
THE LEVEL FUNCTION IN

REARRANGEMENT INVARIANT SPACES

Gord Sinnamon

The University of Western Ontario

July 10, 2000

Abstract. An exact expression for the down norm is given in terms of the level

function on all rearrangement invariant spaces and a useful approximate expression
is given for the down norm on all rearrangement invariant spaces whose upper Boyd

index is not one.

1. Introduction

Let λ be a measure on R and take X to be a rearrangement invariant space of
λ-measurable functions. We define the down norm of a λ-measurable function f to
be

(1.1) ‖f‖X↓ = sup
{∫

R

|f |g dλ : g ≥ 0, g non-increasing, ‖g‖X′ ≤ 1
}
.

Had we taken the supremum over all g in the unit ball of X ′, the associate space
of the Banach function space X, we would have recovered the norm of f in X so it
is immediate that

‖f‖X↓ ≤ ‖f‖X .
The significance of the down norm is that the inequality

(1.2)
∫

R

fg dλ ≤ ‖f‖X↓‖g‖X′

holds for all f and all non-negative, non-increasing functions g. Since the down
norm of f is smaller than the norm of f in X this estimate uses the monotonicity
hypothesis on g to improve the usual estimate∫

R

fg dλ ≤ ‖f‖X‖g‖X′ .
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2 GORD SINNAMON

To use inequality (1.2) effectively it is necessary to understand the down norm.
In the case that X is Lebesgue space this has been done in two ways. Halperin [6]
and Lorentz [9] gave an exact expression for the down norm when λ is a non-negative
weight function times Lebesgue measure. Given a function f they constructed a
related function fo, called the level function of f , and showed that the down norm is
precisely the norm of fo in X. In [13], the level function construction was extended
to general (regular) measures on R, the down norm was shown to define a Banach
space and the dual space was also constructed.

The second approach to understanding the down norm, given in [12] for weighted
Lebesgue spaces, was to give an equivalent norm in a more tractable form. The
norm in X of a certain averaging operator applied to f was shown to be equivalent
to the down norm of f . The loss of exactness is more than made up for because
the averaging operator is linear. This approach was extended to Orlicz spaces with
weights in [8] where the down norm in sequence spaces was also considered.

Our object is to look at both of these approaches in the more general setting
of rearrangement invariant spaces. As often happens when theorems are examined
in their natural generality, the proofs reduce to their essential features and greater
understanding is gained. We will see how the averaging operator involved in the
results of [12] and [8] arises naturally from the level function construction and
how the finiteness of λ(R) affects that operator. We will also see why the level
function approach to the down norm remains valid in all rearrangement invariant
spaces while a restriction is required for the other approach to be valid. In [12]
the restriction was that the Lebesgue index be greater than one and in [8] a ∆2

condition was imposed on the N -functions defining the Orlicz spaces.
For definitions and notation involving Banach function spaces and rearrangement

invariant spaces we refer to [1]. We adopt the convention that 0 · ∞ = ∞/∞ = 0.
If A and B are expressions involving f , we write A ≈ B to mean that there exists
a positive constant C, not depending on f , such that C−1A ≤ B ≤ CA. The range
of integration of an integral given with limits is taken to be the closed interval so
that ∫ b

a

f dλ =
∫

[a,b]

f dλ but
∫ b

−∞
f dλ =

∫
(−∞,b]

f dλ.

2. The Down Norm

Let X be a rearrangement invariant space over the measure space (R, λ). For
the down norm to be interesting some restrictions on λ are in order. Since we want
non-negative, non-increasing functions to be λ-measurable we assume that sets of
the form (−∞, x] and (−∞, x) are λ-measurable which means that all Borel sets
are λ-measurable. To ensure that the space X ′ actually contains non-trivial non-
negative, non-increasing functions we assume that for each x, λ(−∞, x] < ∞. For
technical reasons the measure λ in [13] was assumed to be regular and since we wish
to apply those results we make the same assumption here. Finally, in working with
rearrangement invariant spaces it is usual to assume that the underlying measure
space is resonant [1, Definition II.2.3 and Theorem II.2.7] so that, among other
things, the associate space will also be rearrangement invariant. For these reasons
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we assume henceforth that

(2.1)
λ is a regular Borel measure on R, λ(−∞, x] <∞ for all x ∈ R, and

λ is nonatomic or else completely atomic with all atoms having measure 1.

With these assumptions on the measure λ we can show that X↓, the collection
of functions f satisfying ‖f‖X↓ < ∞, is a normed vector space: It is easy to see
that X↓ is a vector space containing X and it is clear from (1.1) that ‖ · ‖X↓ is non-
negative, homogeneous, and satisfies the triangle inequality. It remains to show
that only the zero function has zero norm in X↓. For each x ∈ R, λ(−∞, x] <∞ so
χ(−∞,x] ∈ X ′ and hence, if ‖f‖X↓ = 0 we have

∫ x
−∞ f dλ = 0 for each x. It follows

that f = 0 λ-almost everywhere and we have shown that ‖ · ‖X↓ is a norm. In fact,
X↓ is a Banach space as we show in Theorem 5.3.

In most applications, the measure λ is weighted Lebesgue measure on the half
line, dλ(x) = w(x) dx with w a non-negative, locally integrable function on [0,∞).
The case that λ is counting measure on the positive integers also arises. The
rearrangement invariant spaces for the latter measure include lp and Orlicz sequence
spaces while those for the former measure are weighted Lebesgue spaces, Orlicz
spaces, Lorentz spaces and others. We hasten to point out that while the weighted
Lebesgue space Lpw[0,∞) is not rearrangement invariant with respect to Lebesgue
measure unless w ≡ 1, it is rearrangement invariant with respect to the measure
w(x) dx.

We plan to use the level function to relate the norm in the space X↓ to the
norm on the original space X. The next proposition introduces the level function
as constructed in [13]. For convenience we define B to be the collection of λ-
measurable functions on R which are bounded and supported in a set of the form
(−∞,M ] for some M ∈ R.

Proposition 2.1. Suppose λ satisfies (2.1) and f ∈ B. Then there is a non-
negative, non-increasing function fo ∈ B, called the level function of f with respect
to λ, and having the following properties.

(a) There exists a finite or countable collection of disjoint intervals Ii of finite, non-
zero λ measure such that f = fo λ-almost everywhere on E = R \ ∪iIi and for
each i,

fo(x) = (1/λIi)
∫
Ii

|f | dλ

for λ-almost every x ∈ Ii.
(b) If g is non-negative and non-increasing then∫

R

|f |g dλ ≤
∫

R

fog dλ.

(c) If f1, f2 ∈ B and |f1| ≤ |f2| then fo
1 ≤ fo

2 .

