh(tρ)ρtρ−1] dt

so gf ∈ H1
0L+. Thus H1

0L+ ⊆ F0,1 ⊆ Ω0,1.
The change of variable x → xρ shows that

‖f‖p,v = ‖gf‖p,V and ‖f‖q,u = ‖gf‖q,U

where
V (x) = x−pαρv(xρ)ρxρ−1 and U(x) = x−qαρu(xρ)ρxρ−1.

We have

sup
f∈F

‖f‖q,u

‖f‖p,v
= sup

g∈F0,1

‖g‖q,U

‖g‖p,V
≈ sup

g∈Ω0,1

‖g‖q,U

‖g‖p,V

where the last equivalence relies on Lemma 2.3. Thus, by Theorem 2.6, we have

sup
f∈F

‖f‖q,u

‖f‖p,v
≈
(∫ ∞

0

(H0
pV )−r/p(H0

q U)r/pU

)1/r

.

The definitions of U and V above and the changes of variable x → x1/ρ followed
by t → t1/ρ show that

H0
pV (t1/ρ) = t−pαHpα

pβ v(t),

H0
q U(t1/ρ) = t−qαHqα

qβ u(t), and so

sup
f∈F

‖f‖q,u

‖f‖p,v
≈
(∫ ∞

0

H0
pV (t)−r/pH0

q U(t)r/pU(t) dt

)1/r

=
(∫ ∞

0

H0
pV (t1/ρ)−r/pH0

q U(t1/ρ)r/pt−qαu(t) dt

)1/r

=
(∫ ∞

0

Hpα
pβ v(t)−r/pHqα

qβ u(t)r/pu(t) dt

)1/r

.
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This completes the proof.

Next we present a statement of the corresponding result in the case 0 < p ≤ q <
∞. This result is taken from [10, Theorem 3] and formulated in our notation to
facilitate comparision with Theorem 2.7.

Proposition 2.8. Suppose that 0 < p ≤ q < ∞ and u, v ∈ L+. If α + β > 0 and
Hβ

αL+ ⊆ F ⊆ Ωα,β then

sup
f∈F

‖f‖q,u

‖f‖p,v
≈ sup

t>0
[Hpα

pβ v(t)]−1/p[Hqα
qβ u(t)]1/q.

More precisely, if the above equivalence is C ≈ A then A ≤ C ≤ 2A.

3. A Reduction Principle for Operators Acting on Cones

An operator may be unbounded as a map from Lp
v to Lq

u and yet still map a
cone in Lp

v boundedly into Lq
u. Theorem 3.2 gives a result that reduces questions

of boundedness on the cones Ωα,β to boundedness of related operators between
whole spaces. We begin by working with the weight condition in (2.13) to give an
equivalent expression in a less compact but more convenient form.

To avoid introducing additional notation, we use the expression x−α in several
places as a substitute for the power function f defined by f(x) = x−α. The same
applies to the expression xβ .

Theorem 3.1. Suppose that 0 < q < p < ∞, 1/r = 1/q − 1/p, and u, v ∈ L+. If
α + β > 0 and Hβ

αL+ ⊆ F ⊆ Ωα,β then

sup
f∈F

‖f‖q,u

‖f‖p,v
≈
(∫ ∞

0

Hqαu(t)r/qHpα
pβ v(t)−r/qHpβv(t)

dt

t

)1/r

+
‖x−α‖q,u

‖x−α‖p,v

+
(∫ ∞

0

Hqβu(t)r/qHpα
pβ v(t)−r/qHpαv(t)

dt

t

)1/r

+
‖xβ‖q,u

‖xβ‖p,v
.

More precisely, if the above equivalence is C ≈ A then

C ≤ 23/q max(1, r(α + β))1/rA, and

2−1/p−3 min(21/r−1/p, 21/p−1/r)( q
p )1/p( q

r )1/q min(1, r(α + β))1/rA ≤ C.

Proof. By the Monotone Convergence Theorem it is enough to establish the theo-
rem in the case that u is compactly supported in (0,∞). Under this assumption we
apply Theorem 2.7, break the right hand side of (2.13) into two pieces and integrate
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by parts in each. Since Hqα
qβ u = Hqαu + Hqβu we have

sup
f∈F

‖f‖q,u

‖f‖p,v
≈
(∫ ∞

0

(Hpα
pβ v)−r/p(Hqα

qβ u)r/pu

)1/r

≈
(∫ ∞

0

(Hpα
pβ v)−r/p(Hqαu)r/pu

)1/r

(3.1)

+
(∫ ∞

0

(Hpα
pβ v)−r/p(Hqβu)r/pu

)1/r

.(3.2)

For (3.1) first check that(
−q

r

) d

dt

(
t−q/αHqαu(t)

)r/q

=
(
t−qαHqαu(t)

)r/p
t−qαu(t) and

d

dt

(
t−pαHpα

pβ v(t)
)−r/p

= r(α + β)
(
t−pαHpα

pβ v(t)
)−r/q

t−pα−1Hpβv(t).

