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Abstract. We consider the averages An(f) = 1/(n − 1)
∑n−1

r=1 f(r/n) and Bn(f) =
1/(n+1)

∑n
r=0 f(r/n). If f is convex, then An(f) increases with n and Bn(f) decreases.

For the class of functions called superquadratic, a lower bound is given for the successive
differences in these sequences, in the form of a convex combination of functional values,
in all cases at least f(1/3n). Generalizations are formulated in which r/n is replaced by
ar/an and 1/n by 1/cn. Inequalities are derived involving the sum

∑n
r=1(2r − 1)p.

1. Introduction

For a function f , define

(1) An(f) =
1

n− 1

n−1∑
r=1

f
( r

n

)
(n ≥ 2),

(2) Bn(f) =
1

n + 1

n∑
r=0

f
( r

n

)
(n ≥ 1),

the averages of values at equally spaced points in [0, 1], respectively excluding and in-
cluding the end points. In [2] it was shown that if f is convex, then An(f) increases
with n, and Bn(f) decreases. A typical application, found by taking f(x) = − log x, is
that (n!)1/n/(n + 1) decreases with n (this strengthens the result of [6] that (n!)1/n/n is
decreasing). Similar results for averages including one end point can be derived, and have
appeared independently in [5] and [4].

In this article, we generalize the theorems of [2] in two ways. First, we present a class
of functions for which a non-zero lower bound can be given for the differences An+1(f)−
An(f) and Bn−1(f)−Bn(f). Recall that a convex function satisfies

f(y)− f(x) ≥ C(x)(y − x)

for all x, y, where C(x) = f ′(x) (or, if f is not differentiable at x, any number between the
left and right derivatives at x). In [1], the authors introduced the class of superquadratic
functions, defined as follows. A function f , defined on an interval I = [0, a] or [0,∞), is
“superquadratic” if for each x in I, there exists a real number C(x) such that

(SQ) f(y)− f(x) ≥ f(|y − x|) + C(x)(y − x)

for all y ∈ I. For non-negative functions, this amounts to being “more than convex”
in the sense specified. The term is chosen because xp is superquadratic exactly when
p ≥ 2, and equality holds in the definition when p = 2. In Section 2, we shall record
some of the elementary facts about superquadratic functions. In particular, they satisfy a
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refined version of Jensen’s inequality for sums of the form
∑n

r=1 λrf(xr), with extra terms
inserted.

For superquadratic functions, lower bounds for the differences stated are obtained in
the form of convex combinations of certain values of f . By the refined Jensen inequality,
they can be rewritten in the form f(1/3n) + S, where S is another convex combination.
These estimates preserve equality in the case f(x) = x2. By a further application of
the inequality, we show that S is not less than f(a/n) (for Bn(f)), or f(a/(n + 3)) (for
An(f)), where a = 16

81
= (2

3
)4. This simplifies our estimates to the sum of just two

functional values, but no longer preserving equality in the case of x2.
We then present generalized versions in which f(r/n) is replaced by f(ar/an) and

1/(n±1) is replaced by 1/cn±1. Under suitable conditions on the sequences (an) and (cn),
we show that the generalized An(f) and Bn(f) are still monotonic for monotonic convex
or concave functions. These theorems generalize and unify results of the same sort in [4],
which take one-end-point averages as their starting point. At the same time, the previous
lower-bound estimates for superquadratic functions are generalized to this case.

There is a systematic duality between the results for An(f) and Bn(f) at every stage,
but enough difference in the detail for it to be necessary to present most of the proofs
separately.

We finish with some applications of our results to sums and products involving odd
numbers. For example, if Sn(p) =

∑n
r=1(2r− 1)p, then Sn(p)/(2n + 1)(2n− 1)p decreases

with n for p ≥ 1, and Sn(p)/(n + 1)(2n − 1)p increases with n when 0 < p ≤ 1. Also, if

Qn = 1.3. . . . (2n− 1), then Q
1/(n−1)
n /(2n + 1) decreases with n.

2. Superquadratic functions

The definition (SQ) of “superquadratic” was given in the Introduction. We say that f
is subquadratic if −f is superquadratic.

First, some immediate remarks. For f(x) = x2, equality holds in (SQ), with C(x) = 2x.
Also, the definition, with y = x, forces f(0) ≤ 0, from which it follows that one can always
take C(0) to be 0. If f is differentiable and satisfies f(0) = f ′(0) = 0, then one sees easily
that the C(x) appearing in the definition is necessarily f ′(x).