Proof. The structure of the level function of f is given in [13, Theorem 4.4, Defini-
tion 4.6, Corollary 4.8 and Theorem 4.9]. There it is shown that fo is non-negative
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and non-increasing and that (a) holds. It is not assumed in [13] that f is supported
on (−∞,M ] so the possibility of a level interval of infinite λ measure is considered
there. An easy argument shows that if f is supported on (−∞,M ] then all the level
intervals Ii are contained in (−∞,M ] and hence are of finite λ measure. Clearly
we may discard those of zero λ-measure.

Part (b) is given in [13, Theorem 4.11] and (c) is proved in [13, Theorem 5.2].

The main result of this section is given in the next theorem for f ∈ B and in
Corollary 2.4 for general f .

Theorem 2.2. Suppose λ satisfies (2.1), X is a rearrangement invariant space
over (R, λ), f ∈ B, and fo is the level function of f with respect to λ. Then
‖f‖X↓ = ‖fo‖X .

Proof. We use the level intervals of f to define the operator Af .

Afh = hχE +
∑
i

(
1
λIi

∫
Ii

h dλ

)
χIi .

Note that Af is self-adjoint, that is
∫
R

(Afg)h dλ =
∫
R
g(Afh) dλ for appropriate

g and h. Also note that by [1, Theorem II.4.8] Af is a contraction on any re-
arrangement invariant space, in particular ‖Afh‖X′ ≤ ‖h‖X′ for h ∈ X ′. It is
clear from the definition that Af |f | = fo and since the sets Ii are intervals, Afh is
non-negative and non-increasing whenever h is.

If g is non-negative and non-increasing and ‖g‖X′ ≤ 1 then by Proposition 2.1(b),∫
R

|f |g dλ ≤
∫

R

fog dλ ≤ ‖fo‖X

so we have ‖f‖X↓ ≤ ‖fo‖X . Now we prove the reverse inequality. A simple limiting
argument shows that

‖fo‖X = sup
∫

R

foh dλ

where the supremum is taken over non-negative functions h ∈ B satisfying ‖h‖X′ ≤
1. For such an h, since fo is non-negative and non-increasing, we have∫

R

foh dλ ≤
∫

R

foho dλ =
∫

R

(Af |f |)(Ahh) dλ =
∫

R

|f |(Af (Ahh)) dλ.

Set g = Af (Ahh). Since Ahh = ho is non-negative and non-increasing we see that
g is non-negative and non-increasing. Moreover, ‖g‖X′ ≤ ‖h‖X′ ≤ 1 since both Af
and Ah are contractions on X ′. We conclude that

‖fo‖X ≤ sup
{∫

R

|f |g dλ : g ≥ 0, g non-increasing, ‖g‖X′ ≤ 1
}

= ‖f‖X↓.

This completes the proof.

To extend the definition of the level function from f ∈ B to all λ-measurable
functions f we use Proposition 2.1(c).
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Definition 2.3. If f is a λ-measurable function let fn = min(|f |, n)χ(−∞,n] and
set fo = limn→∞ fo

n.

Clearly fn ∈ B for each n so fo
n is defined. By Proposition 2.1(c), {fo

n} is a
non-decreasing sequence so the limit in Definition 2.3 always exists as a function
which takes values in [0,∞]. Moreover, if f ∈ B then fn = f for sufficiently large
n so the new definition of fo agrees with the original one.

It is immediate that, with this definition of the level function, Proposition 2.1(c)
remains valid for arbitrary functions. An application of the Monotone Convergence
Theorem shows that Part (b) also extends. Part (a) does not hold for arbitrary
functions because the rightmost level interval may have infinite λ measure. To what
extent the structure of fo for an arbitrary function can be described in terms of
level intervals is not clear.

The sequence fn = min(|f |, n)χ(−∞,n] in Definition 2.3 is chosen for convenience,
in Section 5 we show that the definition of fo is independent of the approximating
sequence.

Corollary 2.4. Suppose λ satisfies (2.1) and X is a rearrangement invariant space
over (R, λ). If f ∈ X↓ then fo is finite λ-almost everywhere, belongs to X, and
‖f‖X↓ = ‖fo‖X .

Proof. Since fn = min(|f |, n)χ(−∞,n] is a non-decreasing sequence, Proposition
2.1(c) shows that fo

n is also. The Fatou property of the Banach function space X,
Theorem 2.2, and the observation that fn ≤ |f | show that

‖fo‖X = lim
n→∞

‖fo
n‖X = lim

n→∞
‖fn‖X↓ ≤ ‖f‖X↓.

Now [1, Lemma I.1.5(i) and Theorem I.1.4] show that fo ∈ X and is therefore finite
λ-almost everywhere.

For each non-negative, non-increasing function g with ‖g‖X′ ≤ 1 we have, by
the Monotone Convergence Theorem and Proposition 2.1(b),∫

R

|f |g dλ = lim
n→∞

∫
R

fng dλ ≤ lim
n→∞

∫
R

fo
ng dλ ≤ lim

n→∞
‖fo
n‖X = ‖fo‖X .

Taking the supremum over all such g yields ‖f‖X↓ ≤ ‖fo‖X and completes the
proof.

3. An Equivalent Norm

Expressing the down norm of a function f in terms of the level function of f ,
although exact, has a major drawback. The map f → fo is not linear, in fact,
it is not even sublinear. In the Lebesgue space case it was shown in [12] that
the space X↓ has an equivalent norm which can be expressed in terms of a linear
averaging operator applied to f . The same averaging operator was shown to work
in Orlicz spaces in [8]. The linearity of this averaging operator leads to a duality
principle which reduces weighted inequalities for a general operator considered over
monotone functions to weighted inequalities for a modified operator considered
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over all functions. In this section we show that the equivalent norm and the duality
principle remain valid for a wide range of rearrangement invariant spaces. Since
the techniques involved are quite different this also provides new proofs of some
results of [12] and [8].

Since λ satisfies (2.1), its cumulative distribution function is finite on R. Let
Λ(x) =

∫ x
−∞ dλ for x ∈ [−∞,∞] and define the averaging operator P by

Pf(x) = Λ(x)−1

∫ x

−∞
f dλ+ Λ(∞)−1

∫ ∞
−∞

f dλ.

By our convention the second term is absent, regardless of f , when Λ(∞) =∞.

Theorem 3.1. Suppose λ satisfies (2.1) and X is a rearrangement invariant space
over (R, λ). Then ‖f‖X↓ ≈ ‖Pf‖X for all f ≥ 0 if and only if P : X → X is
bounded.