Then ∫ ∞

0

Hpα
pβ v(t)−r/pHqαu(t)r/pu(t) dt

=
∫ ∞

0

(
t−pαHpα

pβ v(t)
)−r/p (

t−qαHqαu(t)
)r/p

t−qαu(t) dt

= −q

r

(
t−qαHqαu(t)

)r/q
(
t−pαHpα

pβ v(t)
)−r/p

∣∣∣∣∞
0

+ q(α + β)
∫ ∞

0

(
t−qαHqαu(t)

)r/q
(
t−pαHpα

pβ v(t)
)−r/q

t−pα−1Hpβv(t) dt

=
q

r

‖x−α‖r
q,u

‖x−α‖r
p,v

+ q(α + β)
∫ ∞

0

Hqαu(t)r/qHpα
pβ v(t)−r/qHpβv(t)

dt

t

The limit of(
t−qαHqαu(t)

)r/q
(
t−pαHpα

pβ v(t)
)−r/p

=
(∫ ∞

t

u(x)
dx

xqα

)r/q (∫ ∞

0

min(xpβt−p(α+β), x−pα)v(x) dx

)−r/p

as t → ∞ is zero because u is compactly supported and the limit as t → 0 is
‖x−α‖r

q,u/‖x−α‖r
p,v by the Monotone Convergence Theorem.

For (3.2) a similar argument shows that∫ ∞

0

Hpα
pβ v(t)−r/pHqβu(t)r/pu(t) dt

=
q

r

‖xβ‖r
q,u

‖xβ‖r
p,v

+ q(α + β)
∫ ∞

0

Hqβu(t)r/qHpα
pβ v(t)−r/qHpαv(t)

dt

t
.
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Substituting the results of these two calculations into (3.1) and (3.2) and applying
(1.2) completes the proof of equivalence. As usual, we omit the tedious tracking of
constants.

Now we present our reduction principle. We suppose that T is an integral oper-
ator with non-negative kernel, that is,

Tf(y) =
∫ ∞

0

f(x)k(x, y) dx

for some non-negative k.

Theorem 3.2. Suppose that 1 < p < ∞, 1 < s < ∞, and v, w ∈ L+. If α + β > 0
and Hβ

αL+ ⊆ F ⊆ Ωα,β then

T : F ∩ Lp
v → Ls

w

if and only if

THα : Lp
v1
→ Ls

w,(3.3)

THβ : Lp
v2
→ Ls

w,(3.4)

if x−α ∈ Lp
v then T (x−α) ∈ Ls

w, and(3.5)

if xβ ∈ Lp
v then T (xβ) ∈ Ls

w.(3.6)

Here v1 and v2 are defined by

v1(t) = tp−1Hpα
pβ v(t)pHpβv(t)1−p and v2(t) = tp−1Hpα

pβ v(t)pHpαv(t)1−p.

Moreover, if C is the norm of the embedding T : F ∩ Lp
v → Ls

w and

A = sup
f∈L+

‖THαf‖s,w

‖f‖p,v1

+ sup
f∈L+

‖THβf‖s,w

‖f‖p,v2

+
‖T (x−α)‖s,w

‖x−α‖p,v
+
‖T (xβ)‖s,w

‖xβ‖p,v

then C ≈ A with constants depending only on p, q, α, and β.

Proof. The adjoint operator T ′ is given by

T ′g(x) =
∫ ∞

0

k(x, y)g(y) dy

so that ∫ ∞

0

(Tf)g =
∫ ∞

0

f(T ′g), f, g ∈ L+.

We also have (Hα)′ = Hα and (Hβ)′ = Hβ . It follows that (THα)′ = HαT ′

and (THβ)′ = HβT ′. Also, the dual spaces of Ls
w, Lp

v1
, and Lp

v2
with respect to
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Lebesgue measure on (0,∞) are the spaces Ls′

w1−s′ , Lp′

v1−p′
1

, and Lp′

v1−p′
2

, respectively.

Thus (3.3) and (3.4) are equivalent to

HαT ′ : Ls′

w1−s′ → Lp′

v1−p′
1

(3.7)

HβT ′ : Ls′

w1−s′ → Lp′

v1−p′
2

.(3.8)

Now we set up an application of Theorem 3.1. The boundedness of T : F ∩Lp
v →

Ls
w is expressed by the finiteness of

(3.9) sup
f∈F

‖Tf‖s,w

‖f‖p,v
= sup

f∈F,g∈L+

∫∞
0

(Tf)g
‖f‖p,v‖g‖s′,w1−s′

= sup
f∈F,g∈L+

∫∞
0

f(T ′g)
‖f‖p,v‖g‖s′,w1−s′

.