The definition allows some quite strange functions. For example, any function satisfying
−2 ≤ f(x) ≤ −1 is superquadratic. However, for present purposes, our real interest is in
non-negative superquadratic functions. The following lemma shows what these functions
are like.

Lemma 2.1. Suppose that f is superquadratic and non-negative. Then f is convex and
increasing. Also, if C(x) is as in (SQ), then C(x) ≥ 0.

Proof. Convexity is shown in [1, Lemma 2.2]. Together with f(0) = 0 and f(x) ≥ 0, this
implies that f is increasing. As mentioned already, we can take C(0) = 0. For x > 0 and
y < x, we can rewrite (SQ) as

C(x) ≥ f(x)− f(y) + f(x− y)

x− y
≥ 0.

�

The next lemma (essentially Lemma 3.2 of [1]) gives a simple sufficient condition. We
include a sketch of the proof for completeness.

Lemma 2.2. If f(0) = f ′(0) = 0 and f ′ is convex (resp. concave), then f is superquadratic
(resp. subquadratic).
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Proof. First, since f ′ is convex and f ′(0) = 0, we have f ′(x) ≤ [x/(x + y)]f ′(x + y) for
x, y ≥ 0, and hence f ′(x) + f ′(y) ≤ f ′(x + y) (that is, f ′ is superadditive). Now let
y > x ≥ 0. Then

f(y)− f(x)− f(y − x)− (y − x)f ′(x) =

∫ y−x

0

[f ′(t + x)− f ′(t)− f ′(x)] dt ≥ 0.

Similarly for the case x > y ≥ 0. �

Hence xp is superquadratic for p ≥ 2 and subquadratic for 1 < p ≤ 2. (It is also
easily seen that xp is subquadratic for 0 < p ≤ 1, with C(x) = 0). Other examples of
superquadratic functions are x2 log x, sinh x and

f(x) =

{
0 for 0 ≤ x ≤ a,
(x− a)2 for x > a.

The converse of Lemma 2.2 is not true. In [1], it is shown where superquadratic fits
into the “scale of convexity” introduced in [3].

The refined Jensen inequality is as follows. Let µ be a probability measure on a set E.
Write simply

∫
x for

∫
E

x dµ.

Lemma 2.3. Let x be non-negative and µ-integrable, and let f be superquadratic. Define
the (non-linear) operator T by: (Tx)(s) = |x(s)−

∫
x|. Then∫

(f ◦ x) ≥ f
(∫

x
)

+
∫

[f ◦ (Tx)].

The opposite inequality holds if f is subquadratic.

Proof. Assume f superquadratic. Write
∫

x = x. Then∫
(f ◦ x)− f(x) =

∫
[f(x(s))− f(x)] ds

≥
∫

f (|x(s)− x|) ds + C(x)

∫
(x(s)− x) ds

=

∫
(f ◦ Tx).

�

In fact, the converse holds: if the property stated in Lemma 2.3 holds for all two-point
measure spaces, then f is superquadratic [1, Theorem 2.3].

Note that T is a sublinear operator. Iteration of Lemma 2.3 gives at once:

Lemma 2.4. If x ≥ 0 and f is superquadratic, then for each k ≥ 2,∫
(f ◦ x) ≥ f

(∫
x
)

+ f
(∫

Tx
)

+ · · ·+ f
(∫

T k−1x
)

+
∫

[f ◦ (T kx)].

and hence ∫
(f ◦ x) ≥

∞∑
k=0

f
(∫

T kx
)
.

In this paper, we will be using the discrete case of Lemma 2.3. It may be helpful to
restate this case in the style in which it will appear: Suppose that f is superquadratic. Let
xr ≥ 0 (1 ≤ r ≤ n) and let x =

∑n
r=1 λrxr, where λr ≥ 0 and

∑n
r=1 λr = 1. Then

n∑
r=1

λrf(xr) ≥ f(x) +
n∑

r=1

λrf(|xr − x|).
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For x ∈ Rn, now write x(r) for the rth component, and, as usual, ‖x‖∞ = max1≤r≤n |x(r)|.
In this discrete situation, for the T defined above, it is easy to show that ‖T kx‖∞ converges
to zero geometrically.

