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ABSTRACT. A technique arising from Schur’s Lemma and its converse is shown to
generate weighted Lebesgue norm inequalities for a wide class of linear and non-
linear positive operators. In many cases the best constants for these inequalities
are determined as well. A sharp converse to Schur’s Lemma is proved via a minimax
principle for a class of positive operators on Banach Function Spaces. This shows that
all such inequalities can be generated by this technique and establishes a structure
theorem for weight pairs.

Examples involving Hardy and Stieltjes operators are given as well as several
Opial-type inequalities. As an illustration of the structure theorem a new proof is
given of necessity in the well-known weight characterization for the Hardy operator.

1. INTRODUCTION

Let (X,u) and (Y,v) be o-finite measure spaces and L} and L; denote the
collections of non-negative measurable functions on (X, ) and (Y, ) respectively.
Suppose that for i = 1,...,n the maps T; : L} — L} have formal adjoints T} :
Lt — L, that is,

/ (T f)pdu = / f(TFp)dy, forall fe L} and ¢ € L:.
b's Y

Define the map T': L} — L} by

n

(1) @y =L@y

=1

2000 Mathematics Subject Classification. Primary 26D15; Secondary 47A30.

Key words and phrases. Positive operator, Weighted inequalities, Schur’s Lemma.

Support from the Natural Sciences and Engineering Research Council of Canada is gratefully
acknowledged.

Typeset by ApS-TEX



2 GORD SINNAMON

where ¢ = ¢1 + q2 + -+ + ¢,. Our purpose is to give a method for generating
weighted inequalities of the form

1/q 1/p
(1.2) (/X(Tf)qud,u) <C (/Y fpvdl/> , feL}l,

for indices satisfying r; < ¢ < p < oo for all i. If ¢ < p and r; < ¢; for all 7 then
the method generates essentially all such inequalities and always produces the best
constant. If ¢ = p and r; < ¢; for all ¢ then the method generates essentially all
such inequalities and produces constants arbitrarily close to optimal.

The methods of the paper can be traced back to Frobenius and Schur but are
naturally more closely connected with recent work. Schur’s lemma [14] gave a
method for proving that a matrix with non-negative entries was bounded as a map
on 2. Many generalizations and applications of the result and its converse [7]
followed. See, for example [1, 3, 4, 5, 9, 10, 11, 13, 16, 18, 19]. In [9, 16|, the
method was used on positive, linear operators that need not be integral operators.
In [5] it was extended to non-linear, positive operators of the form f — f*T f with
T a positive integral operator. The operators in (1.1) include both these cases and
much more.

The minimax principle introduced in [6] evolved in [5, 19] and elsewhere. Here
we give a substantial extension of the principle to include operators in Banach
Function Spaces. In this general setting we are able to improve the clever iteration
given in [7] to establish a sharp converse to Schur’s Lemma for operators of the form
(1.1). This sharp converse was proved for matrix operators on Lebesgue sequence
spaces in [3, 11] and for positive operators with formal adjoints on Lebesgue spaces
in [16].

The plan of the paper emphasizes our focus on weighted inequalities. In the
next section we state and prove our method for generating weighted inequalities
of the form (1.2). We also state the converse results which show that the method
generates all such inequalities. The minimax principle is given in Section 3 and in
Section 4 we apply it in the Lebesgue space case to give our general Schur’s Lemma,
the sharp converse, and the proofs deferred from Section 2.

From a wealth of possible examples we select a collection that illustrates the
versatility of the method. These are given in Section 5. The first two examples
are weighted norm inequalities with best constant for the Hardy operator and the
Stieltjes transformation. The next two show how using product operators like (1.1)
can restore homogeneity in inequalities with nonhomogeneous constraints. Example
5.5 gives the best constant in a known weighted Opial inequality and Example 5.6
is an unusual variant of Hardy’s inequality which does not seem to be accessible by
other methods.

Section 5 concludes with a new proof of a well-known result. See, for example,
[12] and the references given there. The idea is to use the sharp converse of Schur’s
Lemma as a structure theorem for weight functions, a notion that promises to
provide a new technique in weighted norm inequalities.

The remainder of this introduction is devoted to notation and definitions used
in the paper. For a o-finite measure space (Y, \) we let LT be the collection of A-
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measurable functions ¢ : Y — [0, 00]. Arithmetic on [0, o] is used throughout with
the conventions that 0(cc) = (00)0 = 0, 0/0 = 0, co/oc = 0, and oc? = 1. With
these conventions the expression f < oog, for f,g € L;\r, means that f vanishes
wherever g does.

As usual we write f,, T f, for f, f1,fe, -+ € Lj\’ to mean that the sequence
f1, f2,... is non-increasing and converges pointwise A-almost everywhere to f. Sim-
ilarly for f,, | f. We use a prime to denote the harmonic conjugate of an index so
that 1/p+ 1/p’ = 1 whenever 1 < p < .

We say that an operator T': L} — L is [0, oo]-linear if T(af +g) = aTf +Tg
for all a € [0, 00]; preserves order if Tf < Tg whenever f < g; is order continuous
if it preserves order and T'f,, T T'f whenever f, T f; is strongly order continuous if
it is order continuous and T'f,, | T'f whenever both f, | f and Tf; < oo A-almost
everywhere.

Note that the Arithmetic-Geometric Mean inequality (AGM) remains valid on
[0,00]: If aq,...,a, € [0,00] and 64, ...,60, € (0,1] satisfy 01 +--- + 6, = 1 then

n n
i=1 i=1

For definitions and properties of Banach Function Norms we refer to [2]. One
simple consequence of the definition [2, I.1.1] is that for any Banach Function Norm
over a o-finite measure space there exists a positive function with finite norm.
Another fact that we will need is [2, Proposition 1.3.6]. If a Banach Function Norm
is absolutely continuous then it has a dominated convergence property.