Theorem 3.1 with u = T ′g, q = 1 and r = p′ shows that (3.9) is equivalent to

sup
g∈L+

[(∫ ∞

0

HαT ′g(t)p′Hpα
pβ v(t)−p′Hpβv(t)

dt

t

)1/p′

+
‖x−α‖1,T ′g

‖x−α‖p,v

+
(∫ ∞

0

HβT ′g(t)p′Hpα
pβ v(t)−p′Hpαv(t)

dt

t

)1/p′

+
‖xβ‖1,T ′g

‖xβ‖p,v

]
‖g‖−1

s′,w1−s′ .

Since ‖x−α‖1,T ′g =
∫∞
0

T (x−α)g and ‖xβ‖1,T ′g =
∫∞
0

T (xβ)g this last expression is
finite if and only if (3.7), (3.8), (3.5), and (3.6) all hold.

The reduction principle above easily extends to operators from F ∩ Lp
v → Y for

a general Banach Function Space Y . It is simply a matter of replacing Ls
w by Y

and Ls′

w1−s′ by the associate space Y ′ in the proof above.

4. Lorentz Spaces

The Lorentz space Γp,λ(v) is defined to be the collection of λ-measurable func-
tions such that

‖f‖Γp,λ(v) ≡ ‖f∗∗‖p,v < ∞.

Here f∗∗(x) = 1
x

∫ x

0
f∗ and f∗ is the non-increasing rearrangement of f with re-

spect to the measure λ. Refer to [2] for definitions and basic results regarding
rearrangements and rearrangement-invariant spaces. We will assume that λ is a
resonant measure space, that is, that λ is totally σ-finite and either non-atomic or
completely atomic with all atoms having equal measure. In this case Γp,λ(v) is a
rearrangement-invariant Banach Function Space provided p ≥ 1 and v satisfies

(4.1) 0 <

∫ t

0

v(x) dx + tp
∫ ∞

t

v(x)
dx

xp
< ∞, for 0 < y < ∞.
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The associate space, Γp,λ(v)′, consisting of all λ-measurable functions g for which

‖g‖Γp,λ(v)′ ≡ sup
f∈Γp,λ(v)

∣∣∫ fg dλ
∣∣

‖f‖Γp,λ(v)
< ∞

is also a rearrangement-invariant Banach Function Space. In many cases the asso-
ciate space may be identified with the usual Banach space dual. Precise conditions
for this to occur may be found in [2].

When λ is Lebesgue measure on the half line we drop the measure and write
Γp(v) and Γp(v)′ for the Lorentz space and its associate space.

Our objective here is to give a simple expression which is equivalent to the
associate norm ‖g‖Γp,λ(v)′ .

In [5, Theorem 3.1], under the modest assumptions that
∫∞
0

v(x) dx = ∞ and∫∞
0

v(x) dx/xp = ∞, a weight w is constructed so that Γp(v)′ = Γp′(w), with equiv-
alent norms. Also, in [4] and upcoming work by A. Gogatishvili and R. Kerman,
a simple formula for such a w is given. Our equivalent norm for Γp(v)′ is closely
related but breaks ‖g‖Γp(v)′ into two parts corresponding to the size, g∗, and the
smoothness g∗∗ − g∗ of g. Note that the last two terms in (4.2) below are only
present in the excluded cases, when

∫∞
0

v(x) dx < ∞ or
∫∞
0

v(x) dx/xp < ∞.

Theorem 4.1. Suppose 1 < p < ∞, (S, λ) is a resonant measure space, and v
satisfies (3.1). If g is a λ-measurable function on S then

(4.2) ‖g‖Γp,λ(v)′ ≈ ‖g∗‖p′,v0 + ‖g∗∗ − g∗‖p′,v∞ + V0‖g∗‖∞ + V∞‖g∗‖1

where

(4.3)
v0(t) =

1
t

(
1
tp

∫ t

0

v(x) dx +
∫ ∞

t

v(x)
dx

xp

)−p′

1
tp

∫ t

0

v(x) dx,

v∞(t) =
1
t

(
1
tp

∫ t

0

v(x) dx +
∫ ∞

t

v(x)
dx

xp

)−p′ ∫ ∞

t

v(x)
dx

xp
,

V0 =
(∫ ∞

0

x−pv(x) dx

)−1/p

, and V∞ =
(∫ ∞

0

v(x) dx

)−1/p

.

The constants in the equivalence (4.2) depend only on p.