Lemma 2.5. Let λ = min1≤r≤n λr and let x ≥ 0. Then ‖Tx‖∞ ≤ (1 − λ)‖x‖∞,
hence ‖T kx‖∞ ≤ (1− λ)k‖x‖∞.

Proof. Note that |x(r)− x(s)| ≤ ‖x‖∞ for all r, s. So, for each r,

(Tx)(r) =

∣∣∣∣∣
n∑

s=1

λs[x(r)− x(s)]

∣∣∣∣∣
≤

∑
s 6=r

λs|x(r)− x(s)|

≤ (1− λr)‖x‖∞.

�

It now follows easily that the second inequality in Lemma 2.4 reverses for subquadratic
functions satisfying a condition f(t) ≤ ctp for some p > 0. Hence equality holds for
f(x) = x2.

Note. It is not necessarily true that
∫

Tx ≤
∫

x, and hence ‖ ‖∞ cannot be replaced
by ‖ ‖1 in Lemma 2.5. Take λr = 1/n for each r, and let x = (1, 0, . . . , 0). Then
Tx = (1− 1

n
, 1

n
, . . . , 1

n
), giving

∫
Tx = 2(n− 1)/n2.

3. The basic theorems

Throughout the following, the quantities An(f) and Bn(f) continue to be defined by
(1) and (2).

Theorem 3.1. If f is superquadratic on [0, 1], then for n ≥ 2,

(3) An+1(f)− An(f) ≥
n−1∑
r=1

λrf(xr),

where

λr =
2r

n(n− 1)
, xr =

n− r

n(n + 1)
.

Further,

(4) An+1(f)− An(f) ≥ f

(
1

3n

)
+

n−1∑
r=1

λrf(yr),

where

yr =
|2n− 1− 3r|

3n(n + 1)
.

The opposite inequalities hold if f is subquadratic.
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Proof. Write ∆n = (n− 1)[An+1(f)− An(f)]. Then

∆n =
n− 1

n

n∑
r=1

f

(
r

n + 1

)
−

n−1∑
r=1

f
( r

n

)
=

n∑
r=1

(
r − 1

n
+

n− r

n

)
f

(
r

n + 1

)
−

n−1∑
r=1

f
( r

n

)
=

n−1∑
r=0

r

n
f

(
r + 1

n + 1

)
+

n−1∑
r=1

n− r

n
f

(
r

n + 1

)
−

n−1∑
r=1

f
( r

n

)
=

n−1∑
r=1

r

n

[
f

(
r + 1

n + 1

)
− f

( r

n

)]
+

n−1∑
r=1

n− r

n

[
f

(
r

n + 1

)
− f

( r

n

)]
.

We apply the definition of superquadratic to both the differences appearing in the last
line, noting that

r + 1

n + 1
− r

n
=

n− r

n(n + 1)
.

We obtain

∆n ≥
n−1∑
r=1

r

n
f

(
n− r

n(n + 1)

)
+

n−1∑
r=1

n− r

n
f

(
r

n(n + 1)

)
+

n−1∑
r=1

hrC
( r

n

)
,

where

hr =
r

n

r + 1

n + 1
+

n− r

n

r

n + 1
− r

n
= 0,

hence

∆n ≥ 2
n−1∑
r=1

r

n
f

(
n− r

n(n + 1)

)
,

which is equivalent to (3).
We now apply Lemma 2.3. Note that

n−1∑
r=1

r(n− r) = 1
2
(n− 1)n2 − 1

6
(n− 1)n(2n− 1) = 1

6
(n− 1)n(n + 1),

hence
∑n−1

r=1 λrxr = 1/3n (denote this by x). So

xr − x =
n− r

n(n + 1)
− 1

3n
=

2n− 3r − 1

3n(n + 1)
,

and inequality (4) follows. �

The proof of the dual result for Bn(f) follows similar lines, but since the algebraic
details are critical, we set them out in full.

Theorem 3.2. If f is superquadratic on [0, 1], then for n ≥ 2,

(5) Bn−1(f)−Bn(f) ≥
n∑

r=1

λrf(xr),

where

λr =
2r

n(n + 1)
, xr =

n− r

n(n− 1)
.
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Further,

(6) Bn−1(f)−Bn(f) ≥ f

(
1

3n

)
+

n∑
r=1

λrf(yr),

where

yr =
|2n + 1− 3r|

3n(n− 1)
.