If || - ||, and || - ||, are Banach Function Norms on L:[ and LT respectively and
J: L} — L} the inequality
(1.3) 1T flle < Clifllvs f €Ly,
is equivalent to
J
oy 7
feLt 11l

and the least constant C' for which they hold is called the best constant in (1.3). A
function g satisfying 0 < ||g||, < oo for which ||.Jg||,./||g]l. is the best constant in
(1.3) is called an extremal for (1.3).

2. WEIGHTED NORM INEQUALITIES

Suppose that for ¢ = 1,...,n the maps T; : L} — L: have formal adjoints
Tr: LZ — LT and T is defined by (1.1) with¢g=¢q¢1 +-+-+¢, and r; < ¢ < p < 0.
Fix a weight u € L. For each positive g € L} we define

n

vg =Y (a:/a)g" PT; (u(Tg)?/Ti(g"™)),
(2.1) i=1

(1/a)—(1/p)
Cy = (/ gpvgdu) .
Y

Note that by our convention, C; = 1 when p = ¢ even if fY gPvg dv = oo.
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Theorem 2.1. If 0 < g < oo v-almost everywhere and 0 < Tg < oo up-almost
everywhere then

1/q 1/p
(2.2) </X(Tf)qudu) <y (/Y fPug du) , feLf.

If 0 < [((Tg)udp < oo then Cy is the best constant in (2.2) and g is an
extremal for (2.2).

When ¢ < p this method generates all weighted norm inequalities for operators
T provided ¢; > r; for ¢ = 1,...,n as we see in our first converse to Theorem 2.1.
The condition (2.3) imposed in Theorem 2.2 and the restriction 0 < v < oo imposed
in Theorems 2.2 and 2.3 are not essential and can be easily removed by reducing
(1.2) to an equivalent inequality. See Theorem 4.4.

Theorem 2.2. Suppose that ¢ < p and q; > r; fori=1,...,n, and that the best
constant in (1.2) is C < oo. If 0 < v < oo and T satisfies,

(2.3) if Tf =T(Xgf) for all f € L} then v(Y \ E) =0

then there exists a g € L} satisfying 0 < g < oo and 0 < fX (T'g)udp < oo such
that v = vy and C = C}.

This result may be viewed as a structure theorem for weights. Once the operator
and the indices are fixed, Theorem 2.2 states that every weight pair for which the
inequality holds is of the form (u,v,) for some positive g. See Theorem 5.7 for an
example of how this idea may be used.

The classical Hardy inequality [8, Theorem 327] has no extremal function, show-
ing that Theorem 2.2 does not extend to the case p = q. Thus, when p = ¢ there
are inequalities of the form (1.2) that are not generated by Theorem 2.1 for any
choice of the function g. However, even when p = ¢ the method of Theorem 2.1 can
generate inequalities as close as desired to any given inequality of the form (1.2).

Theorem 2.3. Suppose q < p, q; > r; fori = 1,...,n, C is the best constant
in (1.2) and C < A < oco. If 0 < v < oo then there exists a g € L} satisfying
0<g<ooand0< fX(Tg)qudu < 00 such that vy < APv and Cy <1 so that

1/q 1/p 1/p
( / (Tf)qudu> <G, ( / fPog dv) <A ( / fpvdu)
X Y Y

holds for all f € L.

We prove Theorem 2.1 below but the rest of the proofs are deferred until Section
4 because they depend on the minimax principle of Section 3. To begin, however,
we must take a closer look at operators with formal adjoints.

The most popular positive operators are the integral operators with non-negative
kernels and it is immediate that they have formal adjoints. Although the identity
operator is not in general an integral operator, it clearly has a formal adjoint as well.
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More generally, if a positive operator J : L} — L;’ arises as the restriction to the
positive functions of an order continuous linear operator on the space of real-valued
functions then, according to [9, p. 141], it necessarily has a formal adjoint.

In the next lemma we see that an operator with a formal adjoint inherits many
of the properties of integration. We review the standard proofs here with an eye to
arithmetic in [0, oco].

Lemma 2.4. Suppose J : L} — L: has a formal adjoint. Then the formal adjoint

is unique, J is [0, 00|-linear and strongly order continuous. Also, if 1 < ¢ < oo and
f,g € L} then

J(fg) < (J(FINY(T(g? )7,

Proof. 1f J* and J* are both formal adjoints of J then for all ' with vE < oo and
all p € L we have

/J*cpduz/(JXE)god,u:/J*gody
E b's E

and hence J*¢ = J*¢ v-almost everywhere. This shows that the formal adjoint is
unique.
Let J* be the formal adjoint of J. If uE < 0o, a € [0,00] and f,g € L then

/J(af+g)du:/(af+g)J*XEdV:a/ fJ*XEdl/+/gJ*XEd1/
E Y Y Y

:a/ deu+/Jgdu:/an+Jgdu
E E E

so we have J(af + g) = aJf + Jg v-almost everywhere. This proves the [0, co]-
linearity of J.
If f <gand pFE < oo then

/(Jf)d,u:/ fJ*XEdVS/gJ*XEdV:/Jgdu
E Y Y E

so Jf < Jg. Thus J is order-preserving and so if { f,,} is a non-decreasing sequence
in L} then Jf, is a non-decreasing sequence in L:j. Let f and ¢ be the pointwise
limits of these two sequences. To see that ¢ = J f we use the formal adjoint again.
If uFE < oo then by the Monotone Convergence Theorem applied twice we have