Proof. Suppose first that ‖f‖X↓ ≈ ‖Pf‖X for all f ≥ 0. Then there exists a
constant C such that for any f ∈ X,

‖Pf‖X ≤ C‖f‖X↓ ≤ C‖f‖X

so P : X → X is bounded.
Conversely, suppose that P : X → X is bounded and hence continuous. Then

there exists a constant C such that ‖Pf‖X ≤ C‖f‖X for all f ∈ X. If f ≥ 0 then set
fn = min(f, n)χ(−∞,n] so that fo is the pointwise limit of the increasing sequence
{fo
n}. By Proposition 2.1(b) with g = χ(−∞,x] we have

∫ x
−∞ fn dλ ≤

∫ x
−∞ fo

n dλ for
each n and each x ∈ R. Thus

‖Pfn‖X ≤ ‖P (fo
n)‖X ≤ C‖fo

n‖X

and so, using the Monotone Convergence Theorem and the Fatou property of X,
we have

‖Pf‖X ≤ C‖fo‖X = C‖f‖X↓.

On the other hand, since fo
n is non-negative and non-increasing, fo

n ≤ P (fo
n) and

hence
‖f‖X↓ = ‖fo‖X = lim

n→∞
‖fo
n‖X ≤ lim

n→∞
‖P (fo

n)‖X .

To complete the proof it will suffice to prove the following lemma since then we will
have

‖f‖X↓ ≤ 3 lim
n→∞

‖Pfn‖X = 3‖Pf‖X .

Lemma 3.2. Suppose λ satisfies (2.1) and X is a rearrangement invariant space
over (R, λ). Then for any non-negative f ∈ B we have ‖P (fo)‖X ≤ 3‖Pf‖X .

Proof. We show that ‖P (fo)−Pf‖X ≤ 2‖Pf‖X , from which the result is immedi-
ate. For this argument we need a few details from [13, Definition 4.6] in addition
to those presented in Proposition 2.1. With Ii and E as in Proposition 2.1, if we
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define ai and bi by (ai, bi) ⊂ Ii ⊂ [ai, bi] then we have the following: The point
x ∈ E if and only if∫

(−∞,x)

fo dλ =
∫

(−∞,x)

f dλ and
∫

(−∞,x]

fo dλ =
∫

(−∞,x]

f dλ.

The point x is interior to one of the intervals Ii if and only if∫
(−∞,x)

fo dλ >

∫
(−∞,x)

f dλ and
∫

(−∞,x]

fo dλ >

∫
(−∞,x]

f dλ.

The left endpoint, ai ∈ Ii if and only if∫
(−∞,ai]

fo dλ >

∫
(−∞,ai]

f dλ.

The right endpoint, bi ∈ Ii if and only if∫
(−∞,bi)

fo dλ >

∫
(−∞,bi)

f dλ.

It follows that

P (fo)(x)− Pf(x) =
∑
i

Λ(x)−1

(∫ x

−∞
fo dλ−

∫ x

−∞
f dλ

)
χIi(x)

=
∑
i

Λ(x)−1

(∫
Ii∩(−∞,x]

fo dλ−
∫
Ii∩(−∞,x]

f dλ

)
χIi(x)

≤
∑
i

Λ(x)−1

∫
Ii∩(−∞,x]

fo dλχIi(x).

The second equality above is easy to prove in two cases depending on whether
ai ∈ Ii or not.

We use Proposition 2.1(a) to continue the calculation.

P (fo)(x)− Pf(x) ≤
∑
i

Λ(x)−1

∫
Ii∩(−∞,x]

dλ

(∫
Ii

dλ

)−1 ∫
Ii

f dλχIi(x)

=
∑
i

λ(−∞, x]−1λ(Ii ∩ (−∞, x])λ(Ii)−1

∫
Ii

f dλχIi(x).

Now we use the obvious inequality

λ(Ii ∩ (−∞, x])λ(Ii ∪ (−∞, x]) ≤ λ(−∞, x]λ(Ii)

to get

(3.1) P (fo)(x)− Pf(x) ≤
∑
i

λ(Ii ∪ (−∞, x])−1

∫
Ii

f dλχIi(x).
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Note that for x ∈ Ii, Ii ∪ (−∞, x] does not depend on x. It is either (−∞, bi) or
(−∞, bi] depending on whether or not bi is in Ii. Set Bi = λ(Ii ∪ (−∞, x]).

Define I0 and I1 by

I0 = {i : 2Bi < Λ(∞)} and I1 = {i : 2Bi ≥ Λ(∞)}.

For each i ∈ I0 choose ci ∈ R such that Λ(ci) = 2Bi. This is possible if λ is non-
atomic because Λ is continuous in that case. It is also possible if λ consists of equal
atoms because the condition λ(−∞, x] <∞ ensures that the atoms do not cluster.
The reason for choosing such a ci is so that the set I ′i = (−∞, ci] \ (Ii ∪ (−∞, x])
has λ-measure Bi for each x ∈ Ii.

For each i ∈ I1 set I ′i = Ii. We claim that

(3.2)

∥∥∥∥∥∑
i

B−1
i

∫
Ii

f dλχIi

∥∥∥∥∥
X

≤

∥∥∥∥∥∑
i

B−1
i

∫
Ii

f dλχI′i

∥∥∥∥∥
X

This is a familiar calculation in rearrangement invariant spaces which follows from
Lemma 3.3 below. Now, if i ∈ I0 and x ∈ I ′i then x ≤ ci so 2Bi = Λ(ci) ≥ Λ(x). It
follows that∑

i∈I0

B−1
i

∫
Ii

f dλχI′i(x) ≤ 2Λ(x)−1
∑
i∈I0

∫
Ii

f dλχI′i(x) ≤ 2Λ(x)−1

∫ x

−∞
f dλ

since the intervals Ii are disjoint. If i ∈ I1 then I ′i = Ii and 2Bi ≥ Λ(∞) so, once
again using disjointness, we have

∑
i∈I1

B−1
i

∫
Ii

f dλχI′i(x) ≤ 2Λ(∞)−1

∫ ∞
−∞

f dλ.

Combining these last two estimates with (3.1) and (3.2) yields the desired inequality

‖P (fo)− Pf‖X ≤ 2‖Pf‖X

and completes the proof.

Lemma 3.3. Suppose λ satisfies (2.1), X is a rearrangement invariant space over
(R, λ), and for each i in a countable set I there are subsets Ii and I ′i of R satisfying
λ(Ii) = λ(I ′i) <∞. If the sets Ii are pairwise disjoint then∥∥∥∥∥∑

i

AiχIi

∥∥∥∥∥
X

≤

∥∥∥∥∥∑
i

AiχI′i

∥∥∥∥∥
X

for all Ai ≥ 0.

Proof. There is no loss of generality in assuming that all the Ai are positive and that
each Ii has positive λ-measure. First suppose that the index set I is finite, having n
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elements. In this case we may re-order if necessary so that A1 ≥ A2 ≥ · · · ≥ An > 0.
Let

f =
n∑
i=1

AiχIi , g =
n∑
i=1

AiχI′i ,

and define t0, t1, . . . , tn by

t0 = 0; tj =
j∑
i=1

λ(Ii) =
j∑
i=1

λ(I ′i), j = 1, . . . , n.