The opposite inequalities hold if f is subquadratic.

Proof. Let ∆n = (n + 1)[Bn−1(f)−Bn(f)]. Then

∆n =
n + 1

n

n−1∑
r=0

f

(
r

n− 1

)
−

n∑
r=0

f
( r

n

)
=

n−1∑
r=0

(
r + 1

n
+

n− r

n

)
f

(
r

n− 1

)
−

n∑
r=0

f
( r

n

)
=

n∑
r=1

r

n
f

(
r − 1

n− 1

)
+

n−1∑
r=0

n− r

n
f

(
r

n− 1

)
−

n∑
r=0

f
( r

n

)
=

n∑
r=1

r

n

[
f

(
r − 1

n− 1

)
− f

( r

n

)]
+

n−1∑
r=0

n− r

n

[
f

(
r

n− 1

)
− f

( r

n

)]
.

Apply the definition of superquadratic, noting that∣∣∣∣ r − 1

n− 1
− r

n

∣∣∣∣ =
n− r

n(n− 1)
.

We obtain

∆n ≥
n∑

r=1

r

n
f

(
n− r

n(n− 1)

)
+

n−1∑
r=0

n− r

n
f

(
r

n(n− 1)

)
+

n∑
r=0

krC
( r

n

)
,

where

kr =
r

n

r − 1

n− 1
+

n− r

n

r

n− 1
− r

n
= 0,

hence

∆n ≥ 2
n∑

r=1

r

n
f

(
n− r

n(n− 1)

)
,

which is equivalent to (5). Exactly as in Theorem 3.1, we see that
∑n

r=1 λrxr = 1/3n,
and (6) follows. �

Remark 3.1. These proofs, simplified by not introducing the functional values of f on the
right-hand side, reproduce Theorems 1 and 2 of [2] for convex functions.

Remark 3.2. Since these inequalities reverse for subquadratic functions, they become
equalities for f(x) = x2, which is both superquadratic and subquadratic. In this sense,
they are optimal for the hypotheses: nothing has been lost. However, this is at the cost of
fairly complicated expressions. Clearly, if f is also non-negative, then we have the simple
lower estimate f(1/3n). in both results. In the case f(x) = x2, it is easily seen that

An(f) =
1

3
− 1

6n
, Bn(f) =

1

3
+

1

6n
,
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hence

An+1(f)− An(f) =
1

6n(n + 1)
, Bn−1(f)−Bn(f) =

1

6n(n− 1)
,

so the term f(1/3n) = 1/9n2 gives about two thirds of the true value.

Averages including one end-point. Let

Dn(f) =
1

n

n−1∑
r=0

f
( r

n

)
, En(f) =

1

n

n∑
r=1

f
( r

n

)
.

If f(0) = 0, then

Dn(f) =
n− 1

n
An(f), En(f) =

n + 1

n
Bn(f).

For an increasing, convex function f , we can add a constant to ensure thet f(0) = 0, and
it follows that Dn(f) is increasing and En(f) is decreasing ([2, Theorem 3A]; also, with
direct proof, [5] and [4]). Further, we have

Dn+1(f)−Dn(f) =
n

n + 1
[An+1(f)− An(f)] +

1

n(n + 1)
An(f),

En−1(f)− En(f) =
n

n− 1
[Bn−1(f)−Bn(f)] +

1

n(n− 1)
Bn(f).

For non-negative, superquadratic f , we automatically have f(0) = 0, so we can read
off lower bounds for these differences from the corresponding ones for An(f) and Bn(f).
With regard to the second term, note that for convex functions, we always have An(f) ≥
A2(f) = f(1

2
) and Bn(f) ≥

∫ 1

0
f .

4. Estimates in terms of two functional values

For non-negative superquadratic functions, we now give lower estimates for the second
term in (4) and (6) in the form of the value at one point, at the cost of losing exactness
for the function f(x) = x2. We shall prove:

Theorem 4.1. If f is superquadratic and non-negative, then for n ≥ 3,

An+1(f)− An(f) ≥ f

(
1

3n

)
+ f

(
16

81(n + 3)

)
.

Theorem 4.2. If f is superquadratic and non-negative, then for all n ≥ 2,

Bn−1(f)−Bn(f) ≥ f

(
1

3n

)
+ f

(
16

81n

)
.