/gpdu: lim/andu: lim/fnJ*XEdV:/fJ*XEdu:/deu.
E T JE nmee Jy Y E

This implies that ¢ = Jf p-almost everywhere as desired and we have shown that
J is order continuous. To prove strong order continuity we apply the Dominated
Convergence Theorem. If {f,,} is a non-increasing sequence in L, then J f,, is a non-
increasing sequence in Lj. Once again, let f and ¢ be the pointwise limits. If J f; is
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finite p-almost everywhere and puE < oo then the sets E,, = {zx € E: Jf1(z) < m}
increase with m to F, except for a set of A-measure zero. Moreover

/flJ*XEde:/ Jf1dup < oo.
Y B,

Thus, by the Dominated Convergence Theorem applied twice we have

/ pdp = lim Jfndu
E/IYL

n—oo E
m

n—oo

= lim fnJ*XEde:/ fJ*XEde:/ Jfdpu.
Y Y E

m

As m — oo the Monotone Convergence Theorem shows that

/Egod,u:/Ede,u.

This implies that ¢ = Jf p-almost everywhere and we have established the strong
order continuity of J.

To prove the analogue of Holder’s inequality we first dispense with the case
where the right hand side is zero. Since fg < cof? the [0, oo]-linearity of J implies
J(fg) < o0J(f?) so J(fg) vanishes wherever J(f?) does. Similarly J(fg) vanishes
wherever J (gq/) does. It remains to prove the inequality where both J(f?) and
J(g?) are positive and finite. Using the homogeneity of J we may assume that
both are 1. Now by the AGM we have

’

T(fg) < T((1/a)f*+ (1/¢)9" ) = (1/a) T (f4) + (1/q') T (g% ) = 1.
This completes the proof.

The key argument for the proof of Theorem 2.1 is isolated in the next lemma so
that it may be re-used more readily. Define the maps R;, i =1,...,n, by

00, if ¢; < r; and T;9™ (z) = o0

H?:1 (Tjg"7)%/mi =% otherwise.

Rig(x) = {

This definition is complicated by difficulties with the rules for exponents when
extended real values are involved. However, when 0 < T;¢g" < oo the definition
reduces to

Rig=(Tg)"/Tig".
Lemma 2.5. If f,g € L} then

(2.4) /X(T(fg))qudﬂé/yfq (Z(qi/Q)g”Ti*(uRig)>

i=1
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with equality when f = 1.

Proof. We can apply the Holder inequality from Lemma 2.4 with ¢ replaced by ¢/r;
to get

Ty((fg)") = Tu(frig"t/0gma=r/ay < (T,(fog"))" /(T (g")) 0/

for each . If for some x, 0 < T'g(x) < oo then 0 < (T;9™)(x) < oo for all i so

fg n qz/n

IN

::]: i ::]:

(fq n)(x)qi/qTi(gm)(x)(qi/n)—(qi/q)

@
I
-

[T/ (2)/Tilg™ ) (@)}

’:]:

Tg(x )

N
Il
—

>

s
I
—

<Tg(x)? ) (qi/)Ti(f9" ) (x)/Ti(g") ().

The last inequality is an application of the AGM. We have shown that

(2.5) q<zqz/q (/19" (2) Rig(x)

whenever 0 < T'g(x) < co. If T'g(z) = 0 then because fg < cog we have T'(fg)(z) <
o0T'g(x) = 0. Thus (2.5) holds when T'g(z) = 0. If T'g(x) = oo then Tj(g")(x) >0
for all j and T;(¢"*)(x) = oo for some . It follows from the definition of the R;’s
that R,;g(x) = oo for i # j and R;g(z) = oo as well unless ¢; = r;. If n > 1 we can
choose j # i to get R;g(x) = oo and if n = 1 then ¢; = ¢ > r1 by assumption so we
can choose j =1 to get Rjg(x) = oo. For this j, if T;(f9¢g")(x) > 0 then (2.5) holds
with infinite right hand side and if Tj(f%¢"7)(x) = 0 then (2.5) holds with zero left
hand side because (fg)™ < oof?¢" implies T;((fg)™)(x) < 00T;(f%")(z) =0
and hence T'(fg)(x) = 0. We conclude that (2.5) holds for all x.

It is easy to check that the inequality (2.5) reduces to equality when f = 1. This
property is retained when we integrate (2.5) to get

/X (T(fg)udu < 3 (ai/a) /X T,(f%9" uRig dp
:Z(Qi/Q) /Y fl9" T (uR;g) dv
= /Yf ! (Z(%/Q)g”TZ‘(uRiy)> dv.

=1
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This completes the proof.

Proof of Theorem 2.1. The hypothesis that 0 < Tg < oo up-almost everywhere
together with the definitions of v, and R;g yield

vg =Y (4i/q)g" T} (uR;g).
i=1

Since 0 < g < 00, (f/g)g = f so we can replace f by f/g in (2.4) to get

/(Tf)qudMS/ 197 vy dv.
X Y

If p =g then C; =1 so we just take gth roots to get (2.2). If p > ¢ then we apply
Holder’s inequality with indices p/q and p/(p — q) to get

(quwgwg%(éﬁwgw.

This proves the first statement of Theorem 2.1. For the second statement we use
the fact that (2.4) is equality when f = 1 and take gth roots to get

(A@WMQWZQLWWQWZQ(AﬁWQ”.

Thus, if 0 < [ (Tg)%udp < oo then Cy is the best constant and g is an extremal
for (2.2). This completes the proof.

Looked at in the right way, Lemma 2.5 enables us to reduce inequalities involving
T, a map between two different function spaces, to inequalities involving a map on
a single function space. If 0 < v < oo the new map S : L} — L} is defined by

(2.6 (S0 = = 3" (a:/a)g™ T} (uRig).