Note that tj > tj−1 for each j. As in [1, Example II.1.6a] we have

f∗ =
n∑
i=1

Aiχ[ti−1,ti).

Here f∗ denotes the non-increasing rearrangement of f with respect to λ, [1, Defi-
nition II.1.5].

Fix j and set gj =
∑j
i=1AiχI′i . Since the Ai are positive, gj ≤ g and hence

g∗j ≤ g∗ by [1, Prop II.1.7]. The formula for f∗ yields∫ tj

0

f∗ =
j∑
i=1

Ai(ti − ti−1) =
j∑
i=1

Aiλ(I ′i) =
∫

R

gj dλ.

Now gj and g∗j are equimeasurable and gj is supported in a set whose λ measure is
no greater than tj so we have∫

R

gj dλ =
∫ tj

0

g∗j ≤
∫ tj

0

g∗.

Thus
∫ tj

0
f∗ ≤

∫ tj
0
g∗ for each j. If 0 < t ≤ tn then we can choose j so that

tj−1 < t ≤ tj . For this j, using the formula for f∗ to exploit the fact that f∗ is
constant on (tj−1, tj), we get∫ t

0

f∗ =
tj − t

tj − tj−1

∫ tj−1

0

f∗ +
t− tj−1

tj − tj−1

∫ tj

0

f∗

≤ tj − t
tj − tj−1

∫ tj−1

0

g∗ +
t− tj−1

tj − tj−1

∫ tj

0

g∗ ≤
∫ t

0

g∗

where the last inequality is justified because g∗ is non-increasing and hence
∫ t

0
g∗

is a concave function. Both f∗ and g∗ vanish on (tn,∞) so, for t > tn,
∫ t

0
f∗ =∫ tn

0
f∗ ≤

∫ tn
0
g∗ =

∫ t
0
g∗, and we have established∫ t

0

f∗ ≤
∫ t

0

g∗

for all t > 0. By [1, Corollary II.4.7] this implies that ‖f‖X ≤ ‖g‖X , which
completes the proof in the finite index set case. The case of infinite I follows easily
using the Fatou property of the space X.
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4. Boyd Indices

The purpose of this section is to show that the equivalent norm on the space X↓,
given in Theorem 3.1, is valid for a large class of rearrangement invariant spaces.
Specifically, we show that it holds precisely when the upper Boyd index of the space
is not 1. For a definition of the Boyd indices of a rearrangement invariant space
which includes the case that λ is purely atomic see [2]. We follow [1] in denoting
the upper Boyd index of X by ᾱX . Note that for every space X, 0 ≤ ᾱX ≤ 1.

We relate the Boyd index of X to the boundedness of P on X in two cases, when
the measure λ is purely atomic and when it is non-atomic.

Lemma 4.1. Suppose that λ is a purely atomic measure satisfying (2.1) and X
is a rearrangement invariant space over (R, λ). Then P : X → X if and only if
ᾱX < 1.

Proof. We begin by applying the Luxemburg representation theorem, [13, Theorem
4.10] to assert the existence of a rearrangement invariant space X̄ over R+, the half
line with Lebesgue measure, such that

‖f‖X = ‖f∗‖X̄

for all f ∈ X.
In the proof of [2, Theorem 1], D. Boyd shows that ᾱX < 1 if and only if there

exists a C > 0 such that

(4.1) ‖P1f
∗‖X̄ ≤ C‖f∗‖X̄ , f ∈ X.

Here P1ϕ is the step function whose value on (k − 1, k) is 1
k

∫ k
0
ϕ. It remains to

show that (4.1) is equivalent to P : X → X.
Let a1, a2, a3, . . . be the atoms of λ arranged in increasing order. This is possible

since the hypothesis λ(−∞, x] < ∞ ensures that there are at most finitely many
atoms to the left of any given real number.

Suppose first that (4.1) holds for some C > 0 and fix f ∈ X. Define the sequence
{fj} by fj = |f(aj)| and let {f∗j } be the same sequence arranged in non-increasing
order. The non-increasing rearrangement f∗ of f is a step function whose value on
(j − 1, j) is f∗j for j = 1, 2, . . . . Thus the value of P1f

∗ on (k − 1, k) is 1
k

∑k
j=1 f

∗
j .

Since Λ(ak) is the number of atoms of λ which are less than or equal to ak and
the aj ’s are in order we have Λ(ak) = k. Therefore

Pf(ak) ≤ Λ(ak)−1

∫ ak

−∞
|f | dλ =

1
k

k∑
j=1

fj ≤
1
k

k∑
j=1

f∗j .

Since the sequence { 1
k

∑k
j=1 f

∗
j } is already in non-increasing order, if we arrange

the terms of the sequence {Pf(ak)} in non-increasing order the result will remain
termwise less than or equal to { 1

k

∑k
j=1 f

∗
j }. Thus (Pf)∗ is a step function whose
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value on (k − 1, k) is less than or equal to 1
k

∑k
j=1 f

∗
j . We conclude that (Pf)∗ ≤

P1f
∗ and we obtain

‖Pf‖X = ‖(Pf)∗‖X̄ ≤ ‖P1f
∗‖X̄ ≤ C‖f∗‖X̄ = C‖f‖X

so P : X → X.
To prove the converse suppose that P : X → X, that is, suppose that there

exists a constant C such that ‖Pg‖X ≤ C‖g‖X for all g ∈ X. Fix f ∈ X, define
{fj} and {f∗j } as above, and define g by g(aj) = f∗j . This defines g on a set of
full λ measure and since evidently f∗ = g∗ we see that g ∈ X. Now Pg is a
non-increasing function so (Pg)∗ is a step function whose value on (k − 1, k) is
Pg(ak) = 1

k

∑k
j=1 g(aj) = 1

k

∑k
j=1 f

∗
j . That is, (Pg)∗ = P1f

∗. We have

‖P1f
∗‖X̄ = ‖(Pg)∗‖X̄ = ‖Pg‖X ≤ C‖g‖X = C‖g∗‖X̄ = C‖f∗‖X̄ .

This completes the proof.

Lemma 4.2. Suppose that λ is a non-atomic measure satisfying (2.1) and ϕ is a
non-increasing, right continuous function. Then

(4.2) (ϕ ◦ Λ)∗ = ϕχ[0,Λ(∞)).

Here Λ(x) =
∫ x
−∞ dλ.

Proof. Since the right hand side of (4.2) is non-increasing and right continuous it
is enough to show that it is equimeasurable with ϕ ◦ Λ, that is, for each γ > 0

λ{x ∈ R : ϕ ◦ Λ(x) > γ} = |{t ∈ [0,Λ(∞)) : ϕ(t) > γ}|.

The right hand side is the Lebesgue measure of a set of the form [0, s) for some
s ∈ [0,Λ(∞)] so we wish to show that

(4.3) λ(Λ−1([0, s))) = s, s ∈ [0,Λ(∞)].