Remark. It is not difficult to see that V0 is non-zero if and only if L1
λ ⊆ Γp,λ(v)

and V∞ is non-zero if and only if L∞λ ⊆ Γp,λ(v). This explains the appearance of
the terms involving ‖g∗‖∞ and ‖g∗‖1 and shows that, despite their appearance as
technical byproducts of integration by parts in Theorem 3.1, they are an essential
feature of the theory.

Proof. Proving Theorem 4.1 will occupy us for the rest of this section. There are
four steps in the proof:



CONCAVE FUNCTIONS AND LORENTZ DUALS 15

1. Reduction to the case that λ is Lebesgue measure on (0,∞).
2. Proof in the case that g∗ is an integral.
3. Proof in the case that the associate norm of g is finite.
4. Elimination of the remaining case.

The first step is readily accomplished by appealing to the Luxemburg Represen-
tation Theorem. Observe that Γp(v) represents the norm Γp,λ(v) in the sense of [2,
Theorem 2.4.10]. That is,

‖f‖Γp,λ(v) = ‖f∗‖Γp(v) for all f ∈ Γp,λ(v).

It follows that the associate norm is represented in the same way so

‖g‖Γp,λ(v)′ = ‖g∗‖Γp(v)′ for all g ∈ Γp,λ(v)′.

In view of this is it enough to prove Theorem 4.1 in the case that λ is Lebesgue
measure on (0,∞).

The second step is to prove the theorem in the case that g∗ is an integral,
specifically that

g∗(t) =
∫ ∞

t

u(x)
dx

x

for some u ∈ L+. In this case we have

‖g‖Γp(v)′ = sup
f∈Γp(v)

∣∣∫∞
0

fg
∣∣

‖f‖Γp(v)
= sup

f∈L+

∫∞
0

f∗g∗

‖f∗∗‖p,v

= sup
f∈L+

∫∞
0

f∗∗u

‖f∗∗‖p,v
= sup

F∈F

∫∞
0

Fu

‖F‖p,v

where F = {f∗∗ : f ∈ L+}. Since xf∗∗(x) =
∫ x

0
f∗ is non-decreasing and f∗∗(x)

is non-increasing we see that F ⊆ Ω1,0. On the other hand, let h ∈ L+ and set
f(y) =

∫∞
y

h to see that

H0
1h(x) =

∫ ∞

0

min(t/x, 1)h(t) dt =
1
x

∫ x

0

∫ ∞

y

h(t) dt dy = f∗∗(x).

It follows that H0
1L+ ⊆ F ⊆ Ω1,0 so we may apply Theorem 3.1 with q = 1, r = p′,

α = 1, and β = 0 to get

‖g‖Γp(v)′ ≈
(∫ ∞

0

H1u(t)p′Hp
0v(t)−p′H0v(t)

dt

t

)1/p′

+
‖x−1‖1,u

‖x−1‖p,v

+
(∫ ∞

0

H0u(t)p′Hp
0v(t)−p′Hpv(t)

dt

t

)1/p′

+
‖1‖1,u

‖1‖p,v
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The terms above involving u can all be written in terms of g∗.

‖x−1‖1,u =
∫ ∞

0

u(x)
dx

x
= g∗(0) = ‖g∗‖∞.

‖1‖1,u =
∫ ∞

0

u(x) dx =
∫ ∞

0

∫ ∞

t

u(x)
dx

x
dt =

∫ ∞

0

g∗(t) dt = ‖g∗‖1.

H1u(t) = t

∫ ∞

t

u(x)
dx

x
= tg∗(t).

H0u(t) =
∫ t

0

u(x) dx =
∫ t

0

∫ t

y

u(x)
dx

x
dy

=
∫ t

0

g∗(y)− g∗(t) dy = t(g∗∗(t)− g∗(t)).

These substitutions give the desired result in the case that g∗ is an integral. The
second step is complete.

We now pass to the third step and assume that ‖g‖Γp(v)′ < ∞. The first thing
to establish is that limt→∞ g∗(t) = 0. For each positive integer n set fn = 1

nχ(0,n)

and note that f∗∗n (t) = min(1/n, 1/t). By (4.1) and the Dominated Convergence
Theorem, ‖fn‖Γp(v) → 0 as n → ∞. Since g has finite Γp(v)′-norm we see that
1
n

∫ n

0
g∗ =

∫∞
0

f∗ng∗ also tends to zero as n → ∞. Because g∗ is monotone this
implies that limt→∞ g∗(t) = 0 as desired.

Now for γ > 1 define

uγ(x) = (g∗(x)− g∗(γx))/ log(γ) and gγ(t) =
∫ ∞

t

uγ(x)
dx

x
.

Note that g∗γ = gγ . The results of Step 2 apply so we have

(4.4) ‖gγ‖Γp(v)′ ≈ ‖g∗γ‖p′,v0 + ‖g∗∗γ − g∗γ‖p′,v∞ + V0‖g∗γ‖∞ + V∞‖g∗γ‖1.