=1

With f =1, Lemma 2.5 shows that

(2.7) /X (Tg) udy = /Y (Sg)Pw dv

so (1.2) becomes

(wamgwgqxfmgw
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or equivalently,
up ||Sf||?yy S Cq/p
rect Iy

This is the sort of inequality we address in Section 3. The condition (3.1) imposed
on the operator S is motivated by the following consequence of Lemma 2.5. Using
(2.7) to write (2.4) in terms of S we have

/ S(fg)Pvdr < / fi(Sg)Pvdv
Y Y
which may be written as

(2.8) 1S(f )z, < I1F97SgllLs,

3. A MINIMAX PRINCIPLE

Let (Y, ) be a o-finite measure space and let L = L} be the collection of non-
negative, extended real valued, \-measurable functions on Y.

Theorem 3.1. Suppose that || - || is a Banach Function Norm on L, S : L — L,
and 0 < a <1. If

(3.1) ISUDI < [1f*Sgll, f.9€ L,

then

(3.2) H il < mf ess supy Sg_(y)ngl_a < inf  esssupy 59(y)

feL Il = 0<s yey © 9(y) T o<y, lal<t yey © 9(y)

with equality if S is order continuous.

Proof. First observe that if f,g € L then ||[f*¢~<| < |If1*llg|*~®: The homo-
geneity of || - || reduces the observation to the case || f|| = ||g|| = 1 where we use the
AGM to get

1" =0 < lleof + (1 = a)gll < allf + (1 - a)lgll = 1
as required. With this in hand we address (3.2).
If f,g € L with g positive then by (3.1)

S S
ISFI < 11(F/9)*Sgll < esssupx SIW) || pgl=o | < esssupy SIY)
vey  9(y) vey  9(y)

If || f|| = O then ||Sf]| = 0 so by our convention || Sf|/||f||* is zero. Otherwise we
divide by || f||*, take the supremum over f, and take the infimum over g to get

S
sup T—— ” f” < inf esssupy M||g||1_a.

fel ||f||°‘ 0<geL yey = 9(y)

LA gl
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The second inequality in (3.2) is trivial.
If S is order continuous let

_ o ISl

C =sup ——.
rer I fI*

We need to consider only the case C' < co. Fix a finite A > C and choose a positive
go € L such that ||go|| <1 — A1C. Such a gy exists because \ is o-finite and || - ||
is a Banach Function Norm. For n = 0,1,... define

gnt1=go+ A7 Sg,.

Clearly go < ¢1 and if g,—1 < g, then Sg,—1 < Sg, s0 gn < gn+1. By induction
the sequence gg, g1, . .. is non-decreasing. Let g be its pointwise limit and note that
0 < go < g. The order continuity of S implies that

(3.3) g=go+A'Sg.
Now ||go|| <1 —A"'C <1 and if ||g,|| < 1 then
lgns1ll < llgoll + A7 [Sgnll <1 — A7'C + A7'Cllgn|* < 1.

By induction, ||g,|| < 1 for all n and the Fatou property of || - || yields ||g|| < 1.
This and (3.3) imply

ess supy S9(y) < A.
vey  9(y)

Since the argument holds for any A > C' we have

inf esssupy 9(v) <C.
0<geL.gl<1  yey — 9(y)

This inequality completes the cycle and ensures equality in (3.2).

As an immediate consequence we have a version of Schur’s Lemma for operators
satisfying (3.1).

Corollary 3.2. Suppose that || - || is a Banach Function Norm on L, S : L — L,
0 < a <1 and (3.1) holds. If there exists a positive g € L satisfying Sg < Cg for
some C' > 0 then

ISFIL< (Cllgl* =) A1, f e L.

It is natural to ask if the supremum and infimum are achieved in (3.2). The
answer is yes when S has a positive (formal) eigenvector.
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Corollary 3.3. Suppose that || - || is a Banach Function Norm on L, S : L — L,
0 <a <1 and (3.1) holds. If there exists a positive g € L satisfying ||g|| < oo and
Sg=Cgqg for some C > 0 then

S —o
sup II0_ gy,

rer [IfI«

Proof. Since g is positive (3.2) yields

_ S S S _ _
C’Hng o || gl’ § sup || fl| S ess Supy g(y) Hg”l o C“gH1 «
lgll* — ser [I£] yevy  9(y)

provided g # oco. If g = oo then ||g|| < oo implies that || - || = 0 and the conclusion
is trivially valid.

Our next result shows that when S and || - || are well-behaved and o < 1 then
such an eigenvector always exists. To ensure that the eigenvector we generate below
is positive we need an additional assumption: That S does not achieve its norm on
a proper ideal. If ¥ is a measurable subset of Y we let

L(E)y=XpL={f€L:f(y)=0fory¢E}

be the ideal of functions supported on E. If E does not have full measure in Y
then we say that L(FE) is a proper ideal. We will assume that

S S
(3.4) sup w < sup | f(! whenever \(Y \ E) > 0.
reney IFI1* rer 1]
Theorem 3.4. Suppose that || - || is an absolutely continuous Banach Function
Norm on L, S : L — L is strongly order continuous, 0 < a < 1 and (3.1) holds. If
S
p 1571 fll =C < o0
re |11l

then there exists a g € L such that ||g|| = 1 and Sg = Cg. If, in addition, (3.4)
holds then g s positive.