The factor 16
81

seems a little less strange if regarded as (2
3
)4.

We give the proof for Bn(f) first, since there are some extra complications in the case
of An(f). Let λr and yr be as in Theorem 3.2. By Lemma 2.3, discarding the extra
terms arising from the definition of superquadratic, we have

∑n
r=1 λrf(yr) ≥ f(y), where

y = y(n) =
∑n

r=1 λryr. We give a lower bound for y(n).

Lemma 4.3. Let S =
∑n

r=1 r|2n + 1 − 3r|. Let m be the greatest integer such that
3m ≤ 2n + 1. Then

S = 2m(m + 1)(n−m).
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Proof. For any m,
m∑

r=1

r(2n + 1− 3r) = 1
2
m(m + 1)(2n + 1)− 1

2
m(m + 1)(2m + 1) = m(m + 1)(n−m).

In particular,
∑n

r=1 r(2n + 1− 3r) = 0. With m now as stated, it follows that

S =
m∑

r=1

r(2n + 1− 3r) +
n∑

r=m+1

r(3r − 2n− 1)

= 2
m∑

r=1

r(2n + 1− 3r)

= 2m(m + 1)(n−m).

�

Conclusion of the proof of Theorem 4.2. With this notation, we have

y(n) =
2S

3n2(n + 1)(n− 1)
.

If we insert 3m ≤ 2n + 1 and n − m ≤ 1
3
(n + 1), we obtain y(n) ≥ (2 − 1

n
)(8/81n), not

quite the stated result. However, 3m is actually one of 2n − 1, 2n, 2n + 1. The exact
expressions for y(n) in the three cases, are, respectively:

8

81n

(2n− 1)(n + 1)

(n− 1)n
,

8

81

2n + 3

n2 − 1
,

8

81n

(2n + 1)(n + 2))

n(n + 1)
.

In each case, it is clear that y(n) ≥ 16/81n. �
We now return to Theorem 4.1. Let λr and yr be as defined in Theorem 3.1.

Lemma 4.4. Let S =
∑n−1

r=1 r|2n − 1 − 3r|, and let m be the smallest integer such that
3m ≥ 2n− 1. Then

S = 2(m− 1)m(n−m).

Proof. Similar to Lemma 4.3, using the fact that (for any m):

m−1∑
r=1

r(2n− 1− 3r) = (m− 1)m(n−m).

�

Conclusion of the proof of Theorem 4.1. Case 3m = 2n−1 (so that n = 2, 5, . . .). Then

y(n) =
8

81

(n− 2)(2n− 1)

n2(n− 1)
.

The statement y(n) ≥ 16/[81(n + 3)] is equivalent to 3n2 − 13n + 6 ≥ 0, which occurs for
all n ≥ 4.

Case 3m = 2n (so n = 3, 6, . . .). Then

y(n) =
8

81

(2n− 3)

(n + 1)(n− 1)
,

which is not less than 16/[81(n + 3)] when 3n ≥ 7.
Case 3m = 2n + 1 (so n = 4, 7, . . .). Then

y(n) =
8

81

(n− 1)(2n + 1)

n2(n + 1)
.
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This time we note that y(n) ≥ 16/[81(n + 2)] is equivalent to n2 − 3n − 2 ≥ 0, which
occurs for all n ≥ 4. �

Note. More precisely, the proof shows that y(2) = 0, y(3) = 1
27

and y(5) = 2
75

, while in
all other cases y(n) ≥ 16/[81(n + 2)].

In principle, the process can be iterated, as in Lemma 2.4. After complicated evalua-
tions, one finds that the next term is of the order of f(1/30n).

5. Generalized versions

We now formulate generalized versions of the earlier results in which f(r/n) is replaced
by f(ar/an) and 1/(n±1) is replaced by 1/cn±1, under suitable conditions on the sequences
(an) and (cn). For increasing convex functions, we show that the generalized An(f)
and Bn(f) are still monotonic. There are companion results for decreasing or concave
functions, with some of the hypotheses reversed. The results of [4] follow as special cases.
For superquadratic functions, we obtain suitable generalizations of the lower bounds given
in (3) and (5).

Theorem 5.1. (i) Let (an)n≥1 and (cn)n≥0 be sequences such that an > 0 and cn > 0 for
n ≥ 1 and:

(A1) c0 = 0 and cn is increasing,

(A2) cn+1 − cn is decreasing for n ≥ 0,

(A3) cn(an+1/an − 1) is decreasing for n ≥ 1.