Using the fact that limt→∞ g∗(t) = 0 we can express gγ as a moving average of g∗:

gγ(t) =
1

log(γ)

∫ ∞

t

g∗(x)− g∗(γx)
dx

x
=
∫ γt

t

g∗(x)
dx

x

/∫ γt

t

dx

x
.

It follows that for each t, gγ(t) is non-decreasing as γ decreases to 1 and that gγ(t)
converges to g∗(t) for almost every t.

By the Monotone Convergence Theorem, we have

lim
γ↓1

(
‖g∗γ‖p′,v0 + V0‖g∗γ‖∞ + V∞‖g∗γ‖1

)
= ‖g∗‖p′,v0 + V0‖g∗‖∞ + V∞‖g∗‖1.
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Because Γp(v)′ is a Banach Function Space we also have

lim
γ↓1

‖gγ‖Γp(v)′ = ‖g∗‖Γp(v)′ = ‖g‖Γp(v)′ .

In order to conclude that (4.2) holds we still need to show that

(4.5) lim
γ↓1

‖g∗∗γ − g∗γ‖p′,v∞ = ‖g∗∗ − g∗‖p′,v∞ .

It is evident that the pointwise limit of g∗∗γ − g∗γ is g∗∗ − g∗. By the Dominated
Convergence Theorem, (4.5) will follow once we show that 2 log(2)(g∗∗2 − g∗2) is in
Lp′

v∞ and dominates g∗∗γ − g∗γ for 1 < γ ≤ 2. Since g∗2 ≤ g∗ and ‖g∗‖Γp(v)′ < ∞ we
have ‖g∗2‖Γp(v)′ < ∞ because Γp(v)′ is a Banach Function Space. In view of (4.4)
this implies that ‖g∗∗2 − g∗2‖p′,v∞ < ∞ and hence 2 log(2)(g∗∗2 − g∗2) is in Lp′

v∞ .
To see that 2 log(2)(g∗∗2 − g∗2) dominates g∗∗γ − g∗γ we calculate as follows:

log(γ)(g∗∗γ (t)− g∗γ(t))

=
1
t

∫ t

0

∫ γy

y

g∗(x)
dx

x
dy −

∫ γt

t

g∗(x)
dx

x

=
1
t

∫ t

0

g∗(x)
∫ x

x/γ

dy
dx

x
+

1
t

∫ γt

t

g∗(x)
∫ t

x/γ

dy
dx

x
−
∫ γt

t

g∗(x)
dx

x

= (1− 1/γ)g∗∗(t)− 1
γt

∫ γt

t

g∗(x) dx

= (1− 1/γ)
(

g∗∗(t)− 1
γt− t

∫ γt

t

g∗
)

.

If 1 < γ ≤ 2 then 1− 1/γ ≤ log(γ). Also, for each t the moving average 1
γt−t

∫ γt

t
g∗

is a non-increasing function of γ. Thus

g∗∗γ (t)− g∗γ(t) =
1− 1/γ

log(γ)

(
g∗∗(t)− 1

γt− t

∫ γt

t

g∗
)

≤ g∗∗(t)− 1
2t− t

∫ 2t

t

g∗

= 2 log(2)(g∗∗2 (t)− g∗2(t))

This completes Step 3, showing that (4.2) holds whenever its left hand side is finite.
If both sides are infinite then (4.2) holds trivially. Step 4 of the proof is to

eliminate the remaining case by showing that if the right hand side of (4.2) is finite
then so is the left hand side. For each positive integer n, define gn = min(nχ(0,n), g

∗)
and note that g∗n = gn. The sequence g∗n is non-decreasing and converges pointwise
to g∗ as n → ∞ so gn → g in the Banach Function Space Γp(v)′. To show that
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‖g‖Γp(v)′ < ∞ we show that the norms ‖gn‖Γp(v)′ are bounded independently of n.
To do this we note that (4.1) implies that

‖gn‖Γp(v)′ ≤ ‖nχ(0,n)‖Γp(v)′ < ∞

so the results of Step 3 apply and we have

‖gn‖Γp(v)′ ≈ ‖g∗n‖p′,v0 + ‖g∗∗n − g∗n‖p′,v∞ + V0‖g∗n‖∞ + V∞‖g∗n‖1.

Again it is easy to handle three of the terms. Since g∗n ≤ g∗ we have ‖g∗n‖p′,v0 ≤
‖g∗‖p′,v0 , ‖g∗n‖∞ ≤ ‖g∗‖∞, and ‖g∗n‖1 ≤ ‖g∗‖1. Therefore, the sum of these three
terms is bounded independently of n by the right hand side of (4.2) which is assumed
to be finite.