Proof. If C = 0 then S = 0 and the theorem holds trivially. Otherwise fix a positive
go € L with ||go|| = 1. For each positive integer k let Dy > 1 be the solution to

(1/k) + Di = Dy
and note that Dj decreases to 1 as k increases to oo. Set

95" = (1/k)go amd g7}y =gt” +CTSgP, n=0,1,....

n
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As in the proof of Theorem 3.1, we find that the sequence g(()k)7 ggk), ... is non-
decreasing. Let ¢(*) be its pointwise limit. The order continuity of S implies

(3.5) g% = (1/k)go + C71Sg™).
Now |lg{¥|| = 1/k < Dy, and if ||g{"]| < Dy then
g0l < (1/R)lgoll + C~1Sg{P |l < (1/k) + Dg = Dy

By induction ||g,(¢k) | < Dy, for all n and the Fatou property of ||-|| yields ||g®*)| < Dy.
Since Sg*) < C¢*), Corollary 3.2 shows that

s .
¢ = sup B3I — g0y 1-o

rer IFIl*
It follows that [|g(®)|| > 1 and we have
(3.6) 1< [lg™[| < Dy.

Now we are ready to vary k. It is easy to verify that ¢(*),¢(® ... is a non-
increasing sequence. Let g be its pointwise limit. Since Sg(P) < Cg(M) < Cgy we see
that Sg(M) is finite A-almost everywhere. The strong order continuity of S applied
to (3.5) gives

g=C""Sg

and the dominated convergence property of || - || (|2, Proposition 1.3.6]) applied to
(3.6) yields
1< gl <1

This completes the proof of the first statement.
To show that g is positive A-almost everywhere we set £ = {y € Y : g(y) > 0}
so that g € L(F). Then

ISF _ - 1S9l ISA]

sup =(C = < sup
rec IS lgll® = rerce IIF11

and in view of our hypothesis (3.4) we have A(E) = 0 as required.

If we work with ideals in L instead of L itself then we can better understand
why ¢ is required to be positive in the infimum of Theorem 3.1. For g € L we set

Ey={yeY :g(y) >0}

The ideal L(E,) consists of those functions that vanish wherever g does. Note
that for any E the ideal L(F) is an order ideal as well as a multiplicative ideal.
That is, if f < g € L(F) then f € L(F) and also if f € L and g € L(F) then
fg € L(E). We have defined L(E,) to be the order ideal generated by ¢ rather
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than the multiplicative ideal generated by g which may be smaller. One easily
checks that gL C L(E,) and it is worth noting that if g takes the value co on a set
of positive measure then the inclusion is proper.

If ECY and S: L — L satisfies (3.1) then Sg : L(E) — L(FE) defined by

Se(f) =XeSf
satisfies |Sgf|| = ||Sf] for all f € L(E) and

1Se(foll < 1 /*Segll,  f.9 € L(E).

It is natural to identify the ideal L(E) with the cone LY (E) of non-negative
functions on F and by making this identification we can apply the results of this
section to the operator Sg. The outcome of this process is recorded below. Since it
includes all the results of this section as special cases, the next theorem also serves
as a summary.

Recall that A is a o-finite measure on Y and L = L{(Y) is the collection of
A-measurable functions on Y with values in [0,00]. For g € L, E;, = {y € Y :
g(y) >0} and for ECY, L(F) = XgL.

Theorem 3.5. Suppose that || - || is a Banach Function Norm on L, S : L — L,
O0<a<l, and

1S(fo)ll <[ f*Sgll, f,g9€L.
1. If E CY is A\-measurable then

—HSfH < inf esssupy S9(v) ||g||1_a < inf €SS Sup) S9(v)

rene) 1Y~ Bo=E yer ~ g(y) T E,=E, |glI<l  yer  9(y)

with equality if S is order continuous.
2. If Sg < Cg then

Sf _a
BT < g,
ren(e,) IIf]l
3. If |lg|| < o0 and Sg = Cg then
Sf o
P g,
ren(e,) IIf]l

4. If ||| is absolutely continuous, S is strongly order continuous, 0 < a <1, ECY
18 A-measurable, and
ISA]
sup

ren(e) IfI~

then there exists a g € L(E) such that ||g|| =1 and Sg = Cg on E. If for every
E, C E, S satisfies

=C< o

(3.7) sup IS 71| < sup IS 71 whenever A\(E'\ E1) >0

ren(m) 111 rerm IF1°
then g > 0 on E.
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4. BACK TO THE LEBESGUE CASE

The general results of Section 3 include the situation introduced in Section 2.
Our first result is an analogue of Theorem 3.5 in this case. With this, the proofs of
Theorems 2.2 and 2.3 will be easy.

Recall that Lt and L;f are the collections of functions from the o-finite measure
spaces (X, ) and (Y, v), respectively, taking values in [0, 00]. The maps T; : L} —
L} and T : Lf — L} are formal adjoints for i = 1,...,n, T is defined by

n

(Tf) = [[@ifrow/m,

i=1

andr; <qg=q +---+¢q, < p for all 7. ForuEL;r and v € L} with 0 < v < oo,
the operator S is given by

n

(Sg)P = % > (ai/9)g" Ty (uRig)

i=1
where

if ¢; <r; and T;(¢9™)(x) = o0

OO?
H?:1 T(g™)% /mi=%;  otherwise.

(1/9)—(1/p)
B, = (/ gpvdy)
E

and note that B, =1 when p =g evenif g ¢ L?, .

As a notational convenience of using arithmetic on [0, 00| we write f < oog to
mean that f vanishes wherever g does. Thus f < coXg means that f = 0 off the
set F and ocog = coXp means that g =0 off £ and g > 0 on F.

Theorem 4.1.
1. If E CY 1is v-measurable then

Rig(o) = {

For g € L} we set

1/q
sup (fX &f) d,u) < inf B <ess sup S9() )P/q
f<ooXp (fE frv du)l/p  ocog=0oXp 7 yeEE 9(y)
p/a
< inf <ess sup 59(y) )
cog=coXg, [pgvdv<i \ yeB = 9(Y)

with equality if q¢; > r; fori=1,...,n.
2. If g € L} satisfies Sg < Cg then

1/q 1/p
(4.1) (/X(Tf)qu d,u) < Cp/qu (/Y fPo dI/) . f < oog.
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3. If g € LY, and Sg = Cg then the constant in (4.1) is best possible.
4. Ifq<p,q>r; fori=1,...,n, ECY and

1/q 1/p
(/ (Tf)qudu> <crli (/ fpvdV) , f < ooXg,
b'e Y

then there exists a g < coXpg such that By =1 and Sg = Cg on E. If T satisfies
(2.3) then cog = coXg.