Given a function f , let

An[f, (an), (cn)] = An(f) =
1

cn−1

n−1∑
r=1

f

(
ar

an

)
for n ≥ 2. Suppose that f is convex, non-negative, increasing and differentiable on an
interval J including all the points ar/an for r < n. Then An(f) increases with n.

(ii) Suppose that f is decreasing on J and that (A3) is reversed, with the other hypothe-
ses unchanged. Then An(f) increases with n.

(iii) Suppose that f is concave, non-negative and increasing on J , and that (A2) and
(A3) are both reversed, with the other hypotheses unchanged. Then An(f) decreases with
n.

Proof. First, consider case (i). Let

∆n = cn−1[An+1(f)− An(f)] =
cn−1

cn

n∑
r=1

f

(
ar

an+1

)
−

n−1∑
r=1

f

(
ar

an

)
.

We follow the proof of Theorem 3.1, with appropriate substitutions. At the first step,
where we previously expressed n − 1 as (r − 1) + (n − r), we now use (A2): we have
cr − cr−1 ≥ cn − cn−1, hence

cn−1 ≥ cr−1 + (cn − cr)

for r < n. Using only the fact that f is non-negative, the previous steps then lead to

(7) ∆n ≥
n−1∑
r=1

cr

cn

[
f

(
ar+1

an+1

)
− f

(
ar

an

)]
+

n−1∑
r=1

cn − cr

cn

[
f

(
ar

an+1

)
− f

(
ar

an

)]
.

(The condition c0 = 0 is needed at the last step).
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For x, y ∈ J , we have f(y)− f(x) ≥ C(x)(y − x), where C(x) = f ′(x) ≥ 0. So

∆n ≥
n−1∑
r=1

hrC

(
ar

an

)
,

where, by (A3),

hr =
cr

cn

ar+1

an+1

+
cn − cr

cn

ar

an+1

− ar

an

=
ar

cnan+1

(
cr

ar+1

ar

+ cn − cr − cn
an+1

an

)
≥ 0.

In case (ii), we have C(x) ≤ 0, and by reversing (A3), we ensure that hr ≤ 0.
In case (iii), the reversal of (A2) has the effect of reversing the inequality in (7). We

now have f(y)− f(x) ≤ C(x)(y− x), with C(x) ≥ 0, and the reversal of (A3) again gives
hr ≤ 0. �

The theorem simplifies pleasantly when cn = an, because condition (A3) now says the
same as (A2):

Corollary 5.2. Let (an)n≥0 be an increasing sequence with a0 = 0 and a1 > 0. Let f be
increasing and non-negative on J . Let An(f) be as above, with cn = an. If an+1 − an is
decreasing and f is convex, then An(f) increases with n. If an+1− an is increasing and f
is concave, then An(f) decreases with n.

We note that the term c0 does not appear in the definition of An(f). Its role is only
to ensure that c2 − c1 ≤ c1. Also, the differentiability condition is only to avoid infinite
gradient at any point ar/an that coincides with an end point of J .

Simply inserting the definition of superquadratic, we obtain:

Theorem 5.3. Let (an), (cn) and An(f) be as in Theorem 5.1(i). Suppose that f is
superquadratic and non-negative on J . Then

An+1(f)−An(f) ≥ 1

cncn−1

n−1∑
r=1

crf

(∣∣∣∣ar+1

an+1

− ar

an

∣∣∣∣)+
1

cncn−1

n−1∑
r=1

(cn−cr)f

(∣∣∣∣ar

an

− ar

an+1

∣∣∣∣) .

Note that if (an) is increasing, then there is clearly no need for the second modulus sign
in Theorem 5.2. Furthermore, it is easily checked that, with the other hypotheses, this
implies that an+1/an is decreasing, so that the first modulus sign is redundant as well.

We now formulate the dual results for Bn(f). We need an extra hypothesis, (B4).

Theorem 5.4. (i) Let (an)n≥0 and (cn)n≥0 be sequences such that an > 0 and cn > 0 for
n ≥ 1 and:

(B1) c0 = 0 and cn is increasing,

(B2) cn − cn−1 is increasing for n ≥ 1,

(B3) cn(1− an−1/an) is increasing for n ≥ 1,

(B4) either a0 = 0 or (an) is increasing.