The fourth term, ‖g∗∗n −g∗n‖p′,v∞ , is also bounded by a multiple of the right hand
side of (4.2) but a little more work is required to demonstrate this. The function g∗n
is non-increasing and bounded by n. Therefore it takes the value n on an interval
of the form (0, tn) for some tn ≥ 0. When 0 < t < tn we have g∗∗n (t) − g∗n(t) = 0.
When tn < t < n we have g∗∗n (t) − g∗n(t) = g∗∗n (t) − g∗(t) ≤ g∗∗(t) − g∗(t). When
t > n we have

g∗∗n (t)− g∗n(t) = g∗∗n (t) =
1
t

∫ t

0

g∗n ≤
1
t

∫ n

0

g∗ =
n

t
g∗∗(n).

Thus

‖g∗∗n − g∗n‖p′,v∞ ≤ ‖g∗∗ − g∗‖p′,v∞ + ng∗∗(n)
(∫ ∞

n

v∞(t)
dt

tp′

)1/p′

and our object is to show that the last two summands are bounded by the right
hand side of (4.2). The first is trivially so and we write the second as

(4.6) n(g∗∗(n)− g∗(n))
(∫ ∞

n

v∞(t)
dt

tp′

)1/p′

+ ng∗(n)
(∫ ∞

n

v∞(t)
dt

tp′

)1/p′

.

Observe that t(g∗∗(t)− g∗(t)) =
∫ t

0
g∗∗(y)− g∗(t) dy is non-decreasing so

n(g∗∗(n)− g∗(n))
(∫ ∞

n

v∞(t)
dt

tp′

)1/p′

≤
(∫ ∞

n

(g∗∗(t)− g∗(t))p′v∞(t) dt

)1/p′

≤ ‖g∗∗ − g∗‖p′,v∞ .



CONCAVE FUNCTIONS AND LORENTZ DUALS 19

The second term in (4.6) requires some integration using (4.3).

np′
∫ ∞

n

v∞(t)
dt

tp′
= −np′

p′

(∫ t

0

v(x) dx + tp
∫ ∞

t

v(x)
dx

xp

)1−p′
∣∣∣∣∣
∞

n

≤ 1
p′

(
1
np

∫ n

0

v(x) dx +
∫ ∞

n

v(x)
dx

xp

)1−p′

=
∫ n

0

v0(t) dt +
1
p′

(∫ ∞

0

v(x)
dx

xp

)1−p′

Therefore,

ng∗(n)
(∫ ∞

n

v∞(t)
dt

tp′

)1/p′

≤

(∫ n

0

g∗(t)p′v0(t) dt +
1
p′
‖g∗‖p′

∞

(∫ ∞

0

v(x)
dx

xp

)1−p′
)1/p′

≤
(
‖g∗‖p′

p′,v0
+

1
p′
‖g∗‖p′

∞V p′

0

)1/p′

Which is bounded by (a multiple of) the right hand side of (4.2). This completes
Step 4 and the proof of Theorem 4.1.

We remark that the term ‖g∗∗ − g∗‖p′,v∞ in (4.2) may be replaced by

sup
h∗≤g∗

‖h∗∗ − h∗‖p′,v∞ .

Although this new term may be substantially larger than ‖g∗∗−g∗‖p′,v∞ for example
when g∗ is constant, the equivalence (4.2) is not affected due to the presence of the
other terms. Indeed, the proof of Theorem 4.1 is simpler with the new term in
place.

5. The Hardy-Littlewood Maximal Function

The reduction principle in Theorem 3.2 can be used to give criteria to deter-
mine whether or not the Hardy-Littlewood Maximal Function is bounded between
Lorentz spaces. If f is a locally integrable function on Rn we define Mf to be

Mf(x) = sup
1

µn(Q)

∫
Q

|f | dµn

where the supremum is taken over all cubes Q containing x whose sides are parallel
to the axes. Here µn denote Lebesgue measure on Rn.
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Theorem 5.1. Suppose p, q ∈ (1,∞) and u, v ∈ L+. Define V by

V (t) =
1
tp

∫ t

0

v(x) dx +
∫ ∞

t

v(x)
dx

xp
.