It is clear that (4.3) holds for s = 0 and s = Λ(∞) and since λ is non-atomic, every
s ∈ (0,Λ(∞)) may be expressed as s = Λ(y) for some y ∈ R.

Since (−∞, y] ⊂ Λ−1([0,Λ(y)]) we have Λ(y) ≤ λ(Λ−1([0,Λ(y)]) and since
Λ−1([0,Λ(y)]) = supΛ(x)≤Λ(y)(−∞, x] we have

λ(Λ−1([0,Λ(y)]) ≤ sup
Λ(x)≤Λ(y)

Λ(x) ≤ Λ(y).

It follows that λ(Λ−1([0, s])) = s. It is easy to see that λ(Λ−1({s})) = 0 for all s
so we have (4.3) as required. This completes the proof.
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Lemma 4.3. If λ is a non-atomic measure satisfying (2.1) then P : X → X if and
only if ᾱX < 1.

Proof. We begin by applying the Luxemburg representation theorem, [13, Theorem
4.10] to assert the existence of a rearrangement invariant space X̄ over R+, the half
line with Lebesgue measure, such that

‖f‖X = ‖f∗‖X̄

for all f ∈ X.
In the proof of [2, Theorem 1], D. Boyd shows that ᾱX < 1 if and only if there

exists a C > 0 such that

(4.4) ‖P1f
∗‖X̄ ≤ C‖f∗‖X̄ , f ∈ X.

Here P1 is defined by P1ϕ(t) = χ[0,Λ(∞))(t)t−1
∫ t

0
ϕ. It remains to show that (4.4)

is equivalent to P : X → X.
Define the operator p by

pf(x) = Λ(x)−1

∫ x

−∞
f dλ

so that Pf(x) = pf(x) + pf(∞). Note that if λ is an infinite measure then P = p.
If λ is a finite measure then the second term in P is always bounded on X because
by duality we have

‖pf(∞)‖X = ‖1‖X
∣∣∣∣Λ(∞)−1

∫ ∞
−∞

f dλ

∣∣∣∣ ≤ Λ(∞)−1‖1‖X‖1‖X′‖f‖X .

Over a finite measure space the constant function 1 is in every rearrangement
invariant space. This shows that P : X → X if and only if p : X → X so from now
on we restrict our attention to the operator p.

Fix y ∈ R and choose y1 minimal such that Λ(y1) = Λ(y). Since λ is non-atomic
and λ(y1, y] = 0, the functions χ(−∞,y) and χ(−∞,y1) agree λ-almost everywhere.
The choice of y1 ensures that χ(−∞,y1) = χ[0,Λ(y)) ◦ Λ so we have

(χ(−∞,y))∗ = (χ(−∞,y1))∗ = (χ[0,Λ(y)) ◦ Λ)∗ = χ[0,Λ(y))

by Lemma 4.2. Now we use [1, Theorem II.2.2] to get∫ y

−∞
f dλ =

∫ ∞
−∞

fχ(−∞,y) dλ ≤
∫ ∞

0

f∗(χ(−∞,y))∗ =
∫ Λ(y)

0

f∗.

That is, Λ(y)pf(y) ≤ Λ(y)P1(f∗)(Λ(y)). Since this holds for all y ∈ R we have
pf ≤ P1(f∗) ◦ Λ. Now we use [1, Proposition II.1.7] and apply Lemma 4.2 for a
second time to get

(pf)∗ ≤ ((P1f
∗) ◦ Λ)∗ = P1(f∗).
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Suppose now that (4.4) holds. For each f ∈ X

‖pf‖X = ‖(pf)∗‖X̄ ≤ ‖P1f
∗‖X̄ ≤ C‖f∗‖X̄ = C‖f‖X .

Thus p : X → X.
It is an easy exercise to show that {x ∈ R : Λ(x) < Λ(y)} = (−∞, y) for λ-almost

every y ∈ R. For such a y and a fixed f ∈ X set ϕ = f∗χ[0,Λ(y)). Applying Lemma
4.2 once again we have

Λ(y)(P1f
∗) ◦ Λ(y) =

∫ Λ(y)

0

f∗ =
∫ Λ(∞)

0

ϕ =
∫ ∞

0

(ϕ ◦ Λ)∗

=
∫ ∞
−∞

ϕ ◦ Λ dλ =
∫ y

−∞
f∗ ◦ Λ dλ = Λ(y)p(f∗ ◦ Λ)(y).

Thus (P1f
∗) ◦ Λ and p(f∗ ◦ Λ) are equal, considered as λ-measurable functions.

Now suppose that p : X → X is bounded, that is, suppose that there exists a
constant C such that ‖pf‖X ≤ C‖f‖X for all f ∈ X. Fix f ∈ X. Both f∗ and
P1f

∗ are non-increasing and right continuous so we may apply Lemma 4.2 twice to
get (f∗ ◦ Λ)∗ = f∗χ[0,Λ(∞)) and ((P1f

∗) ◦ Λ)∗ = P1f
∗χ[0,Λ(∞)). Since both f∗ and

P1f
∗ are supported in [0,Λ(∞)) we have (f∗ ◦Λ)∗ = f∗ and ((P1f

∗) ◦Λ)∗ = P1f
∗.

With these observations we get

‖P1f
∗‖X̄ = ‖((P1f

∗) ◦ Λ)∗‖X̄ = ‖(P1f
∗) ◦ Λ‖X = ‖p(f∗ ◦ Λ)‖X

≤ C‖f∗ ◦ Λ‖X = C‖(f∗ ◦ Λ)∗‖X̄ = C‖f∗‖X̄

This shows that (4.4) holds and completes the proof.

Combining Corollary 2.4, Theorem 3.1, Lemma 4.1, and Lemma 4.3 yields

Theorem 4.4. Suppose λ satisfies (2.1) and X is a rearrangement invariant space
over (R, λ). Then ‖f‖X↓ = ‖fo‖X and the following are equivalent

(a) ‖f‖X↓ ≈ ‖Pf‖X for f ∈ X↓,
(b) P : X → X is a bounded operator, and
(c) ᾱX < 1.

We now present the duality principle mentioned earlier.

Theorem 4.5. Suppose λ satisfies (2.1) and X is a rearrangement invariant space
over (R, λ) such that ᾱX < 1. Suppose also that Y is a Banach function space over
the measure space (M,µ) and that T and T ∗ are operators on µ and λ measurable
functions respectively such that∫

R

(Tf)g dλ =
∫
M

f(T ∗g) dµ

for all f ∈ Y and all non-negative, non-increasing g ∈ X ′. Then there exists a
constant C1 such that

(4.5) ‖PTf‖X ≤ C1‖f‖Y
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for all f ∈ Y if and only if there exists a constant C2 such that

(4.6) ‖T ∗g‖Y ′ ≤ C2‖g‖X′

for all non-negative, non-increasing g ∈ X ′.