Given a function f , let

Bn[f, (an), (cn)] = Bn(f) =
1

cn+1

n∑
r=0

f

(
ar

an

)
.
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for n ≥ 1. Suppose that f is convex, non-negative, increasing and differentiable on an
interval J including all the points ar/an for 1 ≤ r ≤ n. Then Bn(f) decreases with n.

(ii) Suppose that f is decreasing on J and that (B3) and (B4) are both reversed, with
the other hypotheses unchanged. Then Bn(f) decreases with n.

(iii) Suppose that f is concave, non-negative and increasing on J , and that (B2), (B3),
(B4) are all reversed, with the other hypotheses unchanged. Then Bn(f) increases with n.

Proof. We adapt the proof of Theorem 3.2. For n ≥ 2, let

∆n = cn+1[Bn−1(f)−Bn(f)] =
cn+1

cn

n−1∑
r=0

f

(
ar

an−1

)
−

n∑
r=0

f

(
ar

an

)
.

Using (B2) in the form cn+1 ≥ cr+1 + (cn − cr), together with non-negativity of f , we
obtain

(8) ∆n ≥
n−1∑
r=1

cr

cn

[
f

(
ar−1

an−1

)
− f

(
ar

an

)]
+

n−1∑
r=0

cn − cr

cn

[
f

(
ar

an−1

)
− f

(
ar

an

)]
.

Separating out the term r = 0, we now have in case (i)

∆n ≥
n−1∑
r=1

krC

(
ar

an

)
+ δn,

where δn = f(a0/an−1)− f(a0/an). Condition (B4) ensures that δn ≥ 0 (note that we do
not need differentiability at the point a0/an), and (B3) gives

kr =
cr

cn

ar−1

an−1

+
cn − cr

cn

ar

an−1

− ar

an

=
ar

cnan−1

(
cr

ar−1

ar

+ cn − cr − cn
an−1

an

)
≥ 0.

In case (ii), the reversed hypotheses give C(x) ≤ 0, kr ≤ 0 and δn ≥ 0.
In case (iii), the inequality in (8) is reversed, and C(x) ≥ 0, kr ≤ 0 and δn ≤ 0. �

Corollary 5.5. Let (an)n≥0 be an increasing sequence with a0 = 0 and a1 > 0. Let f be
increasing and non-negative on J . Let Bn(f) be as above, with cn = an. If an − an−1 is
increasing and f is convex, then Bn(f) decreases with n. If an− an−1 is decreasing and f
is concave, then Bn(f) increases with n.

Theorem 5.6. Let (an), (cn) and Bn(f) be as in Theorem 5.4(i). Suppose that f is
superquadratic and non-negative on J . Then

Bn−1(f)−Bn(f) ≥ 1

cncn+1

n−1∑
r=1

crf

(∣∣∣∣ar

an

− ar−1

an−1

∣∣∣∣)+
1

cncn+1

n−1∑
r=0

(cn−cr)f

(∣∣∣∣ ar

an−1

− ar

an

∣∣∣∣) .

Relation to the theorems of [4]. The theorems of [4] (in some cases, slightly strength-
ened) are cases of our Theorems 5.1 and 5.4. More exactly, by taking cn = n in Theorem
5.1, we obtain Theorem 2 of [4], strengthened by replacing 1/n by 1/(n − 1). By taking
cn = an+1 in Theorem 5.1, we obtain Theorem 3 of [4]; of course, the hypothesis fails
to simplify as in Corollary 5.2. Theorems A and B of [4] bear a similar relationship to
our Theorem 5.4. In the way seen in section 3, results for one-end-point averages (or
their generalized forms) can usually be derived from those for An(f) and Bn(f). Also,
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one-end-point averages lead to more complication in the proofs: ultimately, this can be
traced to the fact that the analogues of the original hr and kr no longer cancel to zero.
All these facts indicate that An(f) and Bn(f) are the natural averages for this study.

At this level of generality, it is hardly worth formulating generalizations of the original
(3.2) and (3.4) for superquadratic functions. However, in some particular cases one can
easily calculate the term corresponding to the previous f(1/3n). For example, in Theorem
5.3, with cn = n and an = 2n− 1, we obtain the lower estimate f(xn), where

xn =
4n + 1

3(4n2 − 1)
.