Proof. 1t is a simple matter to check that if the theorem holds for the indices

DyqyT1y- -3 nsq1,- - -, qn and m is any positive real number then it also holds for the
indices mp, mq, mry,...,mr,,mqy,...,mq,. Therefore, we may assume without
loss of generality that p > 1. This ensures that ||- || » is a Banach Function Norm.
Note that || - ||,z  has the dominated convergence property and so is absolutely
continuous.

The measure A = vv is o-finite because v is o-finite and v < co v-almost every-
where. Take || - || = || - [|zz, and o = ¢/p and apply Theorem 3.5 to the operator

S above. In this special case the condition (3.1) is just (2.8) which was established
previously. The conclusions of Theorem 3.5 are readily reformulated to yield Theo-
rem 4.1 by using (2.7) to express the results in terms of 7. Only two things remain.
To show that S is strongly order continuous when ¢; > r; for i = 1,...,n and to
show that if T satisfies (2.3) then S satisfies (3.7). These are established in the
next two lemmas.

Lemma 4.2. If q; > r; fori=1,...,n then S is strongly order continuous.

Proof. By Lemma 2.4, T is strongly order continuous (SOC) and it is easy to check
that
g Ty(g" )0/
is also SOC because the exponent ¢;/r; — d;; is non-negative for all 7 and j. A
standard argument shows that sums and products of SOC operators are again
SOC. Thus R; is SOC for each ¢ and to complete the proof it is enough to show
that
g9 — T (uRig)

is SOC. Of course, T;* has formal adjoint T; so Lemma 2.4 shows that T} is SOC.
If g, T g then uR;g, T uR;g so T (uR;gn) 1 T; (uR;g).

For non-increasing sequences a bit more analysis is required. If g, | ¢g and
T*(uR;g1) < oo then we let E = {z : u(x)R;¢1(z) < oo}. For any f

ooXx\pf =0 <uR;g
SO
T (Xx\gf) < T; (uR;ig1) < oo.
It follows that T} (Xx\gf) = 0 and, since T} is additive, that T} f = T; (X f).
Now XguR;g1 < oo and XguR; is SOC so XguR;g, | XguR;g. Since T} is SOC
and T (XguR;g1) = T (uR;g1) < oo we have
T (uRign) = T; (XpuRign) | T; (XpuRig) = T} (uR;g).
This shows that ¢ — T;"(uR;g) is SOC and completes the proof.
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Lemma 4.3. Ifqg<p, ¢ >r; fori=1,...,n and T satisfies (2.3) then S satisfies
(3.7).

Proof. The assumption ¢q; > r; fori =1,...,n gives T a g-superadditivity property:
If fop and f1 have disjoint supports then (fo + f1)™ = fi' + f1° for all i so

(TS5 + F1)

I

s
I
—

(T(fo + fi)*

(T3(f57) + T f1) %/

I

s
Il
—

(Ti(fg )/ + (Ti(f7)) /™)

Vv

s
I
—

\%
=

(Ti(fgi>)%'/7"i + H(Ti(f{i))qi/'l“i

Tfo)* + (T'f1)".

I
—

P

Consequently
(4.2) ITfollg + 1T 11l§ < [IT°Cfo + SO

With this in hand we suppose that T" satisfies (2.3), fix £; C E, and suppose that
Ey = E \ E; has positive d-measure. Define

T T T
& PN 4

M = ) ’ 1 — .
f<ocoXg | fllp f<ooX g, | fllp f<ooXp, Hf”p

In view of (2.7) our object is to show that M; < M. Since A\ = vv and Ej has
positive A-measure, it also has positive v-measure so (2.3) shows that My > 0. To
complete the proof it will suffice to establish

(4.3) Mg + Ms < M*

where s = pq/(p—q). If M7 = 0 then (4.3) holds trivially. If M; > 0 and mg and m;
satisfy 0 < my < My and 0 < m; < M; then there exist functions fy < coXp, and
f1 < 00X, such that mol| follp < |1 follq and ma|| fill, < |Tf1llq- The homogeneity
of T' ensures that we can scale fy and f1 so that they also satisfy || follh = mg and
| f1|l5 = m{. Using (4.2) and the definition of M we get

mg +mi = mg| folly +millfll3
< |TfollZ + [IT f1|2
< NT(fo + £
< M| fo + f1ll3
= M|\ follb + [1 f115)%/”
= M(m} +m§)f1/p.
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Thus, (m§ +m3)1=9/P) < M9 whenever mo < My and m; < M; and so we have
(4.3). This completes the proof.

Proof of Theorem 2.2. By replacing v in (1.2) by CPv we can reduce Theorem 2.2
to the case C' = 1. Let F =Y and take g to be the function satisfying Sg = g,
B, =1 and g > 0 whose existence is guaranteed by Theorem 4.1(4). In view of

(2.7) we have
/ (Tg)udv = / (Sg)Pvdv :/ gPvdr =1
b's Y Y

and because v > 0 it is clear that g < oo v-almost everywhere. Therefore, v, =
g Pv(Sg)P = v and it follows that Cy = B, = 1.

Proof of Theorem 2.3. If S = 0 then by (2.7) vT = 0 as well and the theorem is
trivial. Otherwise, with £ =Y in Theorem 4.1(1), we have

p/q
C= inf (ess supa Sg_(y)) .