Proof. Since ᾱX < 1, Theorem 4.4 shows that there exists a positive constant C
such that

C−1‖Pϕ‖X ≤ ‖ϕ‖X↓ ≤ C‖Pϕ‖X

for all ϕ ∈ X↓.
If a C1 exists satisfying (4.5) then for any f ∈ Y and any non-negative, non-

increasing g ∈ X ′ we have∫
M

f(T ∗g) dµ =
∫

R

(Tf)g dλ ≤ ‖Tf‖X↓‖g‖X′

≤ C‖PTf‖X‖g‖X′ ≤ CC1‖f‖Y ‖g‖X′ .

Taking the supremum over all f with ‖f‖Y ≤ 1 yields (4.6) with C2 = CC1.
Conversely, if there exists a C2 satisfying (4.6) then for any f ∈ Y and any

non-negative, non-increasing g ∈ X ′ we have∫
R

(Tf)g dλ =
∫
M

f(T ∗g) dµ ≤ ‖f‖Y ‖T ∗g‖Y ′ ≤ C2‖f‖Y ‖g‖X′ .

Taking the supremum over all non-negative, non-increasing g ∈ X ′ with ‖g‖X′ ≤ 1
we have ‖Tf‖X↓ ≤ C2‖f‖Y and hence

‖PTf‖X ≤ C‖Tf‖X↓ ≤ CC2‖f‖Y

and so (4.5) holds with C1 = CC2.

The Boyd indices are known for many classes of rearrangement invariant spaces.
The simplest is the class of Lebesgue spaces. For 1 ≤ p ≤ ∞ let Lpλ denote the
collection of λ-measurable functions f such that ‖f‖Lpλ <∞ where

‖f‖Lpλ ≡
(∫

R

|f |p dλ
)1/p

for p <∞ and ‖f‖L∞λ ≡ ess supλ
x∈R

|f(x)|.

It is well known that the upper Boyd index of Lpλ is 1/p. Theorem 4.4 reduces to
the following.

Proposition 4.6. Suppose λ satisfies (2.1) and 1 ≤ p ≤ ∞. Then P : Lpλ → Lpλ if
and only if 1 < p ≤ ∞ if and only if

sup
{∫

R

fg dλ : g ≥ 0, g non-increasing, ‖g‖
Lp
′
λ

≤ 1
}
≡ ‖f‖Lpλ↓ ≈ ‖Pf‖Lpλ .
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Note that since λ may be counting measure on the set of positive integers this
includes the case Lpλ = lp.

If 1 < p < ∞ and v is a non-negative weight defined on (0,∞) then we may
define λ by d λ(x) = χ(0,∞)(x)v(x) dx and replace f by f/v to obtain

sup
{∫ ∞

0

fg : g ≥ 0, g non-increasing, ‖g‖
Lp
′
v
≤ 1
}

≈

(∫ ∞
0

(∫ x

0

f

)p(∫ x

0

v

)−p
v(x) dx

)1/p

+
(∫ ∞

0

f

)(∫ ∞
0

v

)−1/p′

which was proved in [12, Theorem 1].
Considerable progress has been made on determining the Boyd indices of Orlicz

spaces in [3, 4, 5, 10] and others but only a small portion of this theory is required
for our purposes. We refer to [11] for the definitions of a Young’s function Φ, its
complementary Young’s function Ψ, and the Orlicz space LΦ

λ . We say a Young’s
function satisfies the ∆2 condition and write Φ ∈ ∆2 provided there exists a con-
stant C > 1 such that Φ(2x) ≤ CΦ(x) for all x > 0. We say that Φ satisfies the
∆∞2 condition and write Φ ∈ ∆∞2 provided there exist constants N > 0 and C > 1
such that Φ(2x) ≤ CΦ(x) for all x > N .

Proposition 4.7. Suppose λ satisfies (2.1), Φ is a Young’s function, and Ψ is its
complementary Young’s function. Then P : LΦ

λ → LΦ
λ if and only if Ψ ∈ ∆∞2 if

and only if

(4.7) sup
{∫

R

fg dλ : g ≥ 0, g non-increasing, ‖g‖LΨ
λ
≤ 1
}
≡ ‖f‖LΦ

λ↓
≈ ‖Pf‖LΦ

λ
.

Proof. The associate space of LΦ
λ is LΨ

λ with equivalent norms so all that is needed
to deduce this result from Theorem 4.4 is to verify that the upper Boyd index of
LΦ
λ is less than one if and only if Ψ ∈ ∆∞2 . Since the upper Boyd index of LΦ

λ is
one minus the lower Boyd index of LΨ

λ we wish to show that the lower Boyd index
of Ψ is greater than zero if and only if Ψ ∈ ∆∞2 . This follows from [10, Theorem
3.2b and Theorem 4.2].

When λ is weighted Lebesgue measure on the half line, or λ is counting measure
on the positive integers (4.7) was established in [8, Theorem 2.2 and Theorem 3.2]
under the assumption that both Φ and Ψ satisfy the ∆2 condition. For sequence
spaces Heinig and Kufner give somewhat more. Their Theorem 3.2 includes a
weighted version of the down norm which suggests the following problem.

Problem 4.8. Suppose λ satisfies (2.1), X is a rearrangement invariant space over
(R, λ), and v is a non-negative, λ-measurable function. Characterize the norm

‖f‖X↓v = sup
{∫

R

|f |g dλ : g ≥ 0, g non-increasing, ‖gv‖X′ ≤ 1
}
.
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5. Completeness and Duality

We have seen that X↓ is a normed vector space. In this section we show that X↓
is a Banach space of functions which is not, in general, a Banach function space.
We also characterize the dual space of X↓. To begin we show that the map f → fo

preserves increasing limits.

Proposition 5.1. Suppose that λ satisfies (2.1) and f ∈ B. If 0 ≤ fn ↑ |f | then
fo
n ↑ fo.

Proof. Since f ∈ B, fn ∈ B for all n and hence f, fn ∈ L2
λ ⊂ L2

λ↓ for all n. By
[13, Theorem 5.4] fo is the unique 2-level function of f and fo

n is the unique 2-level
function of fn. Now [13, Lemma 5.3] with hn = fo

n shows that limn→∞ fo
n is also a

2-level function of f . We conclude that limn→∞ fo
n = fo as required.

Theorem 5.2. Suppose that λ satisfies (2.1) and X is a rearrangement invariant
space over (R, λ). If 0 ≤ fn ↑ |f | then fo

n ↑ fo and ‖fn‖X↓ ↑ ‖f‖X↓.

Proof. First note that Proposition 2.1(c) easily extends to arbitrary functions and
therefore fn ≤ |f | implies fo

n ≤ fo and we have limn→∞ fo
n ≤ fo.

To prove the other inequality let h = |f |, set hn = min(h, n)χ(−∞,n] and define

mn,k = min(fn, hk).