Remark 5.1. Our proofs extend without change to three sequences: let

An(f) =
1

cn−1

n−1∑
r=1

f

(
ar

bn

)
, Bn(f) =

1

cn+1

n∑
r=0

f

(
ar

bn

)
.

Conditions (A3) and (B3) become, respectively,

cr(ar+1/ar − 1) ≥ cn(bn+1/bn − 1) for r < n,

cn(1− bn−1/bn) ≥ cr(1− ar−1/ar) for r ≤ n.

Condition (B4) becomes: either a0 = 0 or (bn) is increasing.

6. Applications to sums and products involving odd numbers

Let

Sn(p) =
n∑

r=1

(2r − 1)p.

Note that Sn(1) = n2. We write also S∗n(p) = Sn(p)− 1. It is shown in [2, Proposition 12]
that Sn(p)/np+1 increases with n if p ≥ 1 or p < 0, and decreases with n if 0 ≤ p ≤ 1. (This
result is derived from a theorem on mid-point averages 1

n

∑n
r=1 f [(2r − 1)/2n] requiring

both f and its derivative to be convex or concave; note however that it is trivial for
p ≤ −1.) We shall apply our theorems to derive some companion results for Sn(p) and
S∗n(p).

Note first that if cn = n and an = 2n + 1, then

cn(an+1/an − 1) = cn(1− an−1/an) = 2n/(2n + 1),

which increases with n. If cn = n and an = 2n− 1, then

cn(an+1/an − 1) = cn(1− an−1/an) = 2n/(2n− 1),

which decreases with n.

Proposition 6.1. If p ≥ 1, then

Sn(p)

(2n + 1)(2n− 1)p
decreases with n,

S∗n(p)

(2n− 1)(2n + 1)p
increases with n.

Proof. Let f(x) be the convex function xp. The first statement is given by Corollary 5.5,
with a0 = 0 and an = 2n − 1 for n ≥ 1. The second one is given by Corollary 5.2, with
a0 = 0 and an = 2n + 1 for n ≥ 1. �



INEQUALITIES FOR AVERAGES 13

The case p = 1 shows that we cannot replace S∗n(p) by Sn(p) in the second statement.
Also, this statement does not follow in any easy way from the theorem of [2].

The sense in which reversal occurs at p = 1 is seen in the next result. Also, we can
formulate two companion statements (corresponding ones were not included in Proposition
6.1, because they would be weaker than the given statements).

Proposition 6.2. If 0 < p ≤ 1, then

Sn(p)

(2n− 1)(2n + 1)p
and

S∗n(p)

(n− 1)(2n + 1)p
decrease with n,

S∗n(p)

(2n + 1)(2n− 1)p
and

Sn(p)

(n + 1)(2n− 1)p
increase with n.

Proof. The function f(x) = xp is now concave. The first decreasing expression is given
by Corollary 5.2 with a0 = 0 and an = 2n − 1 for n ≥ 1. The second one is given by
Theorem 5.1(iii) with cn = n and an = 2n + 1.

The first increasing expression is given by Corollary 5.5 with a0 = 0 and an = 2n+1 for
n ≥ 1. The second one is given by Theorem 5.4(iii) with cn = n and a0 = 0, an = 2n− 1
for n ≥ 1. Recall that differentiability at 0 is not required. �

Proposition 6.3. If p > 0, then

(2n + 1)p

n− 1
S∗n(−p)

increases with n.

Proof. Apply Theorem 5.1(ii) to the decreasing convex function f(x) = x−p, with cn = n
and an = 2n + 1. �

We remark that, unlike [2, Proposition 12], this statement is not trivial when p = 1.
Again, we cannot replace S∗n(p) by Sn(p).

Finally, we derive a result for the product Qn = 1.3. . . . (2n − 1). It follows from [2,

Theorem 4] that Q
1/n
n /n decreases with n (though this is not stated explicitly in [2]). Our

variant is less neat to state than the theorem of [2], but not a consequence of it.

Proposition 6.4. The quantity 1
2n+1

Q
1/(n−1)
n decreases with n.

Proof. Take f(x) = − log x, which is decreasing, convex and non-negative on (0, 1). Again
apply Theorem 5.1(ii) with cn = n and an = 2n+1. (Alternatively, we can apply Theorem
5.1(iii) to f(x) = log x + K, where K is chosen so that log(1/2n) + K > 0.) �
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