>0, [, gvdv<1 yey 9(y)

Since C' < A < oo there exists go > 0 with fy govdrv < 1 such that Sgy < AQ/pgo

v-almost everywhere. With ¢ = A~ 'go this becomes Sg < Ag and we have v, =
g Pv(Sg)P < APy. Now

(1/9)—(1/p) (1/9)—(1/p)
C, = (/ g v, dy) < (/ ApggApvdu) <1
Y Y

The condition (2.3) of Theorem 2.2 and the restriction 0 < v < oo of Theorems
2.2 and 2.3 do not reduce the generality of these results. This is because an in-
equality of the form (1.1) which is not trivially false is equivalent to another of the
same form for which (2.3) holds and 0 < v < oo. This is presented in the next
theorem.

Theorem 4.4. Let T be an operator of the form (1.1). Suppose 0 < C' < oo and let
Yo ={y €Y :v(y) =0}. If there exists an fo € LY, such that uT fo # uT'(foXy\v,)
on a set of positive p-measure then

(4.4) ( /X (Tf)qudu) e ( /Y fpvdV) " renm.

fails. Otherwise, (4.4) holds if and only if

1/q 1/p
(4.5) (/X (Tf)qudu) SC(yfpvdv)  feLim),

where
X1 ={z € X :u(z)T(Xy\y,)(z) > 0}



18 GORD SINNAMON
and
Vi={yeY: :0<uv(y) <oo;> i T/ (Xx,)(y) > 0}.

Moreover, if (4.5) holds, E C Y1 and uTf = uT(fXg) for all f € L} (Y1) then
v(Y1\ E) =0.

Proof. Suppose f € LY, satisfies uT'f # uT'(fXy\y,) on a set of positive y-measure.
Then for some i both T;(f"*) > Ti(f"*Xy\y,) and Tj(f"7) > 0 for i # j hold on a
set of positive up-measure. The [0, oco]-linearity of T; yields T;(ocof" Xy, ) = oo on
this set. Therefore

/ T(cofXy, + f)ludp > / Ty (0o fTi Xy, )%:/™i HTj(fo)qJ’/rjud,u = 00.
b's X oy
JFi

However, v vanishes on Yj so

/}/(OOfXY0+f)pvdl/:/}/fpvdu<oo.

We conclude that (4.4) fails for the function cofXy, + f. This proves the first
statement of the theorem.
If (4.4) holds and f € L} (Y7) then

(/ | (Tf)qudu)l/q < ([ nymuan) v
<C (/Y v du)l/p _C < RE du)l/p

so (4.5) holds. On the other hand, suppose (4.5) holds and fix f € L (Y). If the
right hand side of (4.4) is infinite there is nothing to prove so we may assume that
f € LP, and, in particular, that f = 0 vv-almost everywhere on {y € Y : v(y) =
oo}. By hypothesis, we also have uT'f = uT'(fXy\y,) so

(46) UTf = UT(fX{yEY:O<v(y)<oo})'
For each 7, T Xx, = Xy, T;"Xx, where
Yo={y eV : 200,177 (Xxi)(y) > 0}

Therefore
| ontydu= | progdr = [ oot = [ 1) d
X1 Y Y X1

and since T;(f" Xy, ) < T;(f") it follows that T;(f™) = T;(f"Xy,) u-almost every-
where on X;. Hence T'f = T'(fXy,) p-almost everywhere on X;. Combining this
with (4.6) yields

uTf =uT(fXy,)-
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With this we can prove (4.4). Observe that
ul'f = uT(fXy\y,) < oouT' (Xy\y,)
so uT'f =0 off X;. Now

(/X(Tf)qudu>1/q _ (/Xl(Tf)qudu) 1/q ) </Xl T(fXY1)quu>1/q
=C (/Y f%dy)l/p <cC (/Yfpvdy)”p.
This is (4.4)

Finally, suppose that (4.5) holds and F C Y; satisfies uT f = vT'(fXg) on X; for
all f € L (Y7). Since vv is a o-finite measure on Y \ Yy we can choose a positive
function f € LY, (Y1). Then TXy\y, = TXy, < ool fsoTf > 0on X;. Also, using
(4.5) we see that [y (T'f)%udp < co. We have

OO/ Tz‘(Xyl\E)qi/”HTj(frj)qj/TjUd,UJ
X1 i

< [ T(eoXp + Hrudp= [ (@ pudp <o
X1 Xl

Since T'f is positive on X this implies T;(Xy,\g) = 0 and hence T;Xy, = T;(Xg)
for each i. Now

/ T:XXl dv = / TiXYl du = / T‘zXE d/i = / T:XXl dv.
Yl Xl X1 E

Thus T;(Xx,) = 0 v-almost everywhere off E' and so the definition of Y; yields
v(Y1\ E) =0.
5. EXAMPLES AND APPLICATIONS

Our first example illustrates the simplicity of generating inequalities using The-
orem 2.1 by exhibiting a weighted Hardy inequality with best constant.

Example 5.1. If1 <q¢<p< oo and a > 0 then

00 x 1/q 0o 1/
([ [ sas) eomwar) < atm-eim (7 gpeeray)

for all f > 0. The constant is best possible.
Proof. Let n = 1, Ty f(x) = 1 fox f, u(z) = xze=** r;1 = 1, ¢ = ¢, and apply

Tz

Theorem 2.1 with g(y) = 1. Using the formulas (2.1), we readily calculate
vy=e/a and C,= o(2/P)—=(2/q)
and then (2.2) simplifies to the above inequality.

Next we show that the Stieltjes transformation has norm 1 as a map from L? to
a certain weighted L2.
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Example 5.2.