Since fn ↑ h ≥ hk for all k, we have limn→∞mn,k = hk for all k. Since hk ∈ B,
Proposition 5.1 shows that limn→∞mo

n,k = ho
k for all k. Now by Definition 2.3

fo = lim
k→∞

ho
k = lim

k→∞
lim
n→∞

mo
n,k ≤ lim

k→∞
lim
n→∞

fo
n = lim

n→∞
fo
n.

Thus we have fo
n ↑ fo. Now we apply Corollary 2.4 and the Fatou property in X

to get
lim
n→∞

‖fn‖X↓ = lim
n→∞

‖fo
n‖X = ‖fo‖X = ‖f‖X↓.

This completes the proof.

Theorem 5.3. If λ satisfies (2.1) and X is a rearrangement invariant space over
(R, λ) then X↓ is a Banach space.

Proof. We have already shown that X↓ is a normed linear space, it remains to prove
completeness. To do this we show that every absolutely summable sequence in X↓
is summable in X↓. Suppose that fn ∈ X↓ for all n and

∑∞
n=1 ‖fn‖X↓ <∞. Then

|fn| ∈ X↓ and so SN ≡
∑N
n=1 |fn| ∈ X↓ for each N . Let S be the pointwise limit

of the non-decreasing sequence SN , that is, S =
∑∞
n=1 |fn|. Since SN ↑ S and

lim
N→∞

‖SN‖X↓ ≤
N∑
n=1

‖fn‖X↓ ≤
∞∑
n=1

‖fn‖X↓ <∞
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we have ‖S‖X↓ <∞ by Theorem 5.2 and hence S ∈ X↓. In particular this implies
that S is finite λ-almost everywhere because for any M ∈ R, χ(−∞,M ] is non-
increasing so ∫ M

−∞
S dλ ≤ ‖S‖X↓‖χ(−∞,M ]‖X′ <∞.

(Since λ(−∞,M ] is finite, χ(−∞,M ] ∈ X ′.) Thus, S is finite λ-almost everywhere
on (−∞,M ] but since M was arbitrary, S is finite λ-almost everywhere on R.

We have shown that
∑∞
n=1 |fn| converges pointwise λ-almost everywhere and it

follows that
∑∞
n=1 fn converges pointwise λ-almost everywhere. Let FN =

∑N
n=1 fn

and F =
∑∞
n=1 fn. Fix K, set IN = infn≥N |Fn − FK | ≤ |FN − FK | for N > K

and note that IN ∈ X↓ with ‖IN‖X↓ ≤
∑N
n=K+1 ‖fn‖X↓ ≤

∑∞
n=K+1 ‖fn‖X↓. The

sequence IN is non-decreasing and converges pointwise to |F −FK |. Thus, applying
Theorem 5.2 again,

‖F − FK‖X↓ = lim
N→∞

‖IN‖X↓ ≤
∞∑

n=K+1

‖fn‖X↓

and so ‖F − FK‖X↓ tends to zero as K →∞. That is, FK → F in X↓ as K →∞.
This completes the proof.

Although X↓ is a Banach space, it is not a Banach function space in general as
the following example shows: Take λ to be Lebesgue measure on the half line. We
show that condition [1, Definition I.1.1(P5)] fails for the space L2

λ↓. To do this we
exhibit a set E of finite measure and a sequence of functions {fn} in L2

λ↓ such that∫
E
fn/‖fn‖L2

λ↓ is unbounded. Set

E =
∞⋃
n=1

[n− 2−n, n]

and note that λ(E) =
∑∞
n=1 2−n <∞. If fn = 2nχ[n−2−n,n] we compute

∫
E
fn = 1

and fo
n = (1/n)χ[0,n]. Thus ‖fn‖L2

λ↓ = ‖fo
n‖L2

λ
= n−1/2 and so

∫
E
fn/‖fn‖L2

λ↓ is
unbounded for large n.

For the remainder of this section we investigate the dual space of X↓.
Definition 5.4. Suppose that g is a λ-measurable function. Define ḡ by ḡ(x) =
ess supt≥x |g(t)|, set ‖g‖X↓′ = ‖ḡ‖X′ , and let X↓′ be the collection of functions g for
which ‖g‖X↓′ <∞.

Note that ḡ is non-negative and non-increasing and that, by a standard measure
theory argument, ḡ ≥ |g| λ-almost everywhere. The space X↓′ is a subspace of X ′

since we have ‖g‖X′ ≤ ‖g‖X↓′ . It is easy to see that ‖ · ‖X↓′ is a norm.
Although the notation X↓′ suggests the associate space of X↓ this is not asserted

here. In fact, since X↓ is not necessarily a Banach function space, it is not clear that
it has a well-defined associate space. The space X↓′ does behave like an associate
space, however, as we see in Theorems 5.6 and 5.7 below. Theorem 5.9 shows that
the dual space of X↓ often coincides with X↓′. To prepare for these three theorems
we need another result from [13].
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Proposition 5.5. Suppose λ satisfies (2.1), α ∈ (0, 1), and f, g are λ-measurable
functions such that fo and ḡ are finite λ-almost everywhere. Then there exists a
non-negative λ-measurable function h such that∫

R

h|g| dλ ≥ α2

∫
R

|f |ḡ dλ and
∫

R

hϕdλ ≤
∫

R

|f |ϕdλ

for all non-negative, non-increasing, λ-measurable functions ϕ.

Proof. This is proved in [13, Lemma 6.5] under the assumption that fo ∈ Lpλ and
ḡ ∈ Lp

′

λ for some p ∈ (1,∞]. Only the weaker assumption that fo and ḡ are finite
λ-almost everywhere is used in the proof. It remains valid in this more general
situation without alteration.

Theorem 5.6. Suppose λ satisfies (2.1), X is a rearrangement invariant space
over (R, λ), and f ∈ X↓. Then

(5.1) ‖f‖X↓ = sup
{∣∣∣∣∫

R

fg dλ

∣∣∣∣ : ‖g‖X↓′ ≤ 1
}
.

Proof. Since ḡ is non-increasing and ḡ ≥ |g| λ-almost everywhere we have
(5.2)∣∣∣∣∫

R

fg dλ

∣∣∣∣ ≤ ∫
R

|f ||g| dλ ≤
∫

R

|f |ḡ dλ ≤
∫

R

foḡ dλ ≤ ‖fo‖X‖ḡ‖X′ = ‖f‖X↓‖g‖X↓′ .

This proves that the left side of (5.1) is no less than the right side. To prove the
other inequality note that if g is non-negative and non-increasing with ‖g‖X′ ≤ 1
then ‖ sgn(f)g‖X↓′ ≤ 1 and

∫
R
|f |g dλ =

∣∣∫
R
f sgn(f)g dλ

∣∣ so by (1.1)

‖f‖X↓ = sup
{∫

R

|f |g dλ : g ≥ 0, g non-increasing, ‖g‖X′ ≤ 1
}

≤ sup
{∣∣∣∣∫

R

fg dλ

∣∣∣∣ : ‖g‖X↓′ ≤ 1
}
.