Then M : Γp,µn
(v) → Γq,µn

(u) if and only if: Either 1 < p ≤ q < ∞, and all of

sup
y>0

(∫ ∞

y

u(x)
dx

xq

)1/q (∫ y

0

(log(y/t))p′−1V (t)1−p′ dt

t

)1/p′

,

sup
y>0

(∫ ∞

y

(log(x/y))qu(x)
dx

xq

)1/q

V (y)−1/p,

sup
y>0

(∫ ∞

y

u(x)
dx

xq

)1/q (
p′
∫ y

0

V (t)1−p′ dt

t
− V (y)1−p′

)1/p′

, and

sup
y>0

(∫ y

0

u(x) dx

)1/q

(ypV (y))−1/p
,

are finite; or 1 < q < p < ∞, 1/r = 1/q − 1/p, and all of

∫ ∞

0

(∫ ∞

y

u(x)
dx

xq

)r/p(∫ y

0

(log(y/t))p′−1V (t)1−p′ dt

t

)r/p′

u(y)
dy

yq
,∫ ∞

0

(∫ ∞

y

(log(x/y))qu(x)
dx

xq

)r/q

V (y)−r/q d(−V (y)),

∫ ∞

0

(∫ ∞

y

u(x)
dx

xq

)r/q (
p′
∫ y

0

V (t)1−p′ dt

t
− V (y)1−p′

)r/q′
d(ypV (y))
ypV (y)p′

,

and∫ ∞

0

(∫ y

0

u(x) dx

)r/p

(ypV (y))−r/p
u(y) dy

are finite.

Proof. We cite [2, Theorem 3.8] for the well known equivalence (Mf)∗ ≈ f∗∗. It
implies that M : Γp,µn

(v) → Γq,µn
(u) if and only if

sup
f∈L+

(∫∞
0

(
1
x

∫ x

0
f∗∗
)q

u(x) dx
)1/q(∫∞

0
(f∗∗)pv

)1/p
< ∞.

That is,

(5.1) T : F ∩ Lp
v → Lq

u
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where T is the operator TF (x) = 1
x

∫ x

0
F and F = {f∗∗ : f ∈ L+}. As we observed

in Part 2 of the proof of Theorem 4.1, H0
1L+ ⊆ F ⊆ Ω1,0. Thus, we can apply

Theorem 3.2 with α = 1, β = 0, and Ls
w = Lq

u to see that (5.1) holds if and only if

TH1 : Lp
v1
→ Lq

u,(5.2)

TH0 : Lp
v2
→ Lq

u,(5.3)

if x−1 ∈ Lp
v then T (x−1) ∈ Lq

u, and

if 1 ∈ Lp
v then T (1) ∈ Lq

u.

Since T (x−1) ≡ ∞ and T (1) ≡ 1 the latter two conditions reduce to

u ≡ 0 or
∫ ∞

0

v(x)
dx

xp
= ∞, and(5.4) ∫ ∞

0

v < ∞ =⇒
∫ ∞

0

u < ∞,(5.5)

The conditions (5.2) and (5.3) reduce to weighted norm inequalities for which nec-
essary and sufficient conditions are known. Our task now is to simplify the known
conditions using the definitions of v1 and v2 from Theorem 3.2. We have

v1(t) = tp−1

(∫ t

0

v(x) dx + tp
∫ ∞

t

v(x)
dx

xp

)p(∫ t

0

v(x) dx

)1−p

and

v2(t) = tp−1

(∫ t

0

v(x) dx + tp
∫ ∞

t

v(x)
dx

xp

)p(
tp
∫ ∞

t

v(x)
dx

xp

)1−p

.

In terms of V these become

ptp
′
v1(t)1−p′ = V (t)−p′ d

dt
(−V (t)) and(5.6)

pv2(t)1−p′ = (tpV (t))−p′ d

dt
(tpV (t)).(5.7)

The operator in (5.2) is

TH1f(x) =
1
x

∫ x

0

1
y

∫ y

0

tf(t) dt dy =
1
x

∫ x

0

log(x/t)tf(t) dt

so, with g(t) = tf(t), we see that (5.2) holds if and only if the inequality

(5.8)
(∫ ∞

0

(∫ x

0

log(x/t)g(t) dt

)q

u(x)
dx

xq

)1/q

≤ C

(∫ ∞

0

g(t)pv1(t)
dt

tp

)1/p



22 GORD SINNAMON

holds for some C > 0 and all g ∈ L+. By [18, Theorems 1 and 2], (5.8) holds if and
only if: Either 1 < p ≤ q < ∞,

sup
y>0

(∫ ∞

y

u(x)
dx

xq

)1/q (∫ y

0

(log(y/t))p′tp
′
v1(t)1−p′ dt

)1/p′

< ∞, and

(5.9)

sup
y>0

(∫ ∞

y

(log(x/y))qu(x)
dx

xq

)1/q (∫ y

0

tp
′
v1(t)1−p′ dt

)1/p′

< ∞;(5.10)

or 1 < q < p < ∞, 1/r = 1/q − 1/p,

∫ ∞

0

(∫ ∞

y

u(x)
dx

xq

)r/p(∫ y

0

(log(y/t))p′tp
′
v1(t)1−p′ dt

)r/p′

u(y)
dy

yq
< ∞, and

(5.11)

∫ ∞

0

(∫ ∞

y

(log(x/y))qu(x)
dx

xq

)r/q(∫ y

0

tp
′
v1(t)1−p′ dt

)r/q′

yp′v1(y)1−p′dy <∞.