AR 2 S
/0 <0 m+ydy> deg/o fy)y*dy, f=>0.

The constant 1 is best possible

Proof. Let n =1, T f(z) = [y f(y)/(z +y) dy, uw(z) = 2/(log(z)* + 7?), r1 = 1,
g1 =2,p=q=2 and apply Theorem 2.1 with g(y) = log(y)/(y — 1). Since p = ¢q
we have C; = 1 and checking that v, = 1 in (2.1) completes the proof.

In the next example we look at a weighted Hardy inequality with a nonhomoge-
neous boundary condition. In the next three examples, AC(I) denotes the collection
of absolutely continuous functions on the interval I.

Example 5.3. Suppose u and w are weights with w positive and set U(y) = fl U.

y
Then . )
/ |h|u < C/ |h'|2/w, h € AC[0,1],h(0) = 0,h(1) =1,
0 0

1/2
with C' = 5 fo Uw+ 3 <f0 Uw fo ) . If the constant C is finite then it is best

possible.

Proof. We make the substitution h(x fo f/ fo f to see that the desired inequal-
ity is equivalent to

/o1 </owf) (/olf) u(z) do < 0/01 f?jw, f=0.

For this we apply Theorem 2.1 with n = 2, Tlf fo f, Tof(x fo fir =
ro =q1 = ¢ =1, p=¢q = 2 and, ofcourse, u = u. Set g = Uw+bw where
= fol Uw/ fol w. Since p = g we have C; = 1 and a calculation yields wv, = C.

If C is finite it is easy to check that fol(Tlg)(ng)u < oo to conclude that the
constant is best possible.

Next is an unweighted variant of Opial’s inequality with nonhomogeneous bound-
ary conditions.

Example 5.4. Suppose p > 3. Then
1 1 [
/ |h||1 = h||R| < é/ \n'|P, h e AC|0,1], h(0) =0, h(1) = 1.
0 0

The constant is best possz’ble

Proof. The substitution h(z) = [ f/ fo f shows that the desired inequality is
equivalent to

-3

LU o) s [Lswran sz0
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To generate this from Theorem 2.1 we put n=4, T f(x fo f, Tof(x f f,

Tsf(xz) = f(x), u(x) = 1, and Ty f(x fo f. Take the r;’s and ¢;’s all to be 1
except for g4 = p—3, and set g(y) = 1 Straightforward calculations yield v, = 1/6
and C,; = 1 to prove the result. (If p = 3 the operator Ty does not appear so we
are applying Theorem 2.1 with n = 3. The calculations are the same.)

In the previous examples the functions g satisfied [(T'g)%u < oo so they were
extremals and the constants were automatically best possible. Next we give an
example where g is not an extremal. As we see in the proof, a sequence of functions
tending to g provides our substitute for an extremal. The following weighted Opial-
type inequality appeared without best constant in [15].

Example 5.5. Let u(x) = 1/x. Then
/ WA |1 < 2/ W2, W e AC[0,00), h(0) = 0.
0 0

The constant is best possible.

Proof. The desired inequality is equivalent to

/Om(/omﬂy)dy)f —<2/ fw)?dy. f>0

Let n=2,T f(z fo y)dy, Tof(z) = f(z),u(x) =1/x,mm =r0o =1 = q2 = 1,
p=¢q=2and set 9(y) =y —1/2_ Since p = q we have Cy = 1 and integration yields
vy = 2. The inequality therefore holds by Theorem 2.1 but without a guarantee
that the best constant is 2. To see that the inequality does not hold for any constant

less than 2 we set fi(y) = y_1/2X(1/k,k)(y) for k= 1,2,.... The best constant can
be no less than o

lim Jo (s fu(y) dy) fu(z) da/x _

he fooo fe(y)? dy

We can generate inequalities with given weights u and v provided we can solve
the equation v, = Av for some function g and constant A. Often this can be
reduced to a differential equation and solved explicitly. Once the solution is found
there is no need to exhibit the solution procedure, we merely apply Theorem 2.1
to the appropriate function g. The next example is of this sort. Both the weights
u and v are constant in this unweighted Hardy type inequality. (Although the
example below is not strictly a Hardy type inequality in the sense of [12], we refer
to it as such because of the Hardy averaging operators it involves.)

Example 5.6.

FCLNCLwetfr ren

The constant is best possible.
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Proof. Apply Theorem 2.1 with both T} f(z) = Tof(x) = 1 fow f but let g1 =71 =

—
1, g0 =7y =2and p =q = 3. Let g(y) = y~ /% and check that C, = 1 and
vg(y) = 9/2. As in the previous example, some extra argument is needed to show
that the constant is best possible. We omit the details.

We conclude with an application of Theorem 2.2 viewed as a structure theorem.
Although the result is well-known the method is new. See [17] or the references in
[12].

Theorem 5.7. If 1 < q < p and

(/OOO (/Oxf)qu(w)dx)l/q gc(/ooofpv>1/p, >0,

for some finite C then

(O ([re) " nw) <

Here 1/r =1/q—1/p.

Proof. By Theorem 2.2 there exists a positive function g such that v = v, and
Cy < C < 00. Using the definition of v, and reducing the region of integration we
have

/Otr"l_p, = /Ot (/yoou(x) (/Owg)q—l dx>1 9(y) dy
= /ot (/too u(@) (/Ot g)q_l dm) gly) dy = (/Ot g)q_p/qﬂ)/ (/too u)l_p/-

This estimate and the hypothesis of the theorem yields

oo %) r/p + / r/p’ 1/r
()" (o) woa)
0 t 0
o ort \1 v SN
< / (/ g) u(t) dt < T (/ gpv> — Cq/rcg/p <C.
0 0 0

1-p
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