This completes the proof.

Theorem 5.7. Suppose λ satisfies (2.1), X is a rearrangement invariant space
over (R, λ), and g ∈ X↓′. Then

(5.3) ‖g‖X↓′ = sup
{∣∣∣∣∫

R

fg dλ

∣∣∣∣ : ‖f‖X↓ ≤ 1
}
.

Proof. The calculation in (5.2) shows that the left hand side of (5.3) is no less than
the right hand side. To prove the other inequality we require Proposition 5.5. Fix
g ∈ X↓′. Then ḡ ∈ X so ḡ is finite λ-almost everywhere. Fix α ∈ (0, 1) and choose
a non-negative function f with ‖f‖X ≤ 1 such that

‖g‖X↓′ = ‖ḡ‖X′ ≤
1
α

∫
R

fḡ dλ.
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Since ‖f‖X ≤ 1, f ∈ X ⊂ X↓ so fo is finite λ-almost everywhere by Corollary 2.4.
The function h of Proposition 5.6 satisfies

‖h‖X↓ = sup
∫

R

hϕdλ ≤ sup
∫

R

|f |ϕdλ ≤ ‖f‖X ≤ 1

where the suprema are taken over all non-negative, non-increasing functions ϕ with
‖ϕ‖X′ ≤ 1. Therefore

α3‖g‖X↓′ ≤ α2

∫
R

fḡ dλ ≤
∫

R

h|g| dλ ≤ sup
{∣∣∣∣∫

R

fg dλ

∣∣∣∣ : ‖f‖X↓ ≤ 1
}
.

Since this holds for all α ∈ (0, 1) we may let α → 1 to obtain the remaining
inequality in (5.3).

Definition 5.8. Suppose that A is a Banach space of functions. We say the space A
has absolutely continuous norm provided every non-increasing sequence of functions
in A which converges to zero pointwise, converges to zero in A.

In view of [1, Proposition I.3.5] this definition agrees with [1, Definition I.3.1]
when A is a Banach Function Space.

Theorem 5.9. Suppose λ satisfies (2.1), X is a rearrangement invariant space
over (R, λ) and both X and X↓ have absolutely continuous norm. Then the dual
space of X↓ is X↓′. More precisely, each function g ∈ X↓′ gives rise to a continuous
linear functional Lg on X↓ given by Lg(f) =

∫
R
fg dλ. The norm of Lg is ‖g‖X↓′

and every continuous linear functional on X↓ is Lg for some g ∈ X↓′.

Proof. By [1, Corollary I.4.3] X ′ = X∗. If g ∈ X↓′ then Lg is a clearly linear and
Theorem 5.7 shows that Lg is continuous on X↓, having norm ‖g‖X↓′ . Suppose now
that L is a continuous, linear functional on X↓. We wish to show that L = Lg for
some g ∈ X↓′.

Since X is a subspace of X↓ (with ‖ · ‖X↓ ≤ ‖ · ‖X) we may consider L as a
continuous linear functional on X. The hypothesis that X∗ = X ′ shows that there
is a function g ∈ X ′ such that Lf =

∫
R
fg dλ for all f ∈ X. To complete the proof

we show that Lf =
∫
R
fg dλ for all f ∈ X↓ and that g ∈ X↓′.

To do the first we fix f ∈ X↓, set fn = min(n,max(−n, f))χ(−∞,x], and consider
the sequence {|fng|}. This increases pointwise to |fg|. The Monotone Convergence
Theorem yields∫

R

|fg| dλ = lim
n→∞

∫
R

|fng| dλ = lim
n→∞

L(|fn| sgn(g))

≤ ‖L‖X→R lim
n→∞

‖fn‖X↓ ≤ ‖L‖X→R‖f‖X↓ <∞.

Thus fg ∈ L1
λ. Now consider {fn} as a sequence in X↓. Since {|f−fn|} decreases to

zero pointwise and X↓ has absolutely continuous norm we see that {fn} converges
to f in X↓. Since L is continuous,

Lf = lim
n→∞

L(fn) = lim
n→∞

∫
R

fng dλ =
∫

R

fg dλ
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where the last inequality follows from the Dominated Convergence Theorem using
our observation that fg ∈ L1

λ.
The second task is to show that g ∈ X↓′. Set gn(x) = min(n, |g(x)|)χ(∞,n]

and note that gn ∈ X↓′ and {gn} increases pointwise to |g|. Thus {ḡn} increases
pointwise to ḡ. The Fatou property of the Banach function space X ′ implies that

lim
n→∞

‖gn‖X↓′ = lim
n→∞

‖ḡn‖X′ = ‖ḡ‖X′ = ‖g‖X↓′ .

But

‖gn‖X↓′ = sup
∣∣∣∣∫

R

fḡn dλ

∣∣∣∣ ≤ sup
∫

R

|f ||g| dλ = supL(|f | sgn(g)) ≤ ‖L‖X↓→R.

Here the suprema are taken over all functions f with ‖f‖X↓ ≤ 1. The conclusion is
that ‖g‖X↓′ ≤ ‖L‖X↓→R so that g ∈ X↓′ as required.

Corollary 5.10. If λ satisfies (2.1), X is a rearrangement invariant space over
(R, λ) and both X and X↓ have absolutely continuous norm then X↓′ is complete.

Proof. The dual space of any normed linear space is complete.

See [13, Example 6.9] for an example to show that X↓ need not be reflexive even
when both X and X↓ have absolutely continuous norm.

It may be that if X has absolutely continuous norm then so does X↓ but we have
no proof or counterexample. In very many cases, however, it is true. We leave the
following as a (non-trivial) exercise: Suppose λ satisfies (2.1), Λ(x) =

∫ x
−∞ dλ, and

hM (x) = min(M, 1/Λ(x)) for M > 0. If X has absolutely continuous norm and
hM ∈ X ′ for all M > 0 then X↓ has absolutely continuous norm.
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7. G. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Second Edition, Cambridge University

Press, Cambridge, 1952.
8. H. P. Heinig and A. Kufner, Hardy operators of monotone functions and sequences in Orlicz

spaces, J. London Math. Soc. 53 (1996), 256–270.

9. G. G. Lorentz., Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
10. L. Maligranda, Indices and Interpolation, Dissert. Math. 234 (1985), 1–49.

11. M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and
Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991.

12. E. T. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math.

96 (1990), 19–52.



THE LEVEL FUNCTION IN REARRANGEMENT INVARIANT SPACES 21

13. G. Sinnamon, Spaces defined by the level function and their duals, Studia Math. 111 (1994),

19–52.

Department of Mathematics, University of Western Ontario, London, Ontario,

N6A 5B7, CANADA

E-mail address: sinnamon@uwo.ca