(5.12)

The operator in (5.3) is

TH0f(x) =
1
x

∫ x

0

∫ ∞

y

f(t) dt dy =
1
x

∫ x

0

tf(t) dt +
∫ ∞

x

f(t) dt,

a sum of two Hardy operators. Thus (5.3) holds if and only if the two weighted
Hardy inequalities

(∫ ∞

0

(∫ x

0

g(t) dt

)q

u(x)
dx

xq

)1/q

≤ C

(∫ ∞

0

g(t)pv2(t)
dt

tp

)1/p

and (∫ ∞

0

(∫ ∞

x

f(t) dt

)q

u(x) dx

)1/q

≤ C

(∫ ∞

0

f(t)pv2(t) dt

)1/p

hold for some constant C > 0 and all g ∈ L+ and f ∈ L+ respectively. The
conditions (see [12]) under which these hold are: Either 1 < p ≤ q < ∞,

sup
y>0

(∫ ∞

y

u(x)
dx

xq

)1/q (∫ y

0

tp
′
v2(t)1−p′ dt

)1/p′

< ∞, and(5.13)

sup
y>0

(∫ y

0

u(x) dx

)1/q (∫ ∞

y

v2(t)1−p′ dt

)1/p′

< ∞;(5.14)
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or 1 < q < p < ∞, 1/r = 1/q − 1/p,

∫ ∞

0

(∫ ∞

y

u(x)
dx

xq

)r/q (∫ y

0

tp
′
v2(t)1−p′ dt

)r/q′

yp′v2(y)1−p′ dy < ∞, and

(5.15)

∫ ∞

0

(∫ y

0

u(x) dx

)r/p(∫ ∞

y

v2(t)1−p′ dt

)r/p′

u(y) dy < ∞.

(5.16)

Using the properties (5.4) and (5.5) and the substitutions (5.6) and (5.7) to
eliminate v1 and v2, (5.9), (5.10), (5.13), and (5.14) can be simplified to yield the
four weight conditions given in the case 1 < p ≤ q < ∞. Similarly, (5.11), (5.12),
(5.15), and (5.16) simplify to yield the four weight conditions given in the case
1 < q < p < ∞.

We have shown that the weight conditions given in the statement of the theorem,
together with (5.4) and (5.5), are necessary and sufficient for the boundedness of
M . All that remains is to show that (5.4) and (5.5) are consequences of the weight
conditions.

Write V (t) =
∫∞
0

max(t, x)−pv(x) dx to see that V (t) ≤ V (0) =
∫∞
0

v(x) dx/xp.
If V (0) < ∞ then for any y > 0,∫ y

0

log(y/t)p′−1V (t)p′−1 dt

t
≥ V (0)p′−1

∫ y

0

log(y/t)p′−1 dt

t
= ∞.

In view of this, the first weight condition in either the case 1 < p ≤ q < ∞ or the
case 1 < q < p < ∞ can hold only if u is almost everywhere 0. Thus (5.4) holds.

If
∫∞
0

v < ∞ it follows that ypV (y) is bounded above and hence the fourth
weight condition in either the case 1 < p ≤ q < ∞ or the case 1 < q < p < ∞
would fail unless

∫∞
0

u < ∞. Thus (5.5) also holds. This completes the proof.

We would like to thank the referee for pointing out that the weight conditions
(5.4) and (5.5) follow from the others in Theorem 5.1.

Since (Mf)∗ ≈ f∗∗ the boundedness of M : Γp,µn(v) → Λq,µn(u) reduces to a
straightforward application of Theorems 2.7 and 2.8 with α = 1 and β = 0. Here
Λq,µn

(u) = {f : ‖f∗‖q,u < ∞}.
Theorem 5.2. Let p, q ∈ (1,∞) and u, v ∈ L+. Then M : Γp,µn(v) → Λq,µn(u) if
and only if: Either 1 < p ≤ q < ∞ and

sup
y>0

(∫ y

0

u(x) dx + yq

∫ ∞

y

u(x)
dx

xq

)1/q (∫ y

0

v(x) dx + yp

∫ ∞

y

v(x)
dx

xp

)−1/p

is finite; or 1 < q < p < ∞, 1/r = 1/q − 1/p, and∫ ∞

0

(∫ y

0

u(x) dx + yq

∫ ∞

y

u(x)
dx

xq

)r/p(∫ y

0

v(x) dx + yp

∫ ∞

y

v(x)
dx

xp

)−r/p

u(y) dy

is finite.